Direct, Uniform, Distinct: Yao
Given \(m \) pages with \(n \) tuples on each page, e.g. a total of \(N = m \cdot n \) tuples:

\[
\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n & 1 & 2 & 3 & \cdots & n & 1 & 2 & 3 & \cdots & n \\
1 & 2 & 3 & \cdots & n & 1 & 2 & 3 & \cdots & n & 1 & 2 & 3 & \cdots & n \\
1 & 2 & 3 & \cdots & n & 1 & 2 & 3 & \cdots & n & 1 & 2 & 3 & \cdots & n \\
\end{array}
\]

- How many distinct subsets of size \(k \) exist? \(\binom{N}{k} \)
- How many distinct subsets of size \(k \) exist, where a page does not contain any of the chosen tuples? Choose \(k \) from all but one page, i.e. from \(N - n \) tuples: \(\binom{N-n}{k} \)

So the probability that a page contains none of the \(k \) tuples is

\[p := \frac{\binom{N-n}{k}}{\binom{N}{k}} \]

- What is the probability that a certain page contains at least one tuple? \(1 - p \) . . . unless all pages have to be involved (\(k > N - n \)).
- Multiplied by the number of pages, we get the number of qualifying pages, denoted \(\overline{Y}^{N;m}_{n}(k) \).
Direct, Uniform, Non-Distinct: Cheung
Now with replacement: How many distinct multisets exist choosing k from n?
As many as there are distinct sets choosing k from $n + k - 1$!

Bijection between multisets and sets. From multiset to set:
$f : (x_1, x_2, \ldots, x_k) \mapsto (x_1 + 0, x_2 + 1, \ldots, x_k + (k - 1))$

Example: Choose 2 from 4
- # sets: $\binom{4}{2}$
- # multisets: $\binom{4+2-1}{2}$
Like Yao, but not necessarily distinct

Same formula as Yao, but:

- No special case for $k > N - n$
- We substitute N by $N + k - 1$ to compute \tilde{p}
Sequential, Uniform, Distinct
- Estimate the distribution of distance between two qualifying tuples
- Bitvector B, b bits are set to 1
- First, the distribution of the number of j zeros
 - before first 1
 - between two consecutive 1s
 - after last 1
- Bitvectors having a 1 at position i followed by j zeros: \(\binom{B-j-2}{b-2} \)
- $B - j - 1$ positions for i
- every bitvector has $b - 1$ sequences of a form 10...01
- \[B^B_b(j) = \frac{(B-j-1)(B-j-2)}{(b-1)(B-b)} = \frac{(B-j-1)}{(b-1)} \frac{(B-b)}{(B)} \]
- now, the expected number of 0s: \(\frac{B-b}{b+1} \)
- then, the expected total number of bits between first bit and the last 1: \(B - \frac{B-b}{b+1} = \frac{Bb+b}{b+1} \)
Histograms
A histogram \(H_A : B \to \mathbb{N} \) over a relation \(R \) partitions the domain of the aggregated attribute \(A \) into disjoint buckets \(B \), such that

\[
H_A(b) = |\{r | r \in R \land R.A \in b}\|
\]

and thus \(\sum_{b \in B} H_A(b) = |R| \).
A rough histogram might look like this:
Given a histogram, we can approximate selectivities as follows:

\[A = c \frac{\sum_{b \in B : c \in b} H_A(b)}{\sum_{b \in B} H_A(b)} \]

\[A > c \frac{\sum_{b \in B : c \in b} \frac{\max(b) - c}{\max(b) - \min(b)} H_A(b) + \sum_{b \in B : \min(b) > c} H_A(b)}{\sum_{b \in B} H_A(b)} \]

\[A_1 = A_2 \frac{\sum_{b_1 \in B_1, b_2 \in B_2, b' = b_1 \cap b_2 : b' \neq \emptyset} \frac{\max(b') - \min(b')}{\max(b_1) - \min(b_1)} H_{A_1}(b_1) \frac{\max(b') - \min(b')}{\max(b_2) - \min(b_2)} H_{A_2}(b_2)}{\sum_{b_1 \in B_1} H_{A_1}(b_1) \sum_{b_2 \in B_2} H_{A_2}(b_2)} \]
Given the following histogram of an integer attribute $R.a$:

<table>
<thead>
<tr>
<th>bucket</th>
<th>[0, 20)</th>
<th>[20, 40)</th>
<th>[40, 60)</th>
<th>[60, 80)</th>
<th>[80, 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Estimate the number of elements for which $R.a \geq 55$ holds true.
▶ Slides: db.in.tum.de/teaching/ws1819/queryopt
▶ Exercise task: gitlab
▶ Questions, Comments, etc:
 mattermost @ mattermost.db.in.tum.de/qo18
▶ Bonus sheet due: 9 AM next monday