
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im
WiSe 19/20

Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1920/DBSandere/?lang=en

Sheet 13

Exercise 1

[Same as in the previous sheet, but with a B+-Tree, instead of a B-Tree.] Calculate the
optimal degree i and the number of required levels (also known as the “height” of the tree)
for a B+-Tree with the following properties:

• The B+-Tree should store all humans currently living on earth (assume an even 10
billion).

• For each human we store the name, country and a unique identifier (100 Byte per
human). The unique identifier will be used as the key an requires 8 Byte to store.

• The degree i of inner and leaf nodes may be different.

• Each node has to fit on a 16KB (16000 Byte) page.

• The page ids in the inner nodes require 8 Byte.

• This time (unlike in the lecture), we want to be precise: an inner node with n tuples
requires n + 1 page ids to identify its children (in the lecture we simplifies this and
assumed that a node with n tuples has n page ids).

Solution:

For leaf nodes, we simply have to store the tuples themselves and we can calculate the
number of tuples fitting on a single leaf node as follows: leaf size ÷ tuple size = 16KB ÷
100B = 160. The degree of a node is half of that: 80. Using this, we can calculate
the number of leaf nodes required to store 10 billion human tuples: number of humans ÷
tuples per leaf = 10e9 ÷ 160 = 62500000. So far, nothing has changed compared to the
B-Tree.

v0 s1 v1 s2 v1 …

Figure 1: B+-Tree node structure

Next we calculate how many separator keys (x) can fit on an inner node. From this we can
derive the fan-out of an inner node (how many pages can be addresses by an inner node).
Using the structure of an inner node (Figure 1), we can create the following formula:

1



x ∗ key size + (x + 1) ∗ page id size ≤ 16KB

x ∗ 8B + (x + 1) ∗ 8B ≤ 16KB

x ∗ 8B + x ∗ 8B + 8B ≤ 16KB

x ∗ 16B ≤ 16KB − 8B

x ≤ (16KB − 8B) ÷ 16B = 999.5

Hence, we can store 999 separator keys in an inner node (because we need to round up,
because we only store “complete” tuples) and can therefore address 999 + 1 = 1000 child
pages. Therefore, a total of 62500000 ÷ 1000 = 62500 inner pages are required to store
each page on the leaf level. But these 62500 pages need to be addresses as well . . .

To figure out the height of the tree (number of layers, not counting the root), we can either
continuously divide until there is only one page left: 62500000÷1000÷1000÷1000 = 0.0625
and see that there is one leaf level and three layers of inner nodes. Or, we can use a
logarithm: log1000(62500000) ≈ 2.3 to derive the number of inner layers (rounded up: 3).
In both cases we end up with 4 layers (3 inner, 1 leaf). Therefore, the tree has a “height”
of 3, because the root does not count.

Exercise 2

Please insert all tuples from the Students relation from the university schema into a hash
table of size 5 (as in the figure). Each page can hold up to 2 tuples. As a means of handling
collisions, linear chaining should be employed.

p0

p1

p2

p3

p4

a) Use the following hash function: hash(key) = key mod 5.

b) Try using a better hash function: hash(key) = crc32(key) mod 5 To calculate the
CRC32 of a key, you can use a website on the internet, for example: https://

crccalc.com/?crc=24002&method=crc32&datatype=ascii&outtype=dec

Did the better hash function, result in a more evenly balanced hash table?

Solution:

2

https://crccalc.com/?crc=24002&method=crc32&datatype=ascii&outtype=dec
https://crccalc.com/?crc=24002&method=crc32&datatype=ascii&outtype=dec


26830 Aristoxenos 8

26120 Fichte 10
p0

28106 Carnap 3
p1

24002 Xenokrates 18
p2

25403 Jonas 12
p3

p4

29120 Theophrastos 2

27550 Schopenhauer 6
p5

29555 Feuerbach 2
p6

3


