
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im
WiSe 19/20

Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1920/DBSandere/?lang=en

Sheet 10

Exercise 1

Write a SQL statement to create a view that gives an overview of the difficulty of each
lecture. The difficulty of a lecture is defined as the sum of the weekly hours of that lecture
and its direct predecessors. In our example instantiation of the university schema, the
following query on your view should yield the result (only partially shown):

select * from LectureDifficulties;

lectureNr title difficulty

5216 Bioethik 6
4630 Die 3 Kritiken 4
... ... ...

Solution:

create view LectureDifficulties(lectureNr , title ,
difficulty) as (

select l.lectureNr , l.titel , l.weeklyhours
+ (select (case when sum(l2.weeklyhours) is null then

0
else sum(l2.weeklyhours) end)

from Require r, Lectures l2
where l.lectureNr = r.nachfolger

and r.vorgaenger = l2.lectureNr)
from Lectures l
);

Exercise 2

”
Busy Students (again)“: In the previous exercise sheet we wrote a SQL query to find all

students that have more weekly hours in total than the average student. Now, in this
exercise, try to simplify the query using the with construct. (As before, also consider
students that do not attend any lecture).

Solution:

The following query determines the
”
busy students“:

select s.*
from Students s
where s.studNr in

(select a.studNr
from attend a, Lectures l

1



where a.lectureNr = l.lectureNr
group by a.studNr
having sum(weeklyHours) >

(select sum(cast(weeklyHours as decimal (5,2)))
/ count(distinct(s2.studNr))

from Students s2
left outer join attend a2

on a2.studNr = s2.studNr
left outer join Lectures l2

on l2.lectureNr = a2.lectureNr));

By using the with construct or case, we can write a query that is much easier to read.
First with with:

with TotalWeeklyHours as (
select sum(cast(weeklyHours as decimal (5,2))) as

CountWeeklyHours
from attend a, Lectures l
where l.lectureNr = a.lectureNr

),
TotalStudents as (

select count(studNr) as CountStudents
from Students

)
select s.*
from Students s
where s.studNr in (

select a.studNr
from attend a, Lectures l
where a.lectureNr = l.lectureNr
group by a.studNr
having sum(weeklyHours)

> (select CountWeeklyHours / CountStudents
from TotalWeeklyHours , TotalStudents));

And here with case:

with WeeklyHoursPerStudent as (
select s.studNr ,

cast((case when sum(l.weeklyHours) is null
then 0 else sum(l.weeklyHours)

end) as real) as CountWeeklyHours
from Students s

left outer join attend a on s.studNr = a.studNr
left outer join Lectures l on a.lectureNr = l.lectureNr

group by s.studNr
)

select s.*
from Students s
where s.studNr in (select weeklyHours.studNr

from WeeklyHoursPerStudent weeklyHours
where weeklyHours.CountWeeklyHours

> (select avg(CountWeeklyHours)
from WeeklyHoursPerStudent));

2



Exercise 3

ExamPoints

StudName ExerciseId PossiblePoints Score

Bond 1 10 4

Bond 2 10 10

Bond 3 11 4

Maier 1 10 4

Maier 2 10 2

Maier 3 11 3

Create a view in SQL for the ExamResult, which should look like the following for our
example instantiation:

ExamResult

Name PossiblePoints Score Ratio Passed

Bond 31 18 0,580645 yes

Maier 31 9 0,290323 no

An exam should be graded as passed if at least 50% of the possible points where scored.

[Bonus] Create the underlying table for ExamPoints and think about what the primary
key should be.

Solution:

create table ExamPoints(studName varchar not null ,
exerciseId int not null ,
possiblePoints int not null ,
score int not null ,
primary key(studName ,

exerciseId));
insert into ExamPoints values

(’Bond’, 1, 10, 4), (’Bond’, 2, 10, 10),
(’Bond’, 3, 11, 4), (’Maier ’, 1, 10, 4),
(’Maier’, 2, 10, 2), (’Maier’, 3, 11, 3);

create view ExamResult (Name , PossiblePoints , Score ,
Ratio , Passed) as (

select e.Name , sum(e.PossiblePoints) as PossiblePoints ,
sum(e.Score) as Score ,

(cast (sum(e.Score) as float))/sum(e.PossiblePoints) as
Ratio ,

(case when (cast (sum(e.Score) as float))/sum(e.
PossiblePoints) >= 0.5 then ’yea’ else ’no’ end) as
Passed

from ExamPoints e
group by e.Name);

3


