Query Optimization: Exercise

Session 4

Bernhard Radke

November 12, 2018
Homework

Exercise 1
select s2.name
from studenten s1, hoeren h1, hoeren h2, studenten s2
where s1.name='Schopenhauer' and s1.matrnr=h1.matrnr
and h1.vorlnr=h2.vorlnr and h2.matrnr=s2.matrnr
and h1.matrnr<>h2.matrnr
select s2.name
from studenten s1, hoeren h1, hoeren h2, studenten s2
where s1.name='Schopenhauer' and s1.matrnr=h1.matrnr
and h1.vorlnr=h2.vorlnr and h2.matrnr=s2.matrnr
and h1.matrnr<>h2.matrnr

name = 'Schopenhauer'

\[
\begin{align*}
\uparrow & \quad s1.\text{matrnr} = h1.\text{matrnr} \\
\quad s1 & \quad h1 \\
\quad s2 & \quad s2.\text{matrnr} = h2.\text{matrnr} \\
\quad s2 & \quad h2
\end{align*}
\]

\[h1.\text{vorlnr} = h2.\text{vorlnr} \land h1.\text{matrnr} \neq h2.\text{matrnr}\]
Exercise 2

When is a cross product beneficial?

When is a bushy tree beneficial?
Exercise 2

- When is a cross product beneficial?
Exercise 2

- When is a cross product beneficial?
- When is a bushy tree beneficial?
Join Ordering

Join Tree
Query Graph
select *
from R1, R2, R3, R4
where R1.a = R2.b
 and R2.c = R3.d
 and R3.e = R4.f
select *
from R1, R2, R3, R4
where R1.a=R2.b
 and R2.c=R3.d
 and R3.e=R4.f
 and R4.g=R1.h
select *
from R1, R2, R3, R4
where R1.a=R2.b
 and R1.c=R3.d
 and R1.e=R4.f
select *
from R1, R2, R3, R4
where R1.a=R2.b
 and R1.c=R3.d
 and R1.e=R4.f
 and R2.g=R3.h
 and R2.i=R4.j
 and R3.k=R4.l
Cardinality, Selectivity and Cost Function
Join Ordering
Cardinality, Selectivity and Cost Function

- $|\sigma(R)| = f_R \cdot |R|$

- $|R_1 \bowtie R_2| = f_{1,2} \cdot |R_1||R_2|$
Join Ordering
Cardinality, Selectivity and Cost Function

1. $|\sigma(R)| = f_R \cdot |R|$

2. $|R_1 \bowtie R_2| = f_{1,2} \cdot |R_1||R_2|$

3. $|T| = \begin{cases} |R_i| & \text{if } T \text{ is a leaf } R_i \\ \left(\prod_{R_i \in T_1, R_j \in T_2} f_{i,j} \right) |T_1||T_2| & \text{if } T = T_1 \bowtie T_2 \end{cases}$
\[C_{\text{out}}(T) = \begin{cases}
0 & \text{if } T \text{ is a leaf } R_i; \\
|T| + C_{\text{out}}(T_1) + C_{\text{out}}(T_2) & \text{if } T = T_1 \Join T_2
\end{cases} \]
Join Ordering

Cardinality, Selectivity and Cost Function

\[C_{\text{out}}(T) = \begin{cases}
0 & \text{if } T \text{ is a leaf } R_i; \\
|T| + C_{\text{out}}(T_1) + C_{\text{out}}(T_2) & \text{if } T = T_1 \bowtie T_2
\end{cases} \]

\[C_{\text{NL}}(T_1 \bowtie T_2) = |T_1||T_2| \]

\[C_{\text{HJ}}(T_1 \bowtie T_2) = 1.2|T_1| \]

\[C_{\text{SMJ}}(T_1 \bowtie T_2) = |T_1|\log(|T_1|) + |T_2|\log(|T_2|) \]
First Greedy Heuristics
Construct a linear join tree
Construct a linear join tree

- GreedyJoinOrdering-1: order relations by cardinality
Construct a linear join tree

- GreedyJoinOrdering-1: order relations by cardinality
- GreedyJoinOrdering-2: order relations by selectivity
Construct a linear join tree

- GreedyJoinOrdering-1: order relations by cardinality
- GreedyJoinOrdering-2: order relations by selectivity
- GreedyJoinOrdering-3: order by selectivity, try each relation as start relation
Homework
Give an example query graph for which GOO does not give the optimal join tree
Perform IKKBZ heuristic on this query and compare C_{out}
Implement a Query Graph for TinyDB
- Slides: db.in.tum.de/teaching/ws1819/queryopt
- Exercise task: gitlab
- Questions, Comments, etc:
 mattermost @ mattermost.db.in.tum.de/qo18
- Exercise due: 9 AM next monday