
305

Code Generation for Data Processing
Lecture 10: JIT Compilation and Sandboxing

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2022/23

306

JIT Compilation

I Ahead-of-Time compilation not always possible/sufficient

I “Dynamic source” code: pre-compilation not possible
I JavaScript, eval(), database queries
I Binary translation of highly-dynamic/JIT-compiled code

I Additional verification/analysis or increased portability desired
I (e)BPF, WebAssembly

I Dynamic optimization on common types/values
I Run-time sampling of frequent code paths, allows dynamic speculation
I Relevant for highly dynamic languages – otherwise prefer PGO43

43Profile-Guided Optimization; GCC: -fprofile-generate to store information about branches/values; -fprofile-use to use it

307

JIT Compilation: Simple Approach

I Use standard compiler, write shared library
I Can write compiler IR, or plain source code
I dlopen + dlsym to find compiled function

I Example: libgccjit

+ Simple, fairly easy to debug
− Very high overhead, needs IO

308

JIT: Allocating Memory

I malloc() – memory often non-executable
I alloca() – memory often non-executable
I mmap(PROT_READ|PROT_WRITE|PROT_EXEC) – W ⊕ X may prevent this

I W ⊕ X : a page must never be writable and executable at the same time
I Some OS’s (e.g. OpenBSD) and CPUs (Apple Silicon) strictly enforce this

I For code generation: map pages read–write
I NetBSD needs special argument to allow remapping the page as executable

I Before execution: change protection to (read–)execute

309

JIT: Making Code Executable

I Adjust page-level protections: mprotect
I OS will adjust page tables
I Typically incurs TLB shootdown

I Other steps might be needed, highly OS-dependent
I Read manual

310

JIT: Making Code Executable

I Flush instruction cache
I Flush DCache to unification point (last-level cache)
I Invalidate ICache in all cores for virtual address range

I After local flush, kernel might move thread to other core with old ICache

I x86: coherent ICache/DCache hierarchy – hardware detects changes
I Also includes: transparent (but expensive) detection of self-modifying code

I AArch64, MIPS, SPARC, ... (Linux): user-space instructions
I ARMv7, RISC-V44 (Linux), all non-x86 (Darwin): system call

I Skipping ICache flush: spurious, hard-to-debug problems

44RISC-V has user fence.i, but only affects current core

311

Code Generation: Differences AoT vs. JIT

Ahead-of-Time JIT Compilation

Code Model Arbitrary Large (or PIC with custom PLT)
Relocations Linker/Loader JIT compiler/linker
Symbols Linker/Loader JIT compiler/linker

may need application symbols
Memory Mapping OS/Loader JIT compiler/linker
EHFrame Compiler/Linker/Loader JIT compiler/linker

register in unwind runtime
Debuginfo Compiler/Linker/Debugger JIT compiler

register with debugger

I JIT compiler and linker are often merged

312

JIT: Code Model

I Code can be located anywhere in address space
I Cannot rely on linker to put in, e.g., lowest 2 GiB

I Large code model: allows for arbitrarily-sized addresses
I Small-PIC: possible for relocations inside object

I Needs new PLT/GOT for other symbols
I Overhead trade-off: wide immediates vs. extra indirection (PLT)

I Further restrictions may apply (ISA/OS)

313

JIT: Relocations and Symbols

I JIT compiler must take care of relocations
I Can try to directly process relocations during machine code gen.
I Not always possible: cyclic dependencies
I Option: behave like normal compiler with separate runtime linker

I Code may need to access functions/global variables from application
I Option: JIT compiler “hard-codes” relevant symbols
I Option: application registers relevant symbols
I Option: application linked with --export-dynamic and use dlsym

314

JIT: Memory Layout

I Never place code and (writable) data on same page
I W ⊕ X ; and writes near code can trigger self-modifying code detection
I Avoid many small allocations with one page each
I But: editing existing code pages is problematic

I Choose suitable alignment for code
I Page alignment is too large: poor cache utilization
I ICache cache line size not too relevant, decode buffer size is

typical value: 16 bytes
I Some basic blocks (e.g., hot loop entries) can benefit from 16-byte alignment

315

JIT: .eh_frame Registration (required for C++)

I Unwinder finds .eh_frame using program headers
I Problem: JIT-compiled code has no program headers
I Idea: JIT compiler registers new code with runtime

I libc provides __register_frame and __deregister_frame
I Call with address of first Frame Description Entry (FDE)
I Historically also called by init code

316

JIT: GDB Debuginfo Registration (optional)

I GDB finds debug info from section headers of DSOs
I Problem: JIT-compiled code has no DSO
I Idea: JIT compiler registers new code with debugger

I Define function __jit_debug_register_code and global var.
__jit_debug_descriptor
I Call function on update; GDB places breakpoint in function
I Prevent function from being inlined

I Descriptor is linked list of in-memory object files
I Needs relocations applied, also for debug info

I Users: LLVM, Wasmtime, HHVM, . . . ; consumers: GDB, LLDB

317

JIT: Linux perf Registration (optional)

I perf tracks binary through backing file of mmap
I Problem 1: JIT-compiled code has no backing file for its mmap region
I Problem 2: after tracing, JIT-compiled code is gone
I Goal 1: map instructions to functions
I Goal 2: keep JIT-compiled code for detailed analysis

I Approach 1: dump function limits to /tmp/perf-<PID>.map45

I Text file; format: startaddr size name\n
I Approach 2: needs an extra slide

45https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt

318

JIT: Linux perf JITDUMP format (optional)

I JIT-compiler dumps function name/address/size/code46

I JITDUMP file: record list for each function, may contain debuginfo
I File name must be jit-<PID>.dump

I JIT-compiler mmaps part of the file as executable somewhere
I Only use: perf keeps track of executable mappings

mapping is JIT marker, s.t. perf can find the file later
I Need to run perf report with -k 1 to use monotonic clock

I After profiling: perf inject --jit -i perf.data -o jit.data
I Extracts functions from JITDUMP, each into its own ELF file
I Changes mappings of profile to refer to newly created files

I perf report -i jit.data – Profit!

46https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jitdump-specification.txt

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jitdump-specification.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jitdump-specification.txt

319

Compilation Time

I Problem: code generation takes time
I Especially high-complexity frameworks like GCC or LLVM

I Compilation time of JIT compilers often matters
I Example: website needing JavaScript on page load
I Example: compiling database query

I Functions executed once are not worth optimizing
I But: often not known in advance

I Idea: adaptive compilation
I Incrementally spend more time on optimization

320

Compilation Time: Simple Approach

Caching

I Doesn’t work on first execution

321

Adaptive Execution

I Execution tiers have different compile-time/run-time tradeoffs
I Bytecode interpreter: very fast/slow
I Fast compiler: medium/medium
I Optimizing compiler: slow/fast

I Start with interpreter, profile execution
I E.g., collect stats on execution frequency, dynamic types, . . .

I For program worth optimizing, switch no next tier
I Depends on profile information, e.g. only optimize hot code
I Compile in background, switch when ready

322

Adaptive Execution: Switching Tiers

I Switching only possible at compiler-defined points
I Needs to serialize relevant state for other tier

I Simple approach: only switch at function boundaries
I Simple, well-defined boundaries; unable to switch inside loop

I Complex approach: allow switching at loop headers/everywhere
I Needs tracking of much more meta-information
I All entry points need well-defined interface
I All exit points need info to recover complete state
I Severely limits optimizations; all loops become irreducible

I Using LLVM is possible, but not a good fit

323

Adaptive Execution: Partial Compilation and Speculation

I Observation: even in hot functions, many branches are rarely used
I Optimizing cold code is wasted time(/energy)

I Observation (JS): functions often get called with same data type
I Specializing on structure allows removing string lookup for fields

I Idea: speculate on common path using profiling data
I Add check whether speculation holds; if not, use side-exit

I Side-exit can be patched later with actual code
I Side-exit must serialize all relevant state for lower tier

I “Deoptimization”

324

Sandboxing

I Executing untrusted code without additional measures may harm system
I Untrusted input may expose vulnerabilities

I Goal 1: execute untrusted code without impacting security
I Code in higher-level representation allows for further analyses

but needs JIT compilation for performance
I Goal 2: limit impact potential of new vulnerabilities

I Other goals: portability, resource usage, performance, usability, language
flexibility

325

Approach: Sandbox Operating System as-is

I Idea: put entire operating system in sandbox (“virtual machine”)
I Widely used in practice

I Virtualization needs hardware and OS support
I CPU has hypervisor mode which controls guest OS;

offers nested paging, hypercalls from guest OS to hypervisor

+ Good usability and performance
+ Strong isolation
− Rather high overhead on resource usage: completely new OS
− Inflexible and high start latency (seconds)

326

Approach: Sandbox Native Code as-is

I Idea: strongly restrict possibilities of native code

I Restrict system calls: seccomp
I Filter program for system calls depending on arguments

I Separate namespaces: network, PID, user, mount, . . .
I Isolate program from rest of the system
I Need to allow access to permitted resources

I Limit resource usage: memory, CPU, . . . cgroups

327

Approach: Sandbox Native Code as-is

I Frequently and widely used (“container”)

+ Good usability and performance, low latency (milliseconds)
+ Finer grained control of resources
∼ Resource usage: often completely new user space
− Weak isolation: OS+CPU often bad at separation

I Kernel has a fairly large interface, not hardened against bad actors
I Privilege escalation happens not rarely

328

Approach: Sandbox Native Code with Modification

I Idea: enforce limitations on machine code
I Define restrictions on machine code, e.g. no unbounded memory access
I Modify compiler to comply with restrictions
I Verify program at load time

I Google Native Client47, originally x86-32, ported to x86-64 and ARM
I Designed as browser extension
I Native code shipped to browser, executed after validation

47B Yee et al. “Native client: A sandbox for portable, untrusted x86 native code”. In: SP. 2009, pp. 79–93.

329

NaCl Constraints on i386

I Problem: dynamic code not verifiable
⇒ No self-modifying/dynamically generated code

I Problem: overlapping instructions
⇒ All “valid” instructions must be reachable in linear disassembly
⇒ Direct jumps must target valid instructions
⇒ No instruction may cross 32-byte boundary
⇒ Indirect jumps/returns must be and eax, -32; jmp eax

I Problem: arbitrary memory access inside virtual memory
⇒ Separate process, use segmentation restrict accessible memory

I Problem: program can run arbitrary CPU instructions
⇒ Blacklist “dangerous” instructions

330

NaCl on non-i386 Systems

I Other architectures48 use base register instead of segment offsets
I Additional verification required

I Deprecated in 2017 in favor of WebAssembly

+ Nice idea, high performance (5–15% overhead)
∼ Instruction blacklist not a good idea
− Not portable, severe restrictions on emitted code
− High verification complexity, error-prone

48D Sehr et al. “Adapting Software Fault Isolation to Contemporary {CPU} Architectures”. In: 19th USENIX Security Symposium
(USENIX Security 10). 2010.

331

Approach: Using Bytecode

I Idea: compile code to bytecode, JIT-compile on host
I Benefit: verification easy – all code generated by trusted compiler
I Benefit: more portable

I Java applets
I PNaCl: bytecode version of NaCl

+ Fairly high performance, portable
∼ Heavy runtime environment

I Especially criticized for Java applets

− Very high complexity and attack surface

332

Approach: Subset of JavaScript: asm.js

I Situation: fairly fast JavaScript JIT-compilers present
I Idea: use subset of JavaScript known to be compilable to efficient code

I All browsers/JS engines support execution without further changes

I asm.js49: strictly, statically typed JS subset; single array as heap
I JS code generated by compilers, e.g. Emscripten
I JavaScript has single numeric type, but asm.js supports int/float/double

I Coercion to integer: x|0
I Coercion to double: +x
I Coercion to float: Math.fround(x)

49D Herman, L Wagner, and A Zakai. asm.js. 2014. .

http://asmjs.org/spec/latest/

333

asm.js Example

var log = stdlib.Math.log;
var values = new stdlib.Float64Array(buffer);
function logSum(start, end) {
start = start|0; // parameter type int
end = end|0; // parameter type int

var sum = 0.0, p = 0, q = 0;

// asm.js forces byte addressing of the heap by requiring shifting by 3
for (p = start << 3, q = end << 3; (p|0) < (q|0); p = (p + 8)|0) {
sum = sum + +log(values[p>>3]);

}

return +sum;
}

Example taken from the specification

334

Approach: Encode asm.js as Bytecode

I Parsing costs time, type restrictions increase code size
I Idea: encode asm.js source as bytecode

I First attempt: encode abstract syntax tree in pre-order
I Second attempt: encode abstract syntax tree in post-order
I Third attempt: encode as stack machine

I ... and WebAssembly was born

335

Approach: Using Bytecode – WebAssembly

I Strictly-typed bytecode format encoding a stack machine
I Global variables and single, global array as memory
I Functions have local variables

I Parameters pre-populated in first local variables
I No dynamic/addressable stack space! part of global memory used as stack

I Operations use implicit stack
I Stack has well-defined size and types at each point in program

I Structured control flow
I Blocks to skip instructions, loop to repeat, if-then-else
I No irreducible control flow representable

336

Approach: Use Verifiable Bytecode – eBPF

I Problem: want to ensure termination within certain time frame
I Problem: need to make sure nothing can go wrong – no sandbox!

I Idea: disallow loops and undefined register values, e.g. due to branch
I Combinatorial explosion of possible paths, all need to be analyzed
I No longer Turing-complete

I eBPF: allow user-space to hook into various Linux kernel parts
I E.g. network, perf sampling, . . .

I Strongly verified register machine
I JIT-compiled inside kernel

337

JIT Compilation and Sandboxing – Summary

I JIT compilation required for dynamic source code or bytecode
I Bytecode allows for simpler verification than machine code, but is more

compact
I Producing JIT-compiled code needs CPU, OS, and runtime support
I JIT compilers can do/need to do different kinds of optimizations

adaptive execution is key technique to hide compilation latency
I Sandboxing can be done at various levels and granularities
I Virtualization and containers widely used for whole applications
I Bytecode formats popular for ad-hoc distribution of programs

338

JIT Compilation and Sandboxing – Questions

I When is JIT-compilation beneficial over Ahead-of-Time compilation?
I How can JIT-compilation be realized using standard compilers?
I How can code be made executable after writing it to memory?
I Why do some architectures require a system call for ICache flushing?
I How can JIT compilers trade between compilation latency and performance?
I Why is sandboxing important?
I What methods of deploying code for sandboxed execution are widely used?

	JIT Compilation and Sandboxing
	Sandboxing

