
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im
WiSe 19/20

Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1920/DBSandere/?lang=en

Sheet 07

Exercise 1

Answer the following questions on our university database using SQL:

(a) Which Professors does Fichte know from attending their Lectures.

(b) Which Lectures are attended by Students in the 1.-4. semester? Print only the title
of the lectures.

(c) Find all Students that attend at least one Lecture together with Fichte.

Lösung:

(a) Which Professors does Fichte know from attending their Lectures.

select distinct p.persNr , p.name
from Professors p, attend a, Lectures l, Students s
where p.PersNr = l.given_by

and l.lectureNr = a.lectureNr
and a.studNr = s.studNr
and s.name =’Fichte ’;

(b) Which Lectures are attended by Students in the 1.-4. semester? Print only the
title of the lectures.

select distinct l.title
from Lectures l, attend a, Students s
where l.lectureNr = a.lectureNr

and a.studNr = s.studnr
and s.semester between 1 and 4;

(c) Find all Students that attend at least one Lecture together with Fichte.

select distinct other_s.studNr , other_s.name
from Students fichte_s , attend fichte_a , attend

other_a , Students other_s
where fichte_s.name = ’Fichte ’

and fichte_a.studNr = fichte_s.studNr
and other_a.lectureNr = fichte_a.lectureNr
and other_s.studNr = other_a.studNr
and other_s.studNr <> fichte_s.studnr

Exercise 2

Answer the following questions on our university database using SQL:

a) Figure out the average semester of the all students.

1

b) Determine the average semester of students that attend at least one lecture of Sokrates.

c) Calculate how many lectures students are attending on average. Students who do
not attend any lecture should be reflected in the result as well. If you get stuck, see
hints: 1 2

d) Calculate how many lectures each student is attending. Students who do not attend
any lecture should be included in the result as well (attend count = 0).

Solution:

a) Figure out the average semester of the all students.

select avg(semester) from students;

b) Determine the average semester of students that attend at least one lecture of
Sokrates.

select avg(semester)
from students s
where exists (

select *
from attend a, lectures l, professors p
where s.studnr = a.studnr

and a.lecturenr = l.lecturenr
and l.given_by = p.persnr
and p.name = ’Sokrates ’)

In this query we need to make sure that each student is only counted once, even if
she is attending two lectures by Sokrates. In our solution, the use of exists takes
care of this. However, we could have also used distinct in combination with a
sub-query:

select avg(semester)
from (select distinct s.*

from Students s, attend a, lectures l,
professors p

where s.studnr = a.studnr
and a.lecturenr = l.lecturenr
and l.given_by = p.persnr
and p.name = ’Sokrates ’)

1Remember that the from clause is optional (’select 1.0 / 2.0;’ is a valid query).
2Remember that you can use sub-queries in the select clause.

2

c) Calculate how many lectures students are attending on average. Students who do
not attend any lecture should be reflected in the result as well.

select attend_count /(student_count *1.000)
from (select count (*) as attend_count from attend) a,

(select count (*) as student_count from students
) s

Or:

select attend_count / cast(student_count as numeric
(10,4))

from (select count (*) as attend_count from attend) a,
(select count (*) as student_count from students

) s

d) [Bonus] Calculate how many lectures each student is attending. Students who do
not attend any lecture should be included in the result as well (attend count = 0).

In this exercise we have to make sure to include students that do not attend any
lecture.

select s.studnr , s.name , (select count (*) from attend
a where a.studnr = s.studnr)

from students s;

Another possible solution would be to use union. We first calculate the number of
attended lectures for each student that does attend a lecture. Then we create a
query that produces the student number, student name and a zero for all students
that do not attend a lecture. We then simply combine the two results using the
union operator. Note, however, that it is important to only allow students that
do not attend any lecture in the second sub-query. Otherwise, duplicates would be
possible.

(select s.studnr , s.name , count (*)
from students s, attend a
where s.studnr = a.studnr
group by s.studnr , s.name)

union
(select s.studnr , s.name , 0
from students s
where not exists (select * from attend a where a.

studnr = s.studnr))

A similar approach that takes care of duplicates in a different way is shown in the
following query. Here we do not avoid duplicates, but filter them out in a second
step, instead.

select x.studnr , x.name , sum(x.cnt)
from

((
select s2.studnr , s2.name , count (*) as cnt
from students s2, attend a
where s2.studnr = a.studnr
group by s2.studnr , s2.name

)
union
(

select s1.studnr , s1.name , 0 as cnt
from students s1

)) x
group by x.studnr , x.name

3

As should be clear from this exercise, there are many different ways how a query can
be written. As a rule of thumb, shorter queries are often better, because these are
easier to understand. That holds for everyone involved: you yourself (when proof-
reading your queries in the exam), other people (who read your queries and need to
understand them) and the database (which has to execute your queries in an efficient
manner).

4

