Foundations of Data Engineering

Thomas Neumann
The goal of this lecture is teaching the standard **tools** and **techniques** for **large-scale data processing**.

Related keywords include:

- Big Data
- cloud computing
- scalable data-processing
- ...

We start with an overview, and then dive into individual topics.
Goals and Scope

Note that this lecture emphasizes practical usage (after the introduction):
- we cover many different approaches and techniques
- but all of them will be used in practical manner, both in exercises and in the lecture

We cover both concepts and usage:
- what software layers are used to handle Big Data?
- what are the principles behind this software?
- which kind of software would one use for which data problem?
- how do I use the software for a concrete problem?
Some Pointers to Literature

They are not required for the course, but might be useful for reference

- The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
- Hadoop: The Definitive Guide
- Big Data Processing with Apache Spark
- Big Data Infrastructure course by Peter Boncz
The Age of Big Data

What Happens in an Internet Minute?

1,572,877 GB of global IP data transferred

- 10 Million ads displayed
- 347,222 Tweets
- 3.3 Million pieces of content shared
- 6.9 Million messages sent
- Netflix + Youtube = more than ½ of all traffic

- 10 Million in sales
- $133,436
- 31,773 hours of music played
- 57,870 page views
- 100 hours of video uploaded
- 138,889 hours of video watched
- 23,148 hours of video watched

- 438,801 Wiki page views
- $400 Million during Alibaba peak day sales
- 34.7 Million instant messages (MIM) sent
- 194,064 app downloads

And Future Growth is Staggering

- By 2017, mobile traffic will have grown 13X in just 5 years
- In 2017, there will be 3X more connected devices than people on Earth
- All digital data created reached 4 zettabytes in 2013
The Age of Big Data

- $1,527,877 \text{ GB/m} = 1500 \text{ TB/m} = 1000 \text{ drives/m} = 20m \text{ stack/m}$
The Age of Big Data

- 1,527,877 GB/m = 1500 TB/m = 1000 drives/m = 20m stack/m
- 4 zetabytes = 3 billion drives
“Big Data”
The Data Economy
Data Disrupting Science

Scientific paradigms:
- Observing
- Modeling
- Simulating
- Collecting and Analyzing Data
Big Data

Big Data is a relative term

- if things are breaking, you have Big Data
 - Big Data is not always Petabytes in size
 - Big Data for Informatics is not the same as for Google

- Big Data is often hard to understand
 - a model explaining it might be as complicated as the data itself
 - this has implications for Science

- the game may be the same, but the rules are completely different
 - what used to work needs to be reinvented in a different context
Big Data Challenges (1/3)

- **Volume**
 - data larger than a single machine (CPU, RAM, disk)
 - infrastructures and techniques that scale by using more machines
 - Google led the way in mastering “cluster data processing”

- **Velocity**
- **Variety**
Supercomputers?

- take the top two supercomputers in the world today
 - Tianhe-2 (Guangzhou, China)
 - cost: US$390 million
 - Titan (Oak Ridge National Laboratory, US)
 - cost: US$97 million

- assume an expected lifetime of five years and compute cost per hour
 - Tianhe-2: US$8,220
 - Titan: US$2,214

- this is just for the machine showing up at the door
 - not factored in operational costs (e.g., running, maintenance, power, etc.)
Let’s rent a supercomputer for an hour!

Amazon Web Services charge US$1.60 per hour for a large instance

- an 880 large instance cluster would cost US$1,408
- data costs US$0.15 per GB to upload
 - assume we want to upload 1TB
 - this would cost US$153
- the resulting setup would be #146 in the world’s top-500 machines
- total cost: US$1,561 per hour
- search for: LINPACK 880 server
Supercomputing vs. Cluster Computing

- **Supercomputing**
 - focus on performance (biggest, fastest).. At any cost!
 - oriented towards the [secret] government sector / scientific computing
 - programming effort seems less relevant
 - Fortran + MPI: months do develop and debug programs
 - GPU, i.e. computing with graphics cards
 - FPGA, i.e. casting computation in hardware circuits
 - assumes high-quality stable hardware

- **Cluster Computing**
 - use a network of many computers to create a ‘supercomputer’
 - oriented towards business applications
 - use cheap servers (or even desktops), unreliable hardware
 - software must make the unreliable parts reliable
 - focus on economics (bang for the buck)
 - programming effort counts, a lot! No time to lose on debugging..
Cloud Computing vs Cluster Computing

- Cluster Computing
 - Solving large tasks with more than one machine
 - parallel database systems (e.g. Teradata, Vertica)
 - NoSQL systems
 - Hadoop / MapReduce

- Cloud Computing
Cloud Computing vs Cluster Computing

- **Cluster Computing**
- **Cloud Computing**
 - machines operated by a third party in large data centers
 - sysadmin, electricity, backup, maintenance externalized
 - rent access by the hour
 - renting machines (Linux boxes): Infrastructure as a Service
 - renting systems (Redshift SQL): Platform-as-a-service
 - renting an software solution (Salesforce): Software-as-a-service

- independent concepts, but they are often combined!
Economics of Cloud Computing

- a major argument for Cloud Computing is pricing:
 - We could own our machines
 - ... and pay for electricity, cooling, operators
 - ... and allocate enough capacity to deal with peak demand
 - since machines rarely operate at more than 30% capacity, we are paying for wasted resources
- pay-as-you-go rental model
 - rent machine instances by the hour
 - pay for storage by space/month
 - pay for bandwidth by space/hour
- no other costs
- this makes computing a commodity
 - just like other commodity services (sewage, electricity etc.)
- some caveats though, we look at them later
Cloud Computing: Provisioning

We can quickly scale resources as demand dictates
 - high demand: more instances
 - low demand: fewer instances

Elastic provisioning is crucial

Target (US retailer) uses Amazon Web Services (AWS) to host target.com
 - during massive spikes (November 28 2009 –“Black Friday”) target.com is unavailable

Remember your panic when Facebook was down?
Cloud Computing: some rough edges

- some provider hosts our data
 - but we can only access it using proprietary (non-standard) APIs
 - **lock-in** makes customers vulnerable to price increases and dependent upon the provider
 - local laws (e.g. privacy) might prohibit externalizing data processing

- providers may control our data in unexpected ways:
 - July 2009: Amazon remotely removed books from Kindles
 - Twitter prevents exporting tweets more than 3200 posts back
 - Facebook locks user-data in
 - paying customers forced off Picasa towards Google Plus

- anti-terror laws mean that providers have to grant access to governments
 - this privilege can be overused
Privacy and Security

- people will not use Cloud Computing if trust is eroded
 - who can access it?
 - governments? Other people?
 - Snowden is the Chernobyl of Big Data
 - privacy guarantees needs to be clearly stated and kept-to

- privacy breaches
 - numerous examples of Web mail accounts hacked
 - many many cases of (UK) governmental data loss
 - TJX Companies Inc. (2007): 45 million credit and debit card numbers stolen
 - every day there seems to be another instance of private data being leaked to the public
High performance and low latency

- how quickly data moves around the network
 - total system latency is a function of memory, CPU, disk and network
 - the CPU speed is often only a minor aspect

- examples
 - Algorithmic Trading (put the data centre near the exchange); whoever can execute a trade the fastest wins
 - simulations of physical systems
 - search results
 - Google 2006: increasing page load time by 0.5 seconds produces a 20% drop in traffic
 - Amazon 2007: for every 100ms increase in load time, sales decrease by 1%
 - Google’s web search rewards pages that load quickly
Big Data Challenges (2/3)

- **Volume**
- **Velocity**
 - endless stream of new events
 - no time for heavy indexing (new data arrives continuously)
 - led to development of data stream technologies
- **Variety**
Big Streaming Data

- storing it is not really a problem: disk space is cheap
- efficiently accessing it and deriving results can be hard
- visualising it can be next to impossible
- repeated observations
 - what makes Big Data big are repeated observations
 - mobile phones report their locations every 15 seconds
 - people post on Twitter > 100 million posts a day
 - the Web changes every day
 - potentially we need unbounded resources
 - repeated observations motivates streaming algorithms
Big Data Challenges (3/3)

- **Volume**
- **Velocity**
- **Variety**
 - dirty, incomplete, inconclusive data (e.g. text in tweets)
 - semantic complications:
 - AI techniques needed, not just database queries
 - Data mining, Data cleaning, text analysis
 - techniques from other DEA lectures should be used in Big Data
 - technical complications:
 - skewed value distributions and “Power Laws”
 - complex graph structures, expensive random access
 - complicates cluster data processing (difficult to partition equally)
 - localizing data by attaching pieces where you need them makes Big Data even bigger
• Big Data typically obeys a power law
• modelling the head is easy, but may not be representative of the full population
 ▶ dealing with the full population might imply Big Data (e.g., selling all books, not just blockbusters)
• processing Big Data might reveal power-laws
 ▶ most items take a small amount of time to process
 ▶ a few items take a lot of time to process
• understanding the nature of data is key
Skewed Data

- distributed computation is a natural way to tackle Big Data
 - MapReduce encourages sequential, disk-based, localised processing of data
 - MapReduce operates over a cluster of machines
- one consequence of power laws is uneven allocation of data to nodes
 - the head might go to one or two nodes
 - the tail would spread over all other nodes
 - all workers on the tail would finish quickly.
 - the head workers would be a lot slower
- power laws can turn parallel algorithms into sequential algorithms
Introduction

Summary

Introduced the notion of Big Data, the three V’s
Explained Super/Cluster/Cloud computing

We will come back to that in the lecture, but we will start simple

- given a complex data set, what should you do to analyze it?
- start with simple approaches, become more and more complex
- we finish with cloud-scale computing, but not always appropriate
- Big Data is not the same for everybody
Notes on the Technical Side

We will use a lot of tools during this lecture

- we concentrate on free and/or open source tools
- in general available for all major platforms
- we strongly suggest to use a Linux system, though
- ideally a recent Ubuntu/Debian system
- other systems should work, too, but you are on your own
- using a Virtual Machine is ok, might be easier than a native Linux system