Unnesting Arbitrary Queries

Thomas Neumann and Alfons Kemper

Technische Universität München

March 5, 2015
Often queries are simpler to formulate using subqueries

Q1: select s.name,e.course
 from students s,exams e
 where s.id=e.sid and
 e.grade=(select min(e2.grade)
 from exams e2
 where s.id=e2.sid)

- here, subquery depends on outer query (correlated)
- nested loop evaluation, $O(n^2)$
- easy to formulate, very inefficient to execute!
Motivation (2)

Same query without correlated subquery:

Q1': select s.name, e.course
 from students s, exams e,
 (select e2.sid as id, min(e2.grade) as best
 from exams e2
 group by e2.sid) m
 where s.id = e.sid and m.id = s.id and
 e.grade = m.best

- much more efficient to execute, no longer $O(n^2)$
- but not as intuitive as the original query
- a database should _unnest_ (i.e., de-correlate) automatically
Motivation (3)

Typically, DBMSs detect and unnest some simple cases. But correlations can be complex:

Q2:
select s.name, e.course
from students s, exams e
where s.id=e.sid and
 (s.major = 'CS' or s.major = 'Games Eng') and
 e.grade>=\((\text{select avg}(e2.grade)+1)\)
 from exams e2
 where s.id=e2.sid or
 (e2.curriculum=s.major and
 s.year>e2.date))

- “difficult” (non-equality, disjunction, etc.)
- we are not aware of any system that could unnest that
- but $O(n^2)$ is a deal breaker, a DBMS must avoid that if possible
Motivation (4)

SQL promised declarative queries

- the user writes what he wants, not what the system should do
- the DBMS finds a good (the best?) evaluation strategy
- failing to unnest queries often leads to catastrophic runtime

We want an generic approach that can handle arbitrary queries

- works on the algebra, on on the SQL representation
- can handle all relational operators
Extended Relational Algebra

We need some extra functionality

\[\chi_{a:f}(e) := \{ x \circ (a : f(x)) | x \in e \} \]

\[T_1 \bowtie_p T_2 := \sigma_p(T_1 \times T_2) \]

\[T_1 \bowtie_p T_2 := \{ t_1 \circ t_2 | t_1 \in T_1 \land t_2 \in T_2(t_1) \land p(t_1 \circ t_2) \} \]

\[\Gamma_{A;a:f}(e) := \{ x \circ (a : f(y)) | x \in \Pi_A(e) \land y = \{ z | z \in e \land \forall a \in A : x.a = z.a \} \} \]

Additional notation:

\[\mathcal{A}(T) := \text{the attributes produced by } T \]

\[\mathcal{F}(T) := \text{the free variables of } T \]
Unnesting

Canonical translation turns correlated subqueries into

$$(\text{outer query}) \bowtie_p \text{ (subquery)}.$$

- \bowtie is a dependent join (evaluates right hand side for every tuple)
- nested loop evaluation, very expensive

The goal of unnesting is to eliminate all dependent joins.
Simple Unnesting

Some cases are simple

```sql
select ...
from lineitem l1 ...
where exists (select *
    from lineitem l2
    where l2.l_orderkey = l1.l_orderkey)
...```

This results in an algebra expression of the form

\[ l_1 \bowtie \left( \sigma_{l_1.okey = l_2.okey(l_2)} \right) \]

We can unnest by pulling the predicate up, eliminating the dependency.

\[ l_1 \bowtie_{l_1.okey = l_2.okey(l_2)} \]

- pull predicates up to eliminate correlations
General Unnesting

General idea: Evaluate subquery for all possible bindings simultaneously.

\[ T_1 \Join_p T_2 \equiv T_1 \Join_p T_1 = \mathcal{A}(D) D \Join T_2 \]

where \( D := \Pi_{\mathcal{F}(T_2) \cap \mathcal{A}(T_1)}(T_1) \).

- \( D \) provides all possible bindings of free variables
- \( |D| \leq |T_1| \)
- \( D \) is a set (i.e., duplicate free)
- \( D \) being a set allow for equivalence that do not hold in general
- allows us to move \( D \) until subquery no longer dependent
General Unnesting (2)

$\sigma_{e.grade=m} \\cap_s s.id=e.sid \ni \Gamma_{\emptyset; m: \min(e2.grade)} \Rightarrow \Pi_d.d.id \ni \sigma_{d.id=e2.sid} \\cap_s s.id=e.sid \ni \Gamma_{\emptyset; m: \min(e2.grade)}$

Using $D$ might already improve runtime sometimes, but in general is only the first step for full unnesting.
A dependent join with a set $D$ can be manipulated much more easily. We push $D$ down until the join is no longer dependent:

$$D \bowtie T \equiv D \bowtie T \text{ if } \mathcal{F}(T) \cap \mathcal{A}(D) = \emptyset.$$ 

Push down rules very between operators:

$$D \bowtie \sigma_p(T_2) \equiv \sigma_p(D \bowtie T_2)$$

$$D \bowtie (T_1 \bowtie_p T_2) \equiv \begin{cases} (D \bowtie T_1) \bowtie_p T_2 & : \mathcal{F}(T_2) \cap \mathcal{A}(D) = \emptyset \\ T_1 \bowtie_p (D \bowtie T_2) & : \mathcal{F}(T_1) \cap \mathcal{A}(D) = \emptyset \\ (D \bowtie T_1) \bowtie_p \text{natural}_D (D \bowtie T_2) & : \text{otherwise.} \end{cases}$$

$$D \bowtie (T_1 \bowtie_p T_2) \equiv (D \bowtie T_1) \bowtie_p \text{natural}_D (D \bowtie T_2)$$

$$D \bowtie (\Gamma_{A;a:f}(T)) \equiv \Gamma_{A \cup \mathcal{A}(D);a:f}(D \bowtie T)$$

... (see the paper)
Examples

Original Query 1
Examples (2)

Query 1, Transformation Step 1
Examples (3)

Query 1, Transformation Step 2
Examples (4)

\( \sigma_{e.\text{grade}=m} \)

\( \bowtie s.\text{id}=d.\text{id} \)

\( \Gamma_{d.\text{id};m:\text{min}(e2.\text{grade})} \)

\( \sigma_{d.\text{id}=e2.\text{sid}} \)

\( \bowtie \)

\( \Pi_{d.\text{id}:s.\text{id}} \text{exams } e2 \)

\( \bowtie s.\text{id}=e.\text{sid} \)

students \( s \) exams \( e \)

Query 1, Transformation Step 3
Examples (5)

\[ \sigma_{e.\text{grade}=m} \]
\[ \land s.id=d.id \]
\[ \Gamma_{d.id;m:\min(e2.\text{grade})} \]
\[ \sigma_{d.id=e2.sid} \]
\[ \land \]
\[ \Pi_{d.id:s.id \text{ exams } e2} \]
\[ \land s.id=e.sid \]

students \text{ exams } e

Query 1, Transformation Step 4
Examples (6)

Query 1, Transformation Step 5 (pushing selections back down)
Instead of joining with $D$, we can often infer the attributes from $D$:

$$D \bowtie T \subseteq \chi_{A(D):B}(T) \text{ if } \exists B \subseteq A(T) : A(D) \equiv_C B.$$ 

- “perfect” unnesting, totally independent query parts afterwards
- but: this computes a superset of the join with $D$
- does not matter for correctness (final join will eliminate non-$D$ values), but for performance
- we avoid computing $D$, but we potentially lose pruning power
- a good idea if the join is unselective, otherwise keep $D$
- cost-base decision
Optimizations (2)

\[ \sigma_{e.\text{grade}=m} \]
\[ \land \]
\[ \land_{s.\text{id}=d.\text{id}} \]
\[ \Gamma_{d.\text{id}; m: \min(e2.\text{grade})} \]
\[ \sigma_{d.\text{id}=e2.\text{sid}} \]
\[ \land \]
\[ \chi_{d.\text{id}: e2.\text{sid}} \]
\[ \land \]
\[ \text{exams } e2 \]

\[ \land_{s.\text{id}=e.\text{sid}} \]

\text{students } s \text{exams } e

Query 1, Optional Transformation Step 6 (decoupling both sides)
Evaluation

- unnesting transforms an $O(n^2)$ into an (ideally) $O(n)$ operation
- arbitrary gains possible

Toy database, 1,000 students, 10,000 exams (i7-3930K)

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HyPer</td>
<td>$&lt; 1ms$</td>
<td>42ms</td>
</tr>
<tr>
<td>HyPer without unnesting</td>
<td>51ms</td>
<td>408ms</td>
</tr>
<tr>
<td>PostgreSQL 9.1</td>
<td>1,300ms</td>
<td>12,099ms</td>
</tr>
<tr>
<td>SQL Sever 2014</td>
<td>can unnest</td>
<td>cannot unnest</td>
</tr>
</tbody>
</table>

We cannot publish absolute runtime for SQL Server 2014, but you can guess from the asymptotics.
Conclusion

Unnesting is essential for good performance
- improves the asymptotics
- can lead to arbitrary gains

We present a generic approach for unnesting
- works on the algebra level, not on the SQL
- exploit set semantics, push down until no longer dependent
- can handle arbitrary queries
- virtually always beneficial, worst case memory overhead factor 2
- could often completely eliminate overhead, but that is a trade off