
Bonusproject 2
Exam Style
RR Debugger
Execution Engines

Timo Kersten
Technische Universität München
Faculty for Computer Science
Chair for Database Systems

Task: Identify possible return trips.

select *
from
 tripsProvided a,
 tripsProvided b
where
 distance(a.droplocation, b.pickuplocation) < r and
 distance(b.droplocation, a.pickuplocation) < r and
 a.droptime < b.pickuptime and
 a.droptime + 8 hours > b.pickuptime

Yay, spark sql can take this as input!

Oh no, the optimiser gets very confused, resorts to
using a cross product.

Return Trips

2

a
b

Oh no, the optimiser gets very confused, resorts to
using the cross product.

Let’s help it out by introducing an additional equijoin on
a grid.

Bucketize

3

…
explode(…-1,…,…+1) // per dimension
…

to.as(“to").join(back.as("back"),
 $"to.dropTimeBucket" === $"back.pickupTimeBucket" &&
 $"to.latBucketDropoff" === $"back.latBucketPickup" &&
 $"to.lonBucketDropoff" === $"back.lonBucketPickup" &&

 $"to.tpep_dropoff_datetime" < $"back.tpep_pickup_datetime" &&
 $"back.tpep_pickup_datetime" < $"to.tpep_dropoff_datetime" + lit(dt * 60 * 60) &&
 makeDistExpr($"back.dropoff_latitude", $"back.dropoff_longitude",
 $"to.pickup_latitude", $"to.pickup_longitude") < lit(dist) &&
 makeDistExpr($"to.dropoff_latitude", $"to.dropoff_longitude",
 $"back.pickup_latitude", $"back.pickup_longitude") < lit(dist)
)

Bucket width in degrees for latitude

Bucket width in degrees for longitude

Bucket Computation

4

Δlat
360

=
dist

earthRadius * 2π

Δlon
360

=
dist

smallCircleRadius * 2π

smallCircleRadius = 2π * earthRadius * sin(90∘ − maxLat)

More dimensions for bucketing
+ Increases selectivity of bucketization
- Increases dataset size by factor of 3 per
dimension

Few dimensions for bucketing
+ Smaller intermediate result
- Many elements per bucket, large crossproducts
within buckets

Trade Offs

5

Bottleneck During Join

6

Partitioning Writes to Disk

7

We want to use all dimensions for selectivity, but
only use one dimension to reduce communication.

Idea: Map all dimensions onto a space-filling curve

Further Optimizations

8

• Space filling curve
• (x,y) to z-curve computed by
interleaving bits
• We could map our bucket numbers
from all dimensions to z-curve,
• only explode for left neighbor, self,

and right neighbor once

Z-order curve

9

• Bloom filters are very small set representations that allow for membership tests
• False positives possible, no false negatives

• We can use it after building partitions for one side of the join:
• Partition one side
• Build bloom filters for partitions
• Broadcast bloom filters
• Check bloom filters before sending
• Drop element if result negative
• -> reduce amount of tuples in shuffle phase

Other optimization: Bloom filter

10

• ThisTeam: What is going on here?
• Other tips:

• Overall bottleneck: Shuffle phase writes to disk
• Strike a balance between selective bucketing and too much data created by explode/union
• Don’t use udfs, these need to deserialize data to jvm objects -> garbage collection

Last Year’s Leaderboard

11

Idea:
dist only varies from 50 to 200m. Calculate the join before time measurement with list =
200m. Filter down on actual request:
prejoined.filter(
 makeDistExpr($"back.dropoff_latitude", $"back.dropoff_longitude",
 $"to.pickup_latitude", $"to.pickup_longitude") < lit(dist) &&
 makeDistExpr($"to.dropoff_latitude", $"to.dropoff_longitude",
 $"back.pickup_latitude", $"back.pickup_longitude") < lit(dist)
)

Thinking Outside the Box (a.k.a a Hack)

12

Task:

Another suggestion:
dist only has 150 possible values. Precompute result for all of them.

Exam Style

13

• 90 Minutes, 90 Points -> ~ 1 point per minute
• Tasks have different difficulty levels, so it may be a good idea to skip ahead if you are stuck

• Pay attention to what the questions are asking for
• Name
• Name and give and example
• Name and explain
• State a SQL query that finds all…
• Is it possible that …? Explain why or why not.

• Don’t write long stories. Answer the questions concisely to get all points but save time for
other questions.

GNU tools (grep etc.)
Performance Spectrum/Estimations
Machine-code optimizations
Advanced SQL:

Recursive SQL
Query Decorrelation
Window Functions

Distributed Databases (2PL, Partitioning, Replication)
Map-Reduce (Map, Shuffle, Reduce, Exploit Parallelism!)
Scale up vs. Scale out
No-SQL Databases
Distributed Hash-Tables
XML, JSON, RDF, SPARQL
… and more (this is not the definitive list)

Topics Covered

14

RR Debugger

Programs run backwards in time
Repeatable race conditions

rr-project.org

15

Usage:
Run program with ‘rr record <program cmd line>’
Debug with ‘rr replay’

Variable inspection and breakpoints as usual in gdb
+ reverse-next, reverse-continue

Interesting workflow:  
Why am I reading a nullptr from this memory location?
-> Set hardware watchpoint to memory location
-> reverse-continue
Stops debugger when memory location was last written

Alternatives to RR
Chronon for Java
RevDeBug for .Net/C#
RevPDB for Python
UndoDB for compiled code
Time Travel Debugger in Visual Studio Enterprise

RR Debugger

16

