
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme

Prof. Alfons Kemper, Ph.D.

Database System Concepts for Non-Computer Scientist - WiSe 22/23
Alice Rey (rey@in.tum.de)

http://db.in.tum.de/teaching/ws2223/DBSandere/?lang=en

Sheet 09

Exercise 1
Answer the following questions on our university database using SQL:

a) Calculate how many lectures each student is attending. Students who do not attend
any lecture should be included in the result as well (attend_count = 0) (use outer
joins).

b) Figure out how many students each professor knows: A professor knows students from
one of their lectures or via a test they have supervised. Include professors not knowing
any students and use outer joins. Hint: 1

1Remember that SQL has set operations.

1



Solution:

a) select s.studNr, s.name, count(a.studNr)
from Students s left outer join attend a on s.studnr = a.studnr
group by s.studNr, s.name

b) select p.persNr, p.name, count(p.studNr)
from
((

select p.persNr, p.name, t.studNr
from Professors p

left outer join test t on p.persNr = t.persNr
)
union
(

select p.persNr, p.name, a.studNr
from Professors p

left outer join Lectures l on p.persNr = l.given_by
left outer join attend a on l.lectureNr = a.lectureNr

)) p
group by p.persNr, p.name

Uncorrelated subqueries can be easily transformed into with-statements to make
the query more readable:

with known_from_tests as (
select p.persNr, p.name, t.studNr
from Professors p

left outer join test t on p.persNr = t.persnr
),
known_from_lectures as (

select p.persNr, p.name, a.studNr
from Professors p

left outer join Lectures l on p.persNr = l.given_by
left outer join attend a on l.lectureNr = a.lectureNr

),
known as (

select * from known_from_tests
union

select * from known_from_lectures
)
select persNr, name, count(distinct studNr)
from known
group by persNr, name

Exercise 2
Find those students who have attended all lectures that they wrote a test in.

2



Solution:
The requirement that students in the query result should have attended all lectures
that they were tested in, can be rephrased as follow: “For a given student, there should
be no test/exam, that has no entry in attend”. This can then be translated into sql
easily.

select s.*
from Students s
where not exists(select * from test t

where s.studNr = t.studNr
and not exists

(select *
from attend a
where a.studNr = s.studNr

and a.lectureNr = t.lectureNr));

This query is an example of a “for all query” where the counting-based technique can
not be applied. The reason is that we can not simply count the number of attended
lectures, because we need to make sure that the attended lectures match the ones that
were tested.
An alternative way that only requires one “not exists” would be to connect the students
with their tests and if available add the corresponding attend entry. If there is no
attend available, the “left outer join” will leave the “lecture” column empty (adds a
“null” value). If we find in our “not exists” subquery an entry where the lecture is null,
we can remove

with students_tests_optLectures as (
select s.studnr student, t.lecturenr test, a.lecturenr lecture
from students s inner join test t on s.studnr = t.studnr

left outer join attend a on s.studnr = a.studnr and a.lecturenr =
t.lecturenr

)

select *
from students
where not exists (select * from students_tests_optLectures where

studnr = student and lecture is null)

A second alternative without “not exists” would be to directly search for those students
with a null-entry in the with-statement with an additional where clause. The resulting
“students_test_woLectures” contains a list of all students that took a test without
attending the lecture. Since we are interested in the opposite, we use a set operation
to select all students “except” those who took a test without attending the respective
lecture.

with students_tooktest_didnotattendlecture as (
select distinct s.studnr
from students s inner join test t on s.studnr = t.studnr

left outer join attend a on s.studnr = a.studnr and a.lecturenr =
t.lecturenr

where a.lecturenr is null
)

select studnr from students
except

select * from students_tooktest_didnotattendlecture

3



Exercise 3
„Busy Students“: Find all students that have more weekly hours in total than the average
student. Try to simplify the query using the with construct. (Also consider students that
do not attend any lecture).
Solution:
The following query determines the „busy students“:

select s.*
from Students s
where s.studNr in
(select a.studNr
from attend a, Lectures l
where a.lectureNr = l.lectureNr
group by a.studNr
having sum(weeklyHours) >

(select sum(cast(weeklyHours as decimal(5,2)))
/ count(distinct(s2.studNr))

from Students s2
left outer join attend a2

on a2.studNr = s2.studNr
left outer join Lectures l2

on l2.lectureNr = a2.lectureNr));

By using the with construct or case, we can write a query that is much easier to read.
First with with:

with TotalWeeklyHours as (
select sum(cast(weeklyHours as decimal(5,2))) as CountWeeklyHours
from attend a, Lectures l
where l.lectureNr = a.lectureNr

),
TotalStudents as (

select count(studNr) as CountStudents
from Students

)
select s.*
from Students s
where s.studNr in (

select a.studNr
from attend a, Lectures l
where a.lectureNr = l.lectureNr
group by a.studNr
having sum(weeklyHours)

> (select CountWeeklyHours / CountStudents
from TotalWeeklyHours, TotalStudents));

And here with case:
with WeeklyHoursPerStudent as (
select s.studNr,

cast((case when sum(l.weeklyHours) is null
then 0 else sum(l.weeklyHours)

end) as real) as CountWeeklyHours
from Students s

4



left outer join attend a on s.studNr = a.studNr
left outer join Lectures l on a.lectureNr = l.lectureNr

group by s.studNr
)

select s.*
from Students s
where s.studNr in (select weeklyHours.studNr

from WeeklyHoursPerStudent weeklyHours
where weeklyHours.CountWeeklyHours

> (select avg(CountWeeklyHours)
from WeeklyHoursPerStudent));

Exercise 4
Write SQL queries to answer the following questions (pizza.db.in.tum.de).

1. What is the name of the restaurant with the id 41884?

select name
from general
where res_id = 41884

2. Which dish costs 23.4 €?

select name
from menu
where price = 23.4

3. How many menus cost between 10 € und 20 €?

select count(*)
from menu
where price between 10 and 20

4. Which dish is the priciest?

select name, price
from menu
where price = (select max(price) from menu)

5. How much does a Paulaner Spezi with 0,5 l costs at least, on average, at most? (Make
sure you allow different menu names like ’Paulaner Spezi, 0,5’ or ’Paulaner Spezi
0,5L’))

select 'Paulaner Spezi' as name, min(price), avg(price), max(price)
from menu
where name like '%Paulaner%Spezi%0,5%'

6. How many different dishes are available per size (S, M, and L)?

select size, count(*)
from menu
where size is not null
group by size

5



Exercise 5
Write SQL queries to answer the following questions (pizza.db.in.tum.de).

1. Which restaurant offers the cheapest Pizza Margherita?

select g.name, m.name, m.price
from menu m, general g
where m.res_id = g.res_id and m.name like '%Margherita%'
and price = (select min(price) from menu where name like '%Margherita%')

2. Which restaurant offers the best Pizza Margherita?
(Based on the average restaurant rating)

with margherita_restaurants as (
select distinct m.res_id, r.average as rating, m.name, m.price
from menu m, rating r
where m.name like '%Margherita%' and m.res_id = r.res_id

)

select distinct g.name
from margherita_restaurants m, general g
where m.res_id = g.res_id
and rating = (select max(rating) from margherita_restaurants)

3. At which restaurants should you rather not order when an Italian is present (because
you can order Pizza Hawaii but not Pizza Regina)?

with pizzas as (
select *
from menu
where name like '%Pizza%' or section like '%Pizza%'

)

select distinct name
from general
where res_id in (select res_id from pizzas where name like '%Hawaii%')
and res_id not in (select res_id from pizzas where name like '%Regina%')

4. Which restaurants spelled ’Mozzarella’ wrong?

select distinct g.name, m.name, m.description
from menu m, general g
where m.description like '%Moz%'
and not m.description like '%Mozzarella%'
and m.res_id = g.res_id

6



restaurants

id

min_order_value

general

res_id

name

open

categories

sub_categories

main_sub_category

address

res_id

latitude

longitude

zipcode

street_name

street_number

city

country

phone

extras

res_id

meal

name

price

menu

res_id

id

name

section

price

description

size

opening_times

res_id

start

end

preordering_times

res_id

start

end

payment_methods

res_id

name

rating

res_id

average

star1

star2

star3

star4

star5

Restaurant Schema

7


