Chapter 2: ER-Diagrams

Content:
• Learn how to draw ER diagrams
Database Design

DBS can take care automatically of many things – but the user has to specify

- Requirements of the application
- Characteristics of the data

Two important concepts during DBS design:
- Data Model: How to describe the data?
- Data Schema: Concrete description of the data (using the chosen data model)
Data modeling

Excerpt of the Real World

Conceptual Schema (E/R- or UML-Schema)

Manual/intellectual Modeling

Semi-automatic Transformation

Relational Schema

XML Schema

Network Schema

Object-oriented Schema
Modeling a small example application: E/R

Real World: University

Conceptual Modeling

Students

- StudNr
- Name

Lectures

- LectureNr
- Title

Students attend Lectures

requires
Select Name
From Students, attend, Lectures
Where Students.StudNr = attend.StudNr and
 attend.LectureNr = Lectures.LectureNr and
 Lectures.Title = 'Grundzüge';
Logical Data Models

- Network Model
- Hierarchical Model
- **Relational Data Model**
- XML Model
- Object-orientiiered Data Model
 - Object-relational Schema
- Deductive Data Model

* [Michael Stonebraker: What Goes Around Comes Around]
Modeling a small example application: UML

Students
+StudNr : int
+Name : String
+Semester : int
+GPA() : float
+SumWeeklyHours() : short

Real World: University

Lectures
+Attendee
1..*
attend

+Successor

Lectures
+LectureNr : int
+Title : String
+WeeklyHours : int
+NumberAttendees() : int
+FailureRate() : float

requires

Students

Lectures

Real World: University
Phases of Database Design

Information Requirements

Processing Requirements

Requirements Engineering

Scope Statement

Conceptual Modeling

Conceptual Design

ER Schema

Logical Design

Logical Modeling

Logical Schema

Physical Modeling

Physical Database Design

R := [{att1, att2}]

Relation

<table>
<thead>
<tr>
<th>Att1</th>
<th>Att2</th>
</tr>
</thead>
</table>

Database System Concepts for Non-Computer Scientists WS 2020/2021
Software Development and Ability to Communicate

How the customer explained it
How the Project Leader understood it
How the Analyst designed it
How the Programmer wrote it
How the Business Consultant described it
How the project was documented
What operations instaled
How the customer was billed
How it was supported
What the customer really needed
Requirements Engineering

Create a "Scope Statement" consisting of:

- Entity description
- Relation description
- Process description
University Employees

- Quantity: 1000
- Attributes

 - **EmpNumber**
 - Type: Integer
 - Domain: 0...999.999.99
 - Defined: 100%
 - Identifying: yes
 - Example: 007

 - **Salary**
 - Type: decimal
 - Length: (7,2)
 - Unit: Euro per month
 - Defined: 10%
 - Identifying: no

 - **Level**
 - Type: String
 - Length: 2
 - Defined: 100%
 - Identifying: no
 - Example: W2
Relation Description: exam

Involved Objects:
- Professor as Tester
- Student as Testee
- Lecture as Test Subject

Attributes of the Relation:
- Date
- Time
- Grade

Quantity: 100 000 per year
Process Description:

Issue a Certificate

- Frequency: semiannually
- Required Data
 * Tests
 * Examination Rules
 * Student’s Records
 * ...
- Priority: high
- Data Volume to be processed
 * 500 Students
 * 3000 Tests
 * 10 Versions of Examination Rules
Creating a Specification

The actual analysis is an iterative process:
• Customer tells developer his/her needs
• Developer notes everything down (s/he understood) in his/her „language“ . . .
• . . . and translates it into the "language" of the customer
• This is shown to the customer who does not agree with everything
• Change requests are agreed on
• Back to step 2
Phases of Database Design

Information Requirements

Requirements Engineering
 Scope Statement
 Conceptual Modeling
 Conceptual Design
 ER Schema
 Logical Modeling
 Logical Design
 Logical Schema
 Physical Modeling
 Physical Database Design

Processing Requirements

DBMS-Characteristics

Hardware/OS-Characteristics

Relation

<table>
<thead>
<tr>
<th>Att1</th>
<th>Att2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conceptual Design

The ideal design (the ideal specification) is
• unique
• complete
• comprehensible (for all participants)
• nonredundant
• . . . and not reachable in reality
Entity/Relationship-Modeling

Entity

Relationship

Attribute (property)

Key (identification)

Role

Students

StudNr

Name

Semester

Attendee

attend

Lectures

LectureNr

Title

Weekly hours
Mathematically: “Relational Schema”

- **Entities** are sets of n-ary tuples:
 - Students = \{[1, „Sam‟, 3],
 [2, „Jack‟, 5], ...
 \}

- **Relationships** are n-ary relations:
 - attend ⊆ Students × Lectures
 - = \{[1, 101], [1, 102],
 [2, 101]\}
Functionalities

1:1

1:N

N:1

N:M
Relationship 1:1

One $e_1 \in E_1$ has 0 or 1 partners in E_2
One $e_2 \in E_2$ has 0 or 1 partners in E_1

Example:

one car has one license plate
one license plate belongs to one car
Relationship 1:N

One $e_1 \in E_1$ has N partners in E_2
One $e_2 \in E_2$ has 0 or 1 partners in E_1

Example:

one mentor advises several students
one student is advised by one mentor
Relationship N:M

One $e_1 \in E_1$ has N partners in E_2
One $e_2 \in E_2$ has N partners in E_1

Example:

one actor stars in several movies
one movie has several actors
Recursive Relationship 1:N

Relationship 1:N

One $e_1 \in E_1$ is called ‘roleA’ and has N partners in E_1
One $e_2 \in E_1$ is called ‘roleB’ and has 0 or 1 partners in E_1

Example:

One person is the mother of several persons (children)
One person is the child of one person (mother)
Functionalities in n-ary Relationships

$R : E_1 \times E_2 \times \ldots \times E_n \rightarrow E_k$
Example Seminar

supervise : Topics x Students → Professors

supervise : Professors x Students → Topics
Student x Professor -> Topic

1. A Student is only allowed to work on one topic with a given professor.
Student x Topic -> Professor

2. Students may work on the same topic only once – thus they may not work on the same topic again with another professor.
3. Professors can reuse the same topic – i.e., one professor can give the same topic to different students. (absence of: PXT \(\rightarrow\) S)
Thereby induced Consistency Constraints

1. A Student is only allowed to work on one topic with a given professor. (SxP -> T)

2. Students may work on the same topic only once – thus they may not work on the same topic again with another professor. (SxT -> P)

3. Professors can reuse the same topic – i.e., one professor can give the same topic to different students. (absence of: PxT -> S)

4. The same topic can be given by different professors – but to different students. (absence of: PxT -> S)

5. The same professor can give different topics – but to different students. (absence of: PxT -> S)
Occurrence of the Relationship supervise

Dashed lines represent illegal occurrences
(min, max)-Notation

For every $e_i \in E_i$ there are

- at least min_i tuples $(..., e_i, ...) \in R$ and
- at most max_i tuples $(..., e_i, ...) \in R$
Example (min, max)

one mentor advises up to 20 students
one student is advised by exactly one mentor
Min-max Notation and Functionalities

Polygon
- \(N \) (3, *)

edges
- \(M \) (1, 2)

Edge
- \(N \) (2, 2)

begin/end
- \(M \) (2, *)

Point
- \(N \)
 - \(x \)
 - \(y \)
 - \(z \)

Min-max:
- A Polygon has at least 3 Edges.
- An Edge has 1 or 2 Polygons.
Weak Entities

- Relationship between "strong" and "weak" type is 1:N (or 1:1 in rare cases) - why not N:M?
- The existence of a room depends on the existence of the associated building
- RoomNr is unique only within the building
- Key of Rooms is: RoomNr and BldNr

Diagram:
- Buildings
 - Height
 - BldNr
 - 1
 - located_in
 -Rooms
 - RoomNr
 - Size
 - N

Table:

<table>
<thead>
<tr>
<th>Buildings</th>
<th>Height</th>
<th>BldNr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BldNr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rooms</td>
<td>RoomNr</td>
<td>Size</td>
</tr>
<tr>
<td>RoomNr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BldNr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- RoomNr is unique only within the building
Tests as weak entity type

- Several professors design one test
- Several lectures are inquired in one test
Generalization

Generalization / Specialization:

\[
\begin{aligned}
&\text{R} \\
\rightarrow &\text{Is-a} \\
\rightarrow &\text{S} \\
&\text{s}_1 \\
\rightarrow &\text{s}_n \\
\end{aligned}
\]

S is a specialization of R

Example:

\[
\begin{aligned}
&\text{animal} \\
\rightarrow &\text{Is-a} \\
\rightarrow &\text{dog} \\
&\text{name} \\
\rightarrow &\text{pet id} \\
&\text{color} \\
\rightarrow &\text{breed} \\
\end{aligned}
\]
Generalization University

- **Name**
- **StudNr**
- **Area**
- **University-Members**
 - **is-a**
 - **Students**
 - **StudNr**
 - **Area**
 - **Employees**
 - **is-a**
 - **Assistents**
 - **Professors**
 - **PersNr**
 - **Level**
 - **Room**
Conclusion

University schema with generalization and (min, max)-notation
Where are we?

Information Requirements

- Requirements Engineering
 - Scope Statement
 - Conceptual Modeling
 - ER Schema
 - Logical Modeling
 - Logical Design
 - Physical Modeling
 - Physical Database Design

Processing Requirements

DBMS-Characteristics

Hardware/OS-Characteristics

Relation:

<table>
<thead>
<tr>
<th>Att1</th>
<th>Att2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R := \{\text{att1, att2}\}$