Query Optimization

Thomas Neumann

u]
|

I
il
it
u
S
el
?

Overview

1. Introduction

2. Textbook Query Optimization
3. Join Ordering

4. Accessing the Data

5. Physical Properties

6. Query Rewriting

7. Self Tuning

u]
|

I

il
it
u
S
el
?

Introduction

1. Introduction

= Overview Query Processing
= Overview Query Optimization

= Overview Query Execution

Introduction Query Processing

Reason for Query Optimization

= query languages like SQL are declarative

= query specifies the result, not the exact computation
= multiple alternatives are common

= often vastly different runtime characteristics

= alternatives are the basis of query optimization

Note: Deciding which alternative to choose is not trivial

Introduction Query Processing

Overview Query Processing

l query

‘ compile time system

plan

Y

‘ runtime system

l result

input: query as text

compile time system compiles and optimizes
the query

intermediate: query as exact execution plan
runtime system executes the query

output: query result

separation can be very strong (embedded SQL/prepared queries etc.)

Introduction Query Processing

Overview Compile Time System

query

1. parsing, AST production

parsing

2. schema lookup, variable binding, type
inference

semantic analysis

normaization 3. normalization, factorization, constant folding
factorization t
etc.

rewrite I

4. view resolution, unnesting, deriving
predicates etc.

plan generation

5. constructing the execution plan
rewrite II

6. refining the plan, pushing group by etc.

code generation

7. producing the imperative plan

execution plan

rewrite |, plan generation, and rewrite Il form the query optimizer

Introduction Query Processing

Processing Example - Input

select name, salary

from employee, department
where dep=did

and location="Miinchen”
and area="Research”

Note: example is so simple that it can be presented completely, but does not allow for many
optimizations. More interesting (but more abstract) examples later on.

Processing Example - Parsing
Constructs an AST from the input

SelectFromWhere

Projection From Where

Introduction Query Processing

Identifier namelt{ Identifier employee
Identifier salary| Identifier department

BinaryExpression and

BinaryExpression and

BinaryExpression eq

BinaryExpression eq

BinaryExpression eq

t Identifier dep
Identifier did

Identifier location

t

String "Muinchen"

t Identifier area

String "Research"

Introduction Query Processing

Processing Example - Semantic Analysis
Resolves all variable binding, infers the types and checks semantics

SFW
Projection From Where

I
Attrib. e.name | Rel. e:employee
Attrib. e.salary | Rel. d:department

Expression and

Expression and

Expression eq

Expression eq

Expression eq

t Attrib. e.dep
Attrib. d.did

Attrib. d.location

t

Const "Munchen"

t Attrib. e.area

Const "Research"

Types omitted here, result is bag < string, number >

Introduction Query Processing

Processing Example - Normalization

Normalizes the representation, factorizes common expressions, folds constant expressions

SFW
Projection From Where

I
1
Attrib. e.name | Rel. e:employee Expression and

Attrib. e.salary | Rel. d:department

Expression eq Expression eq Expression eq
t Attrib. e.dep t Attrib. d.location — Attrib. e.area
Attrib. d.did Const "MUnchen" L] Const "Research"

Introduction Query Processing

Processing Example - Rewrite |
resolves views, unnests nested expressions, expensive optimizations

SFW
Projection From Where

|
1
Attrib. e.name | Rel. e:person | |Expression and |
Attrib. e.salary |{Rel. d:department |

[
| Expression eq |

Expression eq

| Expression eq |

Attrib. e.dep
Attrib. d.did

| Expression eq | | Attrib. e.kind | |Const "emp"
[| |

—| Attrib. e.area |
4 Const "Research"

Attrib. d.location |

Const "Mlnchen" |

Introduction Query Processing

Processing Example - Plan Generation

Finds the best execution strategy, constructs a physical plan
Ndep=did

/

Oarea="Research”

0-kinclz"emp" Olocation="Miinchen"

person department

LTSN Query Processing

Processing Example - Rewrite |l

Polishes the plan

Mdep=did

/

Oarea="Research” A

kind="Emp"

Olocation="Miinchen"

person department

Processing Example - Code Generation

Produces the executable plan

<

>

@cl string 0

@c2 string 0

@c3 string 0

@kind string O
@Gname string O
@salary float64
@dep int32

Qarea string 0
@did int32
Q@location string O
Q@t1 uint32 local
@t2 string O local
Q@t3 bool local

[main

load_string "emp" @cl
load_string "M\uOOfcnchen" Qc2
load_string "Research" @c3
first_notnull_bool
<#1 BlockwiseNestedLoopJoin
memSize 1048576
[combiner
unpack_int32 @dep
eq_int32 @dep @did @t3
return_if_ne_bool @t3
unpack_string @name
unpack_float64 @salary

[storer
check_pack 4
pack_int32 @dep
pack_string Oname
check_pack 8
pack_float64 @salary
load_uint32 0 @t1
hash_int32 @dep @t1 @t1
return_uint32 @t1
]
[hasher
load_uint32 0 @t1
hash_int32 @did @t1 @til
return_uint32 @t1
]
<#2 Tablescan
segment 1 0 4
[loader
unpack_string Qkind
unpack_string @name
unpack_float64 @salary
unpack_int32 @dep
unpack_string Qarea
eq_string @kind @cl @t3
return_if_ne_bool @t3
eq_string Qarea Qc3 @t3
return_if_ne_bool @t3

<#3 Tablescan
segment 1 0 5
[loader
unpack_int32 @did
unpack_string @location

eq_string @location @c2 @t3

return_if_ne_bool @t3

>
> @t3
jf_bool 6 @t3
print_string O Cname
cast_float64_string @salary @t2
print_string 10 @t2
println
next_notnull_bool #1 @t3
jt_bool -6 @t3

Gl) Oy
What to Optimize?

Different optimization goals reasonable:
* minimize response time
* minimize resource consumption
= minimize time to first tuple
= maximize throughput

Expressed during optimization as cost function. Common choice: Minimize response time
within given resource limitations.

Cr el ey
Basic Goal of Algebraic Optimization

When given an algebraic expression:
= find a cheaper/the cheapest expression that is equivalent to the first one
Problems:
= the set of possible expressions is huge
= testing for equivalence is difficult/impossible in general
= the query is given in a calculus and not an algebra (this is also an advantage, though)

= even "simpler” optimization problems (e.g. join ordering) are typically NP hard in general

Gl) Oy
Search Space

equivalent plans

actual
search
space

potential
search space

Query optimizers only search the "optimal” solution
within the limited space created by known optimiza-

Introduction Optimization Overview

Optimization Approaches

constructive transformative

transformative is simpler, but finding the optimal solution is hard

Introduction Query Execution

Query Execution

Understanding query execution is important to understand query optimization
= queries executed using a physical algebra
= operators perform certain specialized operations
= generic, flexible components
= simple base: relational algebra (set oriented)
= in reality: bags, or rather data streams
= each operator produces a tuple stream, consumes streams
= tuple stream model works well, also for OODBMS, XML etc.

ST
Relational Algebra

Notation:
= A(e) attributes of the tuples produces by e
= F(e) free variables of the expression e
= binary operators e;fe; usually require A(e1) = A(e)

et Ue union, {x|x € e1 V x € e}

e1Ney intersection, {x|x € e1 A x € e}

e\ e difference, {x|x € e1 A x & &3}

pasb(€) rename, {xo(b:x.a)\ (a:x.a)|x € e}
Ma(e) projection, {oaca(a: x.a)|x € e}

e1 X o product, {xoy|x Eeg Ay € &2}

op(e) selection, {x|x € e A p(x)}

e1 Xy, e join, {xoy|lx ceg Ay € e Ap(xoy)}

per definition set oriented. Similar operators also used bag oriented (no implicit duplicate
removal).

ST
Relational Algebra - Derived Operators

Additional (derived) operators are often useful:
e1 X e natural join, {x 0y 4(e)\A(e)|X € E1AY € & A X =| g(e))nA(er) Y}
e1+ e division, {X g(e)\A(er)|X E@LAVY E 2Tz E €1 :
Y Sl A(e) 2N X S|\ Ale) 2}
e1 Xp &2 semi-join, {x|x € e Ady € & : p(x 0 y)}
e1 bp e anti-join, {x|x € eeA Ay € e : p(x 0 y)}
e1 M ex outer-join, (e1 Mp €2) U {x 0 0,¢c 4(ey)(a: null)|x € (e1 >y)}
e1 X, e full outer-join, (e M, e2) U (&2 N 1)

Introduction Query Execution

Relational Algebra - Extensions

The algebra needs some extensions for real queries:
= map/function evaluation
Xar(€) ={xo(a: f(x))|x € e}
= group by/aggregation
Faar(e) ={xo(a:f(y))x€Nale) Ny ={zl]ze eAVac A: x.a=z.a}}
= dependent join (djoin). Requires F(e2) C A(er)
e1Mp e ={xoylxee Ay € elx)Ap(xoy)}

ST
Physical Algebra

= relational algebra does not imply an implementation
= the implementation can have a great impact

= therefore more detailed operators (next slides)

= additional operators needed due to stream nature

ST
Physical Algebra - Enforcer

Some operators do not effect the (logical) result but guarantee desired properties:
= sort
Sorts the input stream according to a sort criteria
= temp
Materializes the input stream, makes further reads cheap
= ship
Sends the input stream to a different host (distributed databases)

ST
Physical Algebra - Joins

Different join implementations have different characteristics:
= e; XN g, Nested Loop Join
Reads all of e, for every tuple of e;. Very slow, but supports all kinds of predicates

= ¢ XBNL ¢, Blockwise Nested Loop Join
Reads chunks of e; into memory and reads e, once for each chunk. Much faster, but
requires memory. Further improvement: Use hashing for equi-joins.
= e; X°M e, Sort Merge Join
Scans e; and e, only once, but requires suitable sorted input. Equi-joins only.
= g XHH o Hybrid-Hash Join
Partitions e; and e, into partitions that can be joined in memory. Equi-joins only.

ST
Physical Algebra - Aggregation

Other operators also have different implementations:

= ! Aggregation Sorted Input
Aggregates the input directly. Trivial and fast, but requires sorted input
« @ Aggregation Quick Sort
Sorts chunks of input with quick sort, merges sorts
= M5 Aggregation Heap Sort
Like FQ°. Slower sort, but longer runs
= HH Aggregation Hybrid Hash
Partitions like a hybrid hash join.
Even more variants with early aggregation etc. Similar for other operators.

ST
Physical Algebra - Summary

= |ogical algebras describe only the general approach

= physical algebra fixes the exact execution including runtime characteristics
= multiple physical operators possible for a single logical operator

= query optimizer must produce physical algebra

= operator selection is a crucial step during optimization

2. Textbook Query Optimization

= Algebra Revisited

= Canonical Query Translation
= Logical Query Optimization
= Physical Query Optimization

aleliopis
Algebra Revisited

The algebra needs some more thought:
= correctness is critical for query optimization
= can only be guaranteed by a formal model
= the algebra description in the introduction was too cursory
What we ultimately want to do with an algebraic model:
= decide if two algebraic expressions are equivalent (produce the same result)
This is too difficult in practice (not computable in general), so we at least want to:
= guarantee that two algebraic expressions are equivalent (for some classes of expressions)
This still requires a strong formal model. We accept false negatives, but not false positives.

Textbook Query Optimization Algebra Revisited

Tuples

Tuple:

= a (unordered) mapping from attribute names to values of a domain
= sample: [name: "Sokrates”, age: 69]

Schema:
= a set of attributes with domain, written A(t)

= sample: {(name,string),(age, number)}

Note:
= simplified notation on the slides, but has to be kept in mind
= domain usually omitted when not relevant

= attribute names omitted when schema known

Textbook Query Optimization Algebra Revisited

Tuple Concatenation

= potation: tj oty

= sample: [name: "Sokrates”, age: 69]o [country: "Greece"]
= [name: "Sokrates”, age: 69, country: "Greece"]

= note: t; o tp = tp o ty, tuples are unordered

Requirements/Effects:
= A(t1) NA(tr) =0
= A(tl o tz) = .A(tl) U .A(tg)

Textbook Query Optimization Algebra Revisited

Tuple Projection

Consider t = [name: "Sokrates”, age: 69, country: "Greece"]

Single Attribute:

= notation t.a

= sample: t.name = "Sokrates”
Multiple Attributes:

= notation t|,

= sample: t|{,ame,age} = [Name: "Sokrates”, age: 69]

Requirements/Effects:
= ac A(t), AC A(t)
. A(t‘A) =A

= notice: t.a produces a value, tj4 produces a tuple

Textbook Query Optimization Algebra Revisited

Relations

Relation:

= a set of tuples with the same schema

= sample: {[name: "Sokrates”, age: 69], [name: "Platon”, age: 45|}
Schema:

= schema of the contained tuples, written A(R)

= sample: {(name,string),(age, number)}

aleliopis
Sets vs. Bags

= relations are sets of tuples

= real data is usually a multi set (bag)

Example: select age age
from student 23
24
24

= we concentrate on sets first for simplicity

= many (but not all) set equivalences valid for bags
The optimizer must consider three different semantics:

= |ogical algebra operates on bags

= physical algebra operates on streams (order matters)

= explicit duplicate elimination = sets

A0 R
Set Operations

Set operations are part of the algebra:
= union (LU R), intersection (L N R), difference (L \ R)
= normal set semantic
= but: schema constraints

= for bags defined via frequencies (union — +, intersection — min, difference — —)

Requirements/Effects:
= A(L) = A(R)
= A(LUR) = A(L) = A(R), A(LNR) = A(L) = A(R), A(L\ R) = A(L) = A(R)

Textbook Query Optimization Algebra Revisited

Free Variables

Consider the predicate age = 62
= can only be evaluated when age has a meaning
= age behaves a free variable
= must be bound before the predicate can be evaluated
= notation: F(e) are the free variables of e

Note:
= free variables are essential for predicates

= free variables are also important for algebra expressions

= dependent join etc.

Textbook Query Optimization Algebra Revisited

Selection

Selection:
= notation: op(R)
= sample: o,>2({[a:1],[a:2],[a:3]})={[a:2],[a:3]}
= predicates can be arbitrarily complex

= optimizer especially interested in predicates of the form attrib = attrib or attrib = const

Requirements/ Effects:
= F(p) CA(R)
= A(op(R)) = A(R)

Textbook Query Optimization Algebra Revisited

Projection

Projection:
= notation: MMa(R)
= sample: My ({[a:1,b:1),[a:2,b:1]}) = {[a:1],[a: 2]}
= eliminates duplicates for set semantic, keeps them for bag semantic

= note: usually written as I, 5 instead of the correct Iy, 1)

Requirements/Effects:
= AC A(R)
= A(Ma(R)) = A

Textbook Query Optimization Algebra Revisited

Rename

Rename:
= notation: pp(R)
= sample: poyc({[a:1,b:1],[a:2,b:1]}) ={[c:1,b:1],[c:2,b:2]}?
= often a pure logical operator, no code generation

= important for the data flow

Requirements/Effects:
= ac A(R),b ¢ A(R)
= Alpasb(R)) = A(R) \ {a} U {b}

Textbook Query Optimization Algebra Revisited

Join
Consider L = {[a: 1],[a: 2]}, R = {[b: 1],[b: 3]}

Cross Product:

= notation: L X R

= sample: LxR={[a:1,b:1],[a:1,b:3],[a:2,b:1],[a:2,b:3]}
Join:

= notation: L X, R

= sample: LX,_p R={[a:1,b:1]}

= defined as op(L X R)

Requirements/ Effects:
= A(L) NA(R) =0, F(p) € (A(L) U A(R))
= A(Lx R)=A(L)UA(R)

Textbook Query Optimization

Equivalences

Equivalences for selection and projection:

Algebra Revisited

op (0p,(€))
ACHO)

Ma, (e)

if A1 C Ay
Ma(op(e))

if F(p) €A
op(e1) Uop(e)
op(er) Nop(e)
op(e1) \ op(e2)
Ma(er) UMa(e)

Textbook Query Optimization Algebra Revisited

Equivalences
Equivalences for joins:

e X e

e1 X, e

(e1 X &) X €3

(e1 Mp, &) Mp, €3
op(er x &)
op(er x &)

op, (€1 Mp,)

Ma(er x e2)

€ X e

e Xpe

e1 X (e X €3)

e1 Mp, (e2 N p, e3)
€1 Np €

opler) X e

if 7(p) € A(er)
op (e1) Xp,

if F(p1) € A(er)
Ma,(e1) x MNa,(e2)
if A= A1 U A2, A1 C A(e1),Ax C A(e)

Textbook Query Optimization Canonical Query Translation

Canonical Query Translation

Canonical translation of SQL queries into algebra expressions.
Structure:

select distinct ay,...,a,
from Ri,..., Ry
where p

Restrictions:
= only select distinct (sets instead of bags)
= no group by, order by, union, intersect, except
= only attributes in select clause (no computed values)
= no nested queries, no views

= not discussed here: NULL values

Textbook Query Optimization Canonical Query Translation

From Clause

1. Step: Translating the from clause

Let Ri,..., Rk be the relations in the from clause of the query.
Construct the expression:
F_ R: if k=1
o ((...(Rlsz)X...)XRk) else

Canonical Query Transiation
Where Clause

2. Step: Translating the where clause

Let p be the predicate in the where clause of the query (if a where clause exists).
Construct the expression:

F if there is no where clause
W = ;
op(F) otherwise

Textbook Query Optimization Canonical Query Translation

Select Clause

3. Step: Translating the select clause

Let a1,...,a, (or "*") be the projection in the select clause of the query.
Construct the expression:

5— w if the projection is "*"
| Nay.. a2, (W) otherwise

4. Step: S is the canonical translation of the query.

Textbook Query Optimization Canonical Query Translation

Sample Query

select distinct s.sname

from student s, attend a, lecture |, professor p

where s.sno = a.asno and a.alno = /.Ino and
I.Ipno = p.pno and p.pname =" Sokrates”

I,

sname
|

sno=asno A alno=Ino A Ipno=pno A pname="Sokrates"

NN

student attend lecture

O,

professor

Textbook Query Optimization Canonical Query Translation

Extension - Group By Clause

2.5. Step: Translating the group by clause. Not part of the "canonical” query translation!

Let g1,...,8m be the attributes in the group by clause and agg the aggregations in the
select clause of the query (if a group by clause exists).
Construct the expression:

w if there is no group by clause
G= :
rgl,m,gm;agg(W) otherwise

use G instead of W in step 3.

Textbook Query Optimization Logical Query Optimization

Optimization Phases

Textbook query optimization steps:
1. translate the query into its canonical algebraic expression
2. perform logical query optimization
3. perform physical query optimization

we have already seen the translation, from now one assume that the algebraic expression is
given.

el O
Concept of Logical Query Optimization

= foundation: algebraic equivalences
= algebraic equivalences span the potential search space

= given an initial algebraic expression: apply algebraic equivalences to derive new
(equivalent) algebraic expressions

= note: algebraic equivalences do not indicate a direction, they can be applied in both ways
= the conditions attached to the equivalences have to be checked
Algebraic equivalences are essential:
= new equivalences increase the potential search space
= better plans

= but search more expensive

el O
Performing Logical Query Optimization

Which plans are better?
= plans can only be compared if there is a cost function
= cost functions need details that are not available when only considering logical algebra

= consequence: logical query optimization remains a heuristic

Textbook Query Optimization Logical Query Optimization

Performing Logical Query Optimization

Most algorithms for logical query optimization use the following strategies:
= organization of equivalences into groups
= directing equivalences

Directing means specifying a preferred side.
A directed equivalences is called a rewrite rule. The groups of rewrite rules are applied
sequentially to the initial algebraic expression. Rough goal: reduce the size of intermediate

results

el O
Phases of Logical Query Optimization

1. break up conjunctive selection predicates
(equivalence (1) —)

2. push selections down
(equivalence (2) —, (14) —)

3. introduce joins
(equivalence (13) —)

4. determine join order
(equivalence (9), (10), (11), (12))

5. introduce and push down projections
(equivalence (3) <, (4) <, (16) —)

LS OO IPEVET M Logical Query Optimization

Step 1: Break up conjunctive selection predicates

= selection with simple predicates can be moved around easier
11

sname

Osno=asno
|

Oalno=Ino

Olpno=pno
O pname="Sokrates"

NN

student attend lecture professor

LS OO IPEVET M Logical Query Optimization

Step 2: Push Selections Down

= reduce the number of tuples early, reduces the work for later operators

IT,

sname
I
Olpno=pno
I
X
o —
Oalno=lno
I
X
/
Osno=asno

X
/ \ Opname="Sokrates"

I
student attend lecture professor

=]) Gt e
Step 3: Introduce Joins

= joins are cheaper than cross products

name
I
Mipno=pno
/
Maino=ino
/
Nsno=asno

/ Opname="Sokrates"

student attend lecture professor

=]) Gt e
Step 4: Determine Join Order

= costs differ vastly
= difficult problem, NP hard (next chapter discusses only join ordering)
Observations in the sample plan:

= bottom most expression is
student M spo—asno attend

= the result is huge, all students, all their lectures
= in the result only one professor relevant

O name="'Sokrates’’ (PrOfQSSOI’)
= join this with lecture first, only lectures by him, much smaller

=]) Gt e
Step 4: Determine Join Order

= intermediate results much smaller
nsname
[

\J01nsn0:nsno

o

Maino=ino

—

Mipno=pno

/
Opname="Sokrates"
|

professor lecture attend student

LS OO IPEVET M Logical Query Optimization

Step 5: Introduce and Push Down Projections

= eliminate redundant attributes

= only before pipeline breakers

Mname
|
Nno=asno
/ \
M0 Min0,sname
|
Malno=ino
/ \
1™ Matnoasno
|
Mipno=pno
— T~
Mo Mipno ino
|
Opname="Sokrates"
|

professor lecture attend student

Textbook Query Optimization Logical Query Optimization

Limitations
Consider the following SQL query

select distinct s.sname
from student s, lecture I, attend a
where s.sno = a.asno and a.alno = I.Ino and |.ltitle =" Logic”

Steps 1-2 could result in plan below. No further selection push down.

Mname
|
o,

sno=asno

0,

alno=Ino

|
X
_—
X

~
Oltitle="Logic"
|

student lecture attend

LS OO IPEVET M Logical Query Optimization

Limitations

However a different join order would allow further push down:

Mhame Msname

| |

Osno=asno Oalno=lno
| |

Oalno=lno X
| —

X Ogno=asno
_— |
X
/ \ Oltitle="Logic" / \ Oltitle="Logic"
| |
student attend lecture student attend lecture

= the phases are interdependent

= the separation can loose the optimal solution

Rezglerlornsiey
Physical Query Optimization

= add more execution information to the plan
= allow for cost calculations

= select index structures/access paths

= choose operator implementations

= add property enforcer

= choose when to materialize (temp/DAGs)

Textbook Query Optimization Physical Query Optimization

Access Paths Selection

= scan+selection could be done by an index lookup

= multiple indices to choose from

= table scan might be the best, even if an index is available
= depends on selectivity, rule of thumb: 10%

= detailed statistics and costs required

= related problem: materialized views

= even more complex, as more than one operator could be substitued

Textbook Query Optimization Physical Query Optimization

Operator Selection

= replace a logical operator (e.g. X) with a physical one (e.g. X/)

= semantic restrictions: e.g. most join operators require equi-conditions
« XBNL s better than XN

= XM and XM are usually better than both

MHH is often the best if not reusing sorts
= decission must be cost based

pq VL

= even can be optimal!

= not only joins, has to be done for all operators

Rezglerlornsiey
Property Enforcer

= certain physical operators need certain properties
= typical example: sort for XM

= other example: in a distributed database operators need the data locally to operate
= many operator requirements can be modeled as properties (hashing etc.)

= have to be guaranteed as needed

ST OO IPETE M Physical Query Optimization

Materializing

= sometimes materializing is a good idea

= temp operator stores input on disk

= essential for multiple consumers (factorization, DAGs)
= also relevant for MNt

= first pass expensive, further passes cheap

Physical Plan for Sample Query

Mgname
|
SM
X" sno=asno
SOIygno SOI'y0
| |
Mo Myioame
|
SM
D tnosino
80Tty SOTtyy00
| |
o Maino.asno
|
SM
D ipno=pno
/ \
80Tty STy,
| |
Hpno Hlpno,mu
|
indexscan;me="sokrates"
|
professor lecture attend student

[m] = =

o 67 / 637

Physical Query Optimization
Outlook

= separation in two phases looses optimality

= many decissions (e.g. view resolution) important for logical optimization
= textbook physical optimization is incomplete

= did not discuss cost calculations

= will look at this again in later chapters

3. Join Ordering

= Basics

= Search Space

= Greedy Heuristics

= IKKBZ

= MVP

= Dynamic Programming

= Simplifying the Query Graph

= Adaptive Optimization

= Generating Permutations

= Transformative Approaches

= Randomized Approaches

= Metaheuristics

= [terative Dynamic Programming
= Order Preserving Joins

= Complexity of Join Processing

Queries Considered

Concentrate on join ordering, that is:
= conjunctive queries
= simple predicates

= predicates have the form a; = a» where a; is an attribute and a, is either an attribute or
a constant

= even ignore constants in some algorithms
We join relations Ry, ..., R,, where R; can be

= a base relation

= a base relation including selections

= a more complex building block or access path

Pretending to have a base relation is ok for now.

Query Graph

Queries of this type can be characterized by their query graph:
= the query graph is an undirected graph with Ry,..., R, as nodes

= a predicate of the form a; = ap, where a; € R; and a> € R; forms an edge between R;
and R; labeled with the predicate

= a predicate of the form a; = a, where a; € R; and a5 is a constant forms a self-edge on
R; labeled with the predicate

= most algorithms will not handle self-edges, they have to be pushed down

B
Sample Query Graph

student 2= attend

Ino=alno

professor —— lecture
pno=Ipno
@)

pname="Sokrates"

B
Shapes of Query Graphs

*o—o0—0—0o
chains

L
cliques

° ° °

NN TN
-0 06 00 0 o—eoe—o—eo
cyclic tree grid

= real world queries are somewhere in-between

= chain, cycle, star and clique are interesting to study

= they represent certain kind of problems and queries

Join Trees

A join tree is a binary tree with
= join operators as inner nodes
= relations as leaf nodes
Algorithms will produce different kinds of join trees
= ordered or unordered
= with cross products or without

The most common case is ordered, without cross products

B
Shape of Join Trees

Commonly used classes of join trees:
= |eft-deep tree
= right-deep tree
= zigzag tree
= bushy tree
The first three are summarized as linear trees.

el
Join Selectivity

Input:
= cardinalities | R
= selectivities f;j: if p;; is the join predicate between R; and R;, define
fi,j _ |Ri pr,j Rj|
|R,‘ X Rj|
Calculate:

= result cardinality:

|Ri My, . Ri| = fij|Ril R

Rational: The selectivity can be computed/estimated easily (ideally).

el
Cardinality of Join Trees

Given a join tree T, the result cardinality | T| can be computed recursively as

]T\—{ |Ri| if T is a leaf R;
| Ulrengen i)l TallT2| if T=TiX T,

= allows for easy calculation of join cardinality
= requires only base cardinalities and selectivities

= assumes independence of the predicates

B
Sample Statistics

As running example, we use the following statistics:

|[Ri| = 10
IRo| = 100
IRs| = 1000
fio = 0.1
fs = 02

= implies query graph Ri — R — Rs3

= assume f;; = 1 for all other combinations

Basics
A Basic Cost Function

Given a join tree T, the cost function Cy,; is defined as

Cout(T) = 0 if T is aleaf R;
U T U NT] + Coute(T1) + Coue(To) if T=Ty X T,

= sums up the sizes of the (intermediate) results
= rational: larger intermediate results cause more work

= we ignore the costs of single relations as they have to be read anyway

Basic Join Specific Cost Functions
For single joins:

Coj(er X e2) = |efle2]
Chj(el X eg) = 1.2\e1|
Csmj(e1 M &) = |er]log(|er]) + [e2] log(]ez])

For sequences of join operators s =53 X ... X sp:
n
C,,/j(s) = Z |51 X...NX S,'_1HS,"
i=2
n
Chj(s) = Z 1.2’51 X...NX S;_1’
i=2

n n
Comi(s) = D |s1X... M s q|log(|sy >... M s 1))+) |si| log(]si])
i=2 i=2

Remarks on the Basic Cost Functions

= cost functions are simplistic
= algorithms are modelled very simplified (e.g. 1.2, no n-way sort etc.)
= designed for left-deep trees

= Cpj and Csmj do not work for cross products (fix: take output cardinality then, which is
Cnl)
= in reality: other parameters than cardinality play a role

= cost functions assume the same join algorithm for the whole join tree

Sample Cost Calculations

Cout Cnl Chj Csmj
R1 X Ry 100 1000 12 697.61
R> X R 20000 100000 120 10630.26
Ri X R3 10000 10000 10000 10000.00
(Ry ™M Ry) X Rz | 20100 101000 132 11327.86
(R2 X R3) X Ry | 40000 300000 24120 32595.00
(R x R3) X R, | 30000 1010000 22000 143542.00

= costs differ vastly between join trees

= different cost functions result in different costs

= the cheapest plan is always the same here, but relative order varies

= join trees with cross products are expensive

= join order is essential under all cost functions

More Examples

For the query |R1| = 1000, |Ry| = 2,|R3| =2,fi2 =0.1,f13 =0.1
we have costs:

Cout
Ri X Ry 200
R2 X R3 4
Ri X R3 200

(R]_ X RQ) X R3 240
(R2 X R3) X Ry 44
(Ri X R3) X Ry | 240

= here cross product is best
= but relies on the small sizes of |R»| and | R3]

= attractive if the cardinality of one relation is small

Basics
More Examples (2)

For the query |R;| = 10, |Ro| = 20, |R3| = 20, |Rs| = 10,1, = 0.01, 3 = 0.5, 34 = 0.01
we have costs:

Cout
Ry ™M Ry 2
R> X R 200
R3 ™ Ry 2

((Rl X R2) X R3) X Ry 24
((Rg X R3) X Rl) X Ry 222
(Rl X R2) X (R3 X R4) 6

= covers all join trees due to the symmetry of the query

= the bushy tree is better than all join trees

el
Symmetry and ASI

= cost function Ciypy is called symmetric if Cimpi(er i impl &) = Cimpi(e2 I impl er)
= for symmetric cost functions commutativity can be ignored

= ASI: adjacent sequence interchange (see IKKBZ algorithm for a definition)

Our basic cost functions can be classified as:
| ASI -ASI

symmetric Cout Comj
—symmetric | Cp; -

= more complex cost functions are usually —ASI, often also ~symmetric

= symmetry and especially ASI can be exploited during optimization

Classification of Join Ordering Problems

We distinguish four different dimensions:
1. query graph class: chain, cycle, star, and clique
2. join tree structure: left-deep, zig-zag, or bushy trees
3. join construction: with or without cross products

4. cost function: with or without ASI property

In total, 48 different join ordering problems.

Reminder: Catalan Numbers

The number of binary trees with n leave nodes is given by C(n — 1), where C(n) is defined as

1 ifn=20
C(n) = { " aC(k)C(n—k—1) ifn>0

It can be written in a closed form as

The Catalan Numbers grown in the order of @(4"/n%)

Search Space
Number Of Join Trees with Cross Products

left deep n!

right deep n!

zig-zag nl2n—2

bushy n!'C(n—1)
(2n—-2)!

(n—1)!

= rational: number of leaf combinations (n!) x number of unlabeled trees (varies)

= grows exponentially

= increases even more with a flexible tree structure

Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query Ry — ... — R, as f(n)
= obviously f(0) =1,f(1) =1
= for n > 1, consider adding R, to all join trees for Ry — ... — Rp—1

= R, can be added at any position following R,_1

= lets denote the position of R,_1 from the bottom with k ([1, n — 1])

= there are n — k join trees for adding R, after R,_1

= one additional tree if k = 1, R, can also be added before R,,_1

= for R,—1 to be at k, R,_x — ... Rp—2 must be below it. f(k — 1) trees

forn>1:
n—1

f(n)=1+> f(k—1)*(n—k)

k=1

Search Space
Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

1 if n<?2
f(”):{ 1+Zz;if(kf1)*(n—k) if n>2

solving the recurrence gives the closed form

f(n) =2

= generalization to zig-zag as before

Search Space
Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious
= each subtree must contain a subchain to avoid cross products
= thus do not add single relations but subchains
= whole chain must be Ry — ... — Ry, cut anywhere
= consider commutativity (two possibilities)
This leads to the formula

1 ifn<?2
fln) = { S LK) F(n— k) if n > 2

solving the recurrence gives the closed form

f(n)=2""1c(n—1)

Star Queries, no Cross Products

Consider a star query with R; at the center and R», ..., R, as satellites.
= the first join must involve Ry

= afterwards all other relations can be added arbitrarily

This leads to the following formulas:
= left-deep: 2 % (n —1)!
= zig-zag: 2% (n— 1)1 %272 = (n— 1)1 ¥ 2771

= bushy: no bushy trees possible (R; required), same as zig-zag

Clique Queries, no Cross Products

= in a clique query, every relation is connected to each other
= thus no join tree contains cross products

= all join trees are valid join trees, the number is the same as with cross products

Sample Numbers, without Cross Products

Chain Queries

Star Queries

Left-Deep Zig-Zag Bushy | Left-Deep Zig-Zag/Bushy

n on—=1 22n=3 on=lc(n—1) | 2(n—1) 2n=1(p —1)!
1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920
10 512 131072 2489344 725760 18579450

Sample Numbers, with Cross Products

Left-Deep Zig-Zag Bushy

n n! nl2n—2 n!C(n—1)
1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400
10 | 3628800 968972800 17643225600

S
Problem Complexity

query graph join tree | cross products | cost function | complexity
general left-deep | no ASI NP-hard
tree/star/chain left-deep | no ASI, 1 joint. | P

star left-deep | no NLJ+SMJ NP-hard
general /tree/star | left-deep | yes ASI NP-hard
chain left-deep | yes - open
general bushy no ASI NP-hard
tree bushy no - open
star bushy no ASI P

chain bushy no any P
general bushy yes ASI NP-hard
tree/star/chain bushy yes ASI NP-hard

S lices
Greedy Heuristics - First Algorithm

= search space of joins trees is very large
= greedy heuristics produce suitable join trees very fast
= suitable for large queries
For the first algorithm we consider:
= |eft-deep trees
= no cross products
= relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely identifies the left-deep join
tree.

Greedy Heuristics
Greedy Heuristics - First Algorithm (2)

GreedyJoinOrdering-1(R = {R1, ..., R,}.w: R - R)
Input: a set of relations to be joined and weight function
Output:a join order
S=e¢
while (|R| > 0) {

m = arg ming,cg w(R;)

R=R\ {m}

S=So<m>

}

return S

= disadvantage: fixed weight functions
= already chosen relations do not affect the weight

= e.g. does not support minimizing the intermediate result

S lices
Greedy Heuristics - Second Algorithm

GreedyJoinOrdering-2(R = {R1,...,Ra},w: R,R* = R)
Input: a set of relations to be joined and weight function
Output:a join order
S=¢
while (|R| > 0) {

m = arg ming,cg w(R;, S)

R=R\{m}

S=So<m>

}

return S

= can compute relative weights
= but first relation has a huge effect

= and the fewest information available

Greedy Heuristics - Third Algorithm
GreedyJoinOrdering-3(R = {R1,...,Ra},w: R,R* = R)

Input: a set of relations to be joined and weight function
Output:a join order

S=10
for each R; € R {
R'= R\ {Ri}
S =< R; >
while (|R| > 0) {
m = arg ming cr w(R;, ')

R' =R\ {m}
S =So<m>
}
S=Su{s’}

}
return arg ming/cs w(S'[n], S’[1: n—1])
= commonly used: minimize selectivities (MinSel)

S lices
Greedy Operator Ordering

= the previous greedy algorithms only construct left-deep trees

= Greedy Operator Ordering (GOO) [1] constructs bushy trees
Idea:

= all relations have to be joined somewhere

= but joins can also happen between whole join trees

= we therefore greedily combine join trees (which can be relations)

= combine join trees such that the intermediate result is minimal

Greedy Heuristics
Greedy Operator Ordering (2)

GOO(R ={Ry1,...,Rn})
Input: a set of relations to be joined
Output:a join tree
T=R
while |T| > 1 {
(Ti, Tj) = argmin(re 7. 1e7), T, | Ti X T}
T=(T\{TiH\{Tj}
T=TU{T;%T})
}

return To e T

= constructs the result bottom up
= join trees are combined into larger join trees

= chooses the pair with the minimal intermediate result in each pass

IKKBZ

Polynomial algorithm for join ordering (original [2], improved [3])
= produces optimal left-deep trees without cross products
= requires acyclic join graphs
= cost function must have ASI property

= join method must be fixed

Can be used as heuristic if the requirements are violated

Overview

= the algorithms considers each relation as first relation to be joined

= it tries to order the other relations by "benefit” (rank)

= if the ordering violates the query constraints, it constructs compounds

= the compounds guarantee the constraints (locally) and are again ordered by benefit

= related to a known job-ordering algorithm

Cost Function

The IKKBZ algorithm considers only cost functions of the form
C(Ti X Ry) = [Til = hi(|Rjl)

= each relation R; can have its own h;
= we denote the set of h; by H, writing Cy for the parametrized cost function
= examples: h; = 1.2 for Cp;, hj = id for Cy
We will often use cardinalities, thus we define n;:
= n; is the cardinality of R; (n; = |Ri|)

= h;i(n;) is are the costs per input tuple of a join with R;

Precedence Graph

Given a query graph G = (V, E) and a starting relation Ry, we construct the directed
precedence graph Gf = (Vf, E,f’) rooted in Ry as follows:

1. choose Ry as the root node of GF, VF = {R}

2. while |VF| < |V], choose a R; € V' \ V/ such that 3R; € VI : (R;,R;) € E. Add R; to
V,f and R; — R; to E,f.

The precedence graph describes the (partial) ordering of joins implied by the query graph.

Sample Precedence Graph

R, R;
AN /
R, R,
/ AN
R, R,

query graph

R,

R,
T
R, R,
b~
R; R,
precedence graph rooted in Ry

Conformance to a Precedence Graph

A sequence S = vi, ..., v, of nodes conforms to a precedence graph G = (V, E) if the
following conditions are satisfied:

1. Vie[2,kl3j € [1,i: (vj,vi) € E
2. Aie[l,k],j€li,k]l:(vj,vi) € E

Note: IKKBZ constructs left-deep trees, therefore it is sufficient to consider sequences.

Notations

For non-empty sequences S; and S, and a precedence graph G = (V, E), we write S; — S if
S1 must occur before S,. More precisely S; — S, iff:

1. S; and Sy conform to G

2.5N%=10

3. 3dvi,vieVivieSiAve San(vi,vy) € E

4. Avi,vie Vivie SiAve V\SI\SaA(vi,vy) € E

Further, we write

Rl,z,...,k R]_ X R2 X... X Rk

mo,..k = |Ri2,.. Kl

Selectivities

For a given precedence graph, let R; be a relation and R; be the set of a relations from which
there exists a path to R;

= in any conforming join tree which includes R;, all relations from R; must be joined first
= all other relations R; that might be joined before R; will have no connection to R;, thus
fij=1

Hence, we can define the selectivity of the join with R; as

S._{l if [Ri| = 0
" ger, fij if[Ril >0

Note: we call the s; a selectivities, although they depend on the precedence graph

Cardinalities
If the query graph is a chain (totally ordered), the following conditions holds:

Mo,k = Sk*|Re|*|Ri2, . k-1l

= |sk| * i * mpo,.. k-1

As a closed form, we can write

k
no..k= H Sin;
i=1

ass; =1

IKKBZ
Costs

The costs for a totally ordered precedence graph G can be computed as follows:

CH(G) = Z[n1,2,...,i—1hi(ni)]
i—2

= Y (] sm)hi(n)]

i=2 j=1

= if we choose h;(n;) = sin; then Cy = Cour
= the factor s;n; determines how much the input relation to be joined with R; changes its
cardinality after the join has been performed

= if s;n; is less than one, we call the join decreasing, if it is larger than one, we call the join
increasing

IKiKBZ
Costs (2)

For the algorithm, we prefer a (equivalent) recursive definition of the cost function:

Cu(e) = 0
Cu(R;)) = 0if R;is the root
Cu(Ri) = hi(n;) else
Ch(51S2) = Cu(S1) + T(S1) * Cu(S2)

where

T) = 1
T(S) = Hs,-n,-

R;eS

IKKBZ
ASI| Property

Let A and B be two sequences and V and U two non-empty sequences. We say a cost
function C has the adjacent sequence interchange property (ASI property), if and only if there
exists a function T and a rank function defined as

rank(S) = —=—
such that the following holds
C(AUVB) < C(AVUB) < rank(U) < rank(V)

if AUVB and AVUB satisfy the precedence constraints imposed by a given precedence graph.

IKKBZ
First Lemma

Lemma: The cost function Cj, has the ASI-Property.

Proof: The proof can be derived from the definition of Cy:
Cy(AUVB) = CH(A)

+T(A)CH(V)

+T(A)T(U)Cu(V)

+T(A)T(U)T(V)Ch(B)

and, hence,

CH(AUVB) — Cu(AVUB) = T(A)C(V)(T(U) — 1) — Cu(U)(T(V) — 1)]
= T(A)Cy(U)Cx(V)[rank(U) — rank(V)]

The lemma follows.

IKKBZ
Module

Let M = {A1,...,A,} be a set of sequences of nodes in a given precedence graph. Then, M is

called a module, if for all sequences B that do not overlap with the sequences in M, one of the
following conditions holds:

- B A, VA €M
- A — B, VA €M
- B4 A and A; 4 B, VA € M

Second Lemma

Lemma: Let C be any cost function with the ASI property and {A, B} a module. If A— B
and additional rank(B) < rank(A), then we find an optimal sequence among those in which B

directly follows A.
Proof: by contradiction. Every optimal permutation must have the form UAVBW since

A— B.
Assumption: V # e for all optimal solutions.

= if rank(V) < rank(A), we can exchange V and A without increasing the costs.
= if rank(A) < rank(V), rank(B) < rank(V') due to the transitivity of <. Hence, we can
exchange B and V without increasing the costs.

Both exchanges produces legal sequences since {A, B} is a module.

Contradictory Sequences and Compound Relations

= if the precedence graph demands A — B but rank(B) < rank(A), we speak of
contradictory sequences A and B

= second lemma = no non-empty subsequence can occur between A and B

= we combine A and B into a new single node replacing A and B

= this nodes represents a compound relation comprising of all relations in A and B

= its cardinality is computed by multiplying the cardinalities of all relations in A and B

= its selectivity is the product of all selectivities s; of relations R; contained in A and B

Normalization and Denormalization

= the continued process of building compound relations until no more contradictory
sequences exist is called normalization

= the opposite step, replacing a compound relation by the sequence of relations it was
derived from is called denormalization

IKKBZ
Algorithm

IKKBZ(G, Cy)
Input: an acyclic query graph G for relations R = {Ry,..., Ra},
a cost function Cy
Output:the optimal left-deep tree
S=19
for each R, € R {
G; = the precedence graph derived from G rooted at R;
S; = IKKBZ-Sub(G;,Ch)
S=SuU{S}
}

return arg mings.cs CH(S))

= considers each relation as starting relation

= constructs the precedence graph and starts the main algorithm

IKiKBZ
Algorithm (2)

|KKBZ-SUb(G/, CH)
Input: a precedence graph G; for relations R = {Ry,..., Ry} rooted at R;,
a cost function Cy
Output:the optimal left-deep tree under G;
while G; is not a chain {
r = a subtree of G; whose subtrees are chains
IKKBZ-Normalize(r)
merge the chains under r according to the rank function (ascending)
¥
IKKBZ-Denormalize(G;)
return G;

= transforms the precedence graph into a chain
= wherever there are multiple choices, there are serialized according to the rank

= normalization required to preserve the query graph

IKiKBZ
Algorithm (3)

IKKBZ-Normalize(R)
Input: a subtree R of a precedence graph G = (V, E)
Output: a normalized subtree
while 3r,c € T,(r,c) € E : rank(r) > rank(c) {
replace r and ¢ by a compound relation r’ that represent rc

}

return R

= merges relations that would have been reorder if only considering the rank

= guarantees that the rank is ascending in each subchain

IKiKBZ
Algorithm (4)

IKKBZ-Denormalize(R)
Input: a precedence graph R containing relations and compound relations
Output: a denormalized precedence graph, containing only relations
while 3r € R : r is a compound relation {
replace r by the sequence of relations it represents

}

return R

= unpacks the compound relations
= required to get a real join tree as final result

Sample Algorithm Execution

100 18 R,
R, .) Rs T~
2 5 19
\ 10 100 3/ R, R; Ry, %
Rl R4 ;g - A/ \
A 5 N R55 Rs 3
4 2 3
R, R, —T R 6 "
100 10 2920 Ry 3
Input: query graph Step 1: precedence graph for Ry

the precedence graph includes the ranks

Sample Algorithm Execution (2)

R,
VT~
R, R, R,
I
50 25
Rs Rg :
5 V
R, !

2

Step 1: precedence graph for Ry
rank(Rs) > rank(Ry), but Rs — Ry

R;
O TT—
R, R, R, 1

20
o A ~
50 25
RS R672—
5 *1 15

6
Step 2: normalization

IKiKBZ
Sample Algorithm Execution (3)

R,
R, O T~
OV TT— R, Ry Ry %
R, Ry R, U - '
bR N Rg;
R; Re7 L '
z R

Step 2: normalization Step 3: merging subchains

rank(Re,7) < rank(Rs)

Sample Algorithm Execution (3)

R,
O T—
R, R; R, R
% ;i ¥ O T~
Rg; 2 R, R; 46,7 %
15 9 2 v
{ % %
5 5
Rs § Rs 3

Step 3: merging subchains Step 4: normalization

rank(Rs) > rank(Re 7), but Ry — Re 7

IKiKBZ
Sample Algorithm Execution (4)

R,
y
Ry67 %
V
R, Rs g
R, R; Ry67 % R; %
- ' !
; 19
Rs % R, 50

Step 4: normalization Step 5: merging subchains

rank(Ra6,7) < rank(Rs) < rank(R3) < rank(R:)

IKiKBZ
Sample Algorithm Execution (5)

R,

¥

Ry

¥

R, R

¥ ¥

R4,6,7 % R7

¥ ¥

R ; R;

¥ ¥
24

R; % R;

¥ ¥
49

Step 5: merging subchains Step 6: denormalization

Algorithm has to continue for all other root relations.

Maximum Value Precedence Algorithm

= greedy heuristics can produce poor results
= |IKKBZ only support acyclic queries and ASI cost functions

= Maximum Value Precedence (MVP) [4] algorithm is a polynomial time heuristic with
good results

= considers join ordering a graph theoretic problem

72
Directed Join Graph

Given a conjunctive query with predicates P.

= for all join predicates p € P, we denote by R(p) the relations whose attributes are
mentioned in p.

= the directed join graph of the query is a triple G = (V, Ep, E,), where V is the set of
predicates and E, and E, are sets of directed edges defined as follows

= for any nodes u,v € V, if R(u) NR(v) # 0 then (u,v) € Ep and (v,u) € E,
= if R(u)NR(v) =0 then (u,v) € E, and (v,u) € E,
= edges in E, are called physical edges, those in E, virtual edges

Note: all nodes u, v there is an edge (u, v) that is either physical or virtual. Hence, G is a
clique.

Examples: Spanning Tree and Join Tree

= every spanning tree in the directed join graph leads to a join tree

P23
R, —R, — Ry —R, D2 <. . . .7 pu
query graph directed join graph
X
VAN
P23 X R,
VAN
X R;
VAN
Pi2 P34 R, R,

spanning tree | join tree |

Rl - R2 - R3 - R4
query graph
P23
........... >
Pi2 P34

spanning tree Il

MV
Examples: Spanning Tree and Join Tree (2)

Pip - - - - P34
directed join graph
X
PN

X X
SN/ N\
R, R, Ry R,

join tree Il

MV
Examples: Spanning Tree and Join Tree (3)

4>
P23 4———P34

M

A
Ry —R, — Ry — Ry —R; P2 = - - - Pas
query graph directed join graph
P23 P34 X
- 7N\
s . N N R5 N
r LN 7\ VAN VAN
A >
Pi2 Pas R, R; R; Ry R, R,
spanning tree |lI join tree Il (?)

= spanning tree does not correspond to a (effective) join tree!

VP
Effective Spanning Trees

It can be shown that a spanning tree T = (V/, E) is effective, it is satisfies the following
conditions:

1. T is a binary tree

2. for all inner nodes v and nodes u with (u,v) € E:
R(T(u))) NR(v) #0

3. for all nodes v, uy, up with uy # wup, (u1,v) € E and (up, v) € E one of the following
conditions holds:

3.1 (R(T (1)) NR(v)) N (R(T (12)) NR(v))) = 0 or
32 (R(T (1)) = R(v)) V (R(T (12)) = R(v))

We denote by T(v) the partial tree rooted at v.

VP
Adding Weights to the Edges

For two nodes v, u € V we define ulMv = R(u) N R(v)
= for simplicity, we assume that every predicate involves exactly two relations
= then for all u,v € V, aMv contains a single relation (or none)

Let v € V be a node with R(v) = {R;, R}
= we abbreviate R; X, R; by X,

Using these notations, we can attach weights to the edges to define the weighted directed join
graph.

VP
Adding Weights to the Edges (2)

Let G = (V, Ep, E,) be a directed join graph for a conjunctive query with join predicates P.
The weighted directed join graph is derived from G by attaching a weight to each edge as
follows:

= Let (u,v) € E, be a physical edge. The weight w,,, of (u, V) is defined as

A
S uny|
= For virtual edges (u, v) € E,, we define
Wy, =1

Note that w, , is not symmetric.

Remark on Edge Weights

The weights of physical edges are equal to the s; used in the IKKBZ-Algorithm.
Assume R(u) = {R1, Ro}, R(v) = {R2, R3}. Then

| My |
|umv|
|R1 X Ry|
|Ro|
fi.2|Ri|| Ro|
|Ro|
= fio|Ry|

Wu,v

Hence, if the join Ry X, Ry is executed before the join R, X, R3, the input size to the latter
join changes by a factor of w,,

VP
Adding Weights to the Nodes

= the weight of a node reflects the change in cardinality to be expected when certain other
joins have been executed before
= it depends on a (partial) spanning tree S

Given S, we denote by M;Sv;j the result of the join X, . if all joins preceding p;j in S have been
executed. Then the weight attached to node p;; is defined as
|5 |
WA Pij, S)= -
P2 =R, R

For empty sequences we define w(p;;, €) = |R; M, Rj.
Similarly, we define the cost of a node p;; depending on other joins preceding it in some given
spanning tree S. We denote this by C(pjj, S).

= the actual cost function can be chosen arbitrarily

= if we have several join implementations: take the minimum

Algorithm Overview

The algorithm builds an effective spanning tree in two phases:
1. it takes those edges with a weight < 1
2. it adds the remaining edges

keeping track of effectiveness during the process.

= rational: weight < 1 is good
= decreases the work for later operators
= should be done early

* increasing intermediate results as late as possible

VP
MVP Algorithm

MVP(G)

Input: a weighted directed join graph G = (V, E,, E,)
Output: an effective spanning tree

@1 = a priority queue for nodes, largest w first

Q. = a priority queue for nodes, smallest w first

insert all nodes in V to

G' = (V',E') with V/ = V and E' = E, // working graph
S =(Vs, E5) with Vo=V and E; =) // result
MVP-Phasel(G, G/, S, Q1, @2)

MVP-Phase2(G, G, S, @1, Q)

return S

MVP Algorithm (2)

MVP-Phasel(G, G/, S, Q1, Q2)

Input: state from MVP

Output: modifies the state

while |Q1| > 0A |E| < |V|—1{
v = head of @

U={ul(u,v) € E' Awy,, <1A(V,EsU{(u,v)}) is acyclic and effective}
if U=0{

@ =@\ {v}
Q= QU {v}
} else {

u = argmax,ey C(My,S) — C(Xy, (V, Es U{(u,v)}))
MVPUpdate(G, G', S, (u, v))
recompute w for v and its ancestors
}
}

MV
MVP Algorithm (3)

MVP-Phase2(G, G/, S, Q1, @)
Input: state from MVP
Output: modifies the state
while |Q:| > 0A |E| < |[V|—1{
v = head of @,
U={(xy)(x,y) e EEAN(x=vVy=v)A(V,EsU{(x,y)}) is acyclic
and effective}
(x,y) =arg min(x,y)eU C(™y, (V,EsU{(x,y)})) — C(Xy,S)
MVPUpdate(G, G, S, (x, y))
recompute w for y and its ancestors

MV
MVP Algorithm (4)

MVPUpdate(G, G/, S, (u, v))
Input: state from MVP, an edge to be added to S
Output: modifies the state
Es = Es U {(u7 V)}
E'=E"\ {(u,v),(v,u)}
E' = E"\ {(u,w)|(u,w) € E'}
E'=E U{(v,w)|(u,w) € Ep,(v,w) € E,}
if v has two incoming edges in S {
E' = E'\ {(w, v)|(w,v) € E'}
}

if v has one outflowing edge in S {
E'=E"\ {(v,w)|(v,w) € E'}
}

= checks that S is a tree (one parent, at most two children)
= detects transitive physical edges

Join Ordering Dynamic Programming

Dynamic Programming

Basic premise:
= optimality principle

= avoid duplicate work

A very generic class of approaches:
= all cost functions (as long as optimality principle holds)
= left-deep/bushy, with/without cross products
= finds the optimal solution

Concrete algorithms can be more specialized of course.

Join Ordering Dynamic Programming

Optimality Principle

Consider the two joins trees

(((Ry ™ R2) X R3) M Ry) M Rs

and
(((R3 X Ry) M Ry) X Ry) X R

= if we know that ((R1 X Rz) X R3) is cheaper than ((R3 X Ry) X Ry), we know that the

first join is cheaper than the second join
= hence, we could avoid generating the second alternative and still won't miss the optimal

join tree

Dynamic Programming
Optimality Principle (2)

More formally, the optimality for join ordering:

Let T be an optimal join tree for relations Ry, ..., R,. Then, every subtree S of T
must be an optimal join tree for the relations contained in it.

= optimal substructure: the optimal solution for a problem can be constructed from optimal
solutions to its subproblems

= not true with physical properties (but can be fixed)

Join Ordering Dynamic Programming

Overview Dynamic Programming Strategy

= generate optimal join trees bottom up
= start from optimal join trees of size one (relations)

= build larger join trees by (re-)using those of smaller sizes

To keep the algorithms concise, we use a subroutine CreateJoinTree that joins two trees.

Join Ordering Dynamic Programming

Creating Join Trees

CreateJoinTree(Ty, T2)
Input: two (optimal) join trees Ty, Ta
for linear trees: assume that T5 is a single relation
Output:an (optimal) join tree for T3 X T
B=10
for each impl € { applicable join implementations } {
if —right-deep only {
B = BU{Ty ximPl T,}
}
if —left-deep only {
B=BU {TQ ximpl Tl}
¥
}

return arg minycg C(T)

2o e e
Search Space with Sharing under Optimality Principle

{R1,R2,R3 R4}

{R1,R2,R4} {RI.R3R4}
{R1,R2,R3} {R2,R3,R4}
{R1,R4}

{R1,R3} {R2,R4}
{R1,R2} {R3,R4}
{R2,R3}

R, R, R, R,

Join Ordering Dynamic Programming

Generating Linear Trees

= a (left-deep) linear tree T with |T| > 1 has the form T’ X R;, with |T|=|T'| +1
= if T is optimal, T/ must be optimal too

= basic strategy: find the optimal T by joining all optimal T’ with T\ T’

enumeration order varies between algorithms

Join Ordering Dynamic Programming

Generating Linear Trees (2)

DPsizeLinear(R)
Input: a set of relations R = {Ry,..., Ry} to be joined
Output:an optimal left-deep (right-deep, zig-zag) join tree
B = an empty DP table 2F — join tree
for each R; ¢ R
B[{Ri}] = Ri
for each 1 < s < n ascending {
foreach SCR,RieR:|S|=5s—1AR ¢S5 {
if —cross products A—S connected to R; continue
p1 = BIS]. p2 = BI{R.}]
if p; = € continue
P = CreateJoinTree(p1, p2);
if B[SU{Ri}] = eV C(B[SU{Ri}]) > C(P)
B[SU{Ri}|=P

Join Ordering Dynamic Programming

Order in which Subtrees are generated

The ordering in which subtrees are generated does not matter as long as the following
condition is not violated:

Let S be a subset of {Ri,...,Rn}. Then, before a join tree for S can be generated,
the join trees for all relevant subsets of S must already be available.

= relevant means that they are valid subproblems by the algorithm

= usually this means connected (no cross products)

Join Ordering Dynamic Programming

Generation in Integer Order

000 | {}

001 | {Ry}

010 | {Ry}

011 | {Ry, Ry}
100 | {Rs}

101 | {R1, R}
110 | {Ry, R}
111 | {Ry, Rs, Rs}

= can be done very efficiently

= set representation is just a number

Join Ordering Dynamic Programming

Generating Linear Trees (3)

DPsubLinear(R)
Input: a set of relations R = {Ry,..., Ry} to be joined
Output:an optimal left-deep (right-deep, zig-zag) join tree
B = an empty DP table 2F — join tree
for each R; ¢ R
Bl{Ri}] = Ri
for each 1 < i < 2" — 1 ascending {
S={R; € R|(|i/271] mod2) =1}
for each Rj € S {
if —cross products A—S \ {R;} connected to R; continue
p1 = BIS\ {R}}]. p = BI{R;}]
if p1 = ¢ continue
P = CreateJoinTree(p1, p2);
if B[S] =€V C(B[S]) > C(P) B[S] =P

Dynamic Programming
Generating Bushy Trees

= a bushy tree T with |T| > 1 has the form T; X T, with |T| = |T1| + | T2|
= if T is optimal, both T; and T> must be optimal too
= basic strategy: find the optimal T by joining all pairs of optimal T; and T,

Join Ordering Dynamic Programming

Generating Bushy Trees (2)

DPsize(R)
Input: a set of relations R = {Ry,..., Ry} to be joined
Output: an optimal bushy join tree
B = an empty DP table 2F — join tree
for each R; ¢ R
B[{Ri}] = Ri
for each 1 < s < n ascending {
for each 51,5 C R: |S1| + |S2| =5 {
if (—cross products A—S; connected to S) V (51N S, # () continue
p1 = B[S1], p2 = B[S)]
if py = ¢V p» = € continue
P = CreateJoinTree(p1, p2);
if B[Sl U 52] =€V C(B[Sl U 52]) > C(P)
B[S1US)] =P

Join Ordering Dynamic Programming

Generating Bushy Trees (3)

DPsub(R)
Input: a set of relations R = {Ry,..., Ry} to be joined
Output: an optimal bushy join tree
B = an empty DP table 2F — join tree
for each R; ¢ R
Bl{Ri}] = Ri
for each 1 < i < 2" — 1 ascending {
S={R; € R|(|i/271] mod2) =1}
for each S; € 5,5, =5\ 51 {
if —cross products A—S; connected to S, continue
p1 = B[S1], p2 = B[S2]
if p1 = ¢V p» = € continue
P = CreateJoinTree(p1, p2);
if B[S] =€V C(B[S]) > C(P) B[S] =P

Join Ordering Dynamic Programming

Efficient Subset Generation

If we use integers as set representation, we can enumerate all subsets of S as follows:

51 = S&(-5)

do {
$5=5-5
// Do something with S; and S
S51 =5&(51—-9)

} while (S;! = S)

= enumerates all subsets except () and S itself
= very fast

Join Ordering Dynamic Programming

Remarks

= DPsize/DPsizeLinear does not really test for p; = ¢

= it keeps a list of plans for a given size

= candidates can be found very fast

= ensures polynomial time in some cases (we will look at it again)

= DPsub/DPsubLinear is faster if the problem is not polynomial, though

Join Ordering Dynamic Programming

Memoization

= top-down formulation of dynamic programming

= recursive generation of join trees

= memoize already generated join trees to avoid duplicate work
= easier code

= sometimes more efficient (more knowledge, allows for pruning)

= but usually slower than dynamic programming

Join Ordering Dynamic Programming

Memoization (2)

Memoization(R)
Input: a set of relations R = {Ry, ..., R,} to be joined
Output:an optimal bushy join tree
B = an empty DP table 2F — join tree
for each R; ¢ R
Bl{Ri}] = Ri
MemoizationRec(B, R)
return B[{Ry,..., Ry}]

= initializes the DP table and triggers the recursive search

= main work done during recursion

Join Ordering Dynamic Programming

Memoization (3)

MemoizationRec(B,S)
Input: a DP table B and a set of relations S to be joined
Output: an optimal bushy join tree for the subproblem
if B[S] =¢{
foreach 5; C 5,5 =5\5;
p1 =MemoizationRec(B, S1), p2 =MemoizationRec(B, S,)
P=CreateJoinTree(p1, p2)
if B[S] =€V C(B[S]) > C(P) B[S] =P
¥

}
return B[S]

= checks for connectedness omitted

Dynamic Programming - Connected Subgraphs

= DP a very versatile strategy

= common usage scenario: bushy, no cross produts

= DPsize and DPsub support it, of course, but not optimal
= enumeration order does not consider the query graph

= many pairs have to be pruned due to conectedness

= especially bad for DPsub

Solution: consider the query graph structure during DP enumeration [5]

3 i T e e = ST
Asymptotic Search Space

DPsize:
= organize DP by the size of the join tree
= problem: only few DP slots, many pairs considered

good algorithm for chains, very bad for cliques:
‘ chains cycles stars cliques
pairs | O(n*) O(n*) O(4") 0(4")

DPsub:
= organize DP by the set of relations involved
= problem: always 2" DP slots, fixed enumeration

good algorithm for cliques, but adapts badly:
‘ chains cycles stars cliques

pairs | O(2") O(n2") 0O(3") 0O(3")

Observation

DPsize and DPsub generate many pairs that are pruned anyway (connectedness, overlap).

Typical pruned pairs (chain with 4 relations):
o—@©O oe—0—0©o o——©O

not connected not disjoint invalid subproblems

last example = every join partner must be a connected subgraph:
*o—0—0—0

3 i T e e = ST
Graph Theoretic Approach

= reformulation as graph theoretic problem:

= enumerate all connected subgraphs of the query graph

= for each subgraph enumerate all other connected subgraphs that are disjoint but
connected to it

= each connected subgraph - complement pair (ccp) can be joined

= enumerate them suitable for DP = DP algorithm

algorithm adapts naturally to the graph structure:
‘ chains cycles stars cliques

pairs‘O(n3) o(n®) 0(n2") 0(3")

Lohman et al: #ccp is a lower bound for all DP enumeration algorithms

R etk o
DP Algorithm using Connected Subgraphs

If we can efficiently enumerate all connected subgraphs/connected complement pairs, the
resulting DP algorithm is:

DPccp(R)
Input: a connected query graph with relations R = {Ro, ..., Rn—1}
Output: an optimal bushy join tree
B = an empty DP table 2R — join tree
for VR, € R
B[{Ri}] = Ri
for V csg-cmp-pairs (51,5,2), S=5US5 {
p1 = B[S1], p> = B[S,]
P = CreateJoinTree(p1, p2);
if B[S] =€V C(B[S]) > C(P)
B[S|=P
¥
return B[{Ro, ..., Rh—1}]

bl P R [L .

3 i T e e = ST
Effect on Search Space

Absolute number of generated pairs

Chain Star
n|DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 20 84 73 32 130 110
10 165 3,962 1,135 2,304 38,342 57,888
15 560 130,798 5,628 114,688 9,533,170 57,305,929
20| 1,330 4,193,840 17,545 4,980,736 2,323,474,358 59,892,991,338

Cycle Clique
n|DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 40 140 120 90 180 280
10| 405 11,062 2,225 28,501 57,002 306,991
15| 1,470 523,836 11,760 7,141,686 14,283,372 307,173,877
20| 3,610 22,019,294 37,900(1,742,343,625 3,484,687,250 309,338,182,241

R etk o
Enumerating Connected Subgraphs

two steps: enumerate all connected subgraphs, enumerate disjoint but connected
subgraphs for a given one = pairs

enumerate all pairs, enumerate no duplicates, enumerate for DP
if (a, b) is enumerated, do not enumerate (b, a)
requires total ordering of connected subgraphs

preparation: label nodes breadth-first from 0 to n — 1

Preliminaries, given query graph G = (V, E):

VvV = {Vo,...,Vn_l}
NV = {V|ve VI A(v,V) € E}
Bi = {yli<i}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G)
for all i € [n—1,...,0] descending {

emit {v;};

EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X; Ro
for all S C N, S’ # (), enumerate subsets first { / |

emit (SUS);

R _Rz 3

}
for all S" C N, S’ # (), enumerate subsets first { | /

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E teCsg(G
numer'a eCsg(6) . Choose all nodes as enumeration start
for all i € [n—1,...,0] descending { d
emit {v;}; node once
EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X; Ro
for all S C N, S’ # (), enumerate subsets first { / |
emit (SU S');
Ri—R—R;

}
for all S" C N, S’ # (), enumerate subsets first { | /

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

fE:ru;‘r:Ieria;e[Cnsg_(Cli). .., 0] descending { First emit only the node itself as subgraph
emit {v;};
EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X; Ro
for all S C N, S’ # (), enumerate subsets first { / |
emit (SU S');
R _Rz 3

}
for all S" C N, S’ # (), enumerate subsets first { | /

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G) .
forall i € [n—1....,0] descending { Then enlarge the subgraph recursively
emit {v;};
EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X; Ro
for all S C N, S’ # (), enumerate subsets first { / |
emit (SU S');
R—R—R;

}
for all S" C N, S’ # (), enumerate subsets first { | /

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

Enumer.ateng(G) . Prohibit nodes with smaller labels. Thus
for all i € [n—1,...,0] descending { i) .
. the set of valid nodes increases over time
emit {v;};
EnumerateCsgRec(G, {vi}, B));
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;
for all S C N, S’ # (), enumerate subsets first {
emit (SU S'); / | \

}
for all S" C N, S’ # (), enumerate subsets first { \Rlé‘/

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G)
for all i € [n—1,...,0] descending {
emit {v;};
EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;
for all S C N, S’ # (), enumerate subsets first {
emit (SU S'); / |

} 3
for all S" C N, S’ # (), enumerate subsets first { \R|4/

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G)
for all i € [n—1,...,0] descending {
emit {v;};
EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;
for all S C N, S’ # (), enumerate subsets first {
emit (SU S'); / |

} 3
for all S" C N, S’ # (), enumerate subsets first { \Rlé‘/

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G)
for all i € [n—1,...,0] descending {
emit {v;};
EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / |
emit (SU S'); qq
3

}
for all S" C N, S’ # (), enumerate subsets first { \R|4/

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

EnumerateCsg(G) : : . .
. . In each recursion, find all neighboring
for all i € [n—1,...,0] descending { .
. . nodes that are not prohibited
emit {v;};
EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / |
emit (SU S'); qq
3

}
for all S" C N, S’ # (), enumerate subsets first { \R|4/

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E teCsg(G
numer.a eCsg(6) . Add all combinations to the subgraph and
for all i € [n—1,...,0] descending { ,
.) emit the new subgraph

emit {v;};

EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / |
emit (SUYS'); qq
3

}
for all S" C N, S’ # (), enumerate subsets first { \R|4/

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E teCsg(G
numer.a eCsg(6) . Add all combinations to the subgraph and
for all i € [n—1,...,0] descending { ,
.) emit the new subgraph

emit {v;};

EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / |
emit (SUYS'); qq
3

}
for all S" C N, S’ # (), enumerate subsets first { \F{‘/

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

E teCsg(G
numer.a eCsg(6) . Add all combinations to the subgraph and
for all i € [n—1,...,0] descending { ,
.) emit the new subgraph

emit {v;};

EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / |
emit (SUYS'); qq
3

}
for all S" C N, S’ # (), enumerate subsets first { \F{‘/

EnumerateCsgRec(G, (SUS’), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

fEnumer.ateng(G) . Then, add all combinations to the
orall i € [n—1,...,0] descending { _ _
emit {v;}: subgraph and increase recursively
EnumerateCsgRec(G, {vi}, Bi);
}
EnumerateCsgRec(G, S, X)
N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first { / |
emit (SU S'); qq
3

}
for all S C N, S’ # (), enumerate subsets first { \R|4/

EnumerateCsgRec(G, (SUS'), (X U N));
}

Dynamic Programming - Connected Subgraphs
Enumerating Connected Subgraphs (2)

fE:ru::;eria;e[Cnsg_(Cli). .., 0] descending { The n.eighborhood. is prohibited during
emit {v;}: recursion, preventing duplicates
EnumerateCsgRec(G, {vi}, Bi);

}

EnumerateCsgRec(G, S, X)

N=N(S)\X;

for all S C N, S’ # (), enumerate subsets first {
emit (SUS'); / |

} _Rz 3

for all S" C N, S’ # (), enumerate subsets first { \ | /

EnumerateCsgRec(G, (SUS'), (X U N));
}

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

X = Bmin(Sl) U St
N=N(5)\X;
for all (v; € N by descending i) {
emit {v;};
EnumerateCsgRec(G, {v;}, X U (BN N));
}

R,
ERR,

Enumerating Complementary Subgraphs

E teC G,S
numerateCmp(. 1) Prohibit all nodes that will be start nodes
X - Bmm(Sl) U Slv

N = N(S1)\ X; later on and the primary subgraph
for all (v; € N by descending i) {

emit {v;};

EnumerateCsgRec(G, {vi}, X U (BN N));
}

/|
4>

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

X = Bmin(Sl) U Sy;
N=N(5)\X;
for all (v; € N by descending i) {
emit {v;};
EnumerateCsgRec(G, {vi}, X U (BN N));

Find all neighboring nodes that are not pro-
hibited

}

/|
4>

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

X = Bmin(Sl) U St
N=N(5)\X;
for all (v; € N by descending i) {
emit {v;};
EnumerateCsgRec(G, {vi}, X U (BN N));

Consider each of the nodes

}

/|
A

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

E;f}n(l\ng(ls)l)\&sl graph and emit it
for all (v; € N by descending i) {

emit {v;};

EnumerateCsgRec(G, {vi}, X U (BN N));

Choose the node as complementary sub-

}

/|
A

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)
E ; f}n('\ng(ls)l)\&sl EnumerateCsgRec
for all (v; € N by descending i) {

emit {v;};

EnumerateCsgRec(G, {vi}, X U (BN N));

Recursively increase the subgraph re-using
}

/|
A

Enumerating Complementary Subgraphs

C G
inimg::(esﬂmd)gl;ﬁl) Again prohibit nodes with a smaller label

N = N(51)\ X; to prevent duplicates
for all (v; € N by descending i) {

emit {v;};

EnumerateCsgRec(G, {v;}, X U (B; N N));
}

/ |
|/

Enumerating Complementary Subgraphs
EnumerateCmp(G,51)

X = Bmin(Sl) U St
N=N(5)\X;
for all (v; € N by descending i) {
emit {v;};
EnumerateCsgRec(G, {v;}, X U (BN N));
}

» EnumerateCsg+EnumerateCmp produce all ccp
= resulting algorithm DPccp considers exactly #ccp pairs

= which is the lower bound for all DP enumeration algorithms

Remarks

= DPsize is good for chains, DPsub for cliques
= implementation of DPccp is more involved

= each enumeration step must be fast (ideally O(1), at most O(n), where n is the number
of relations)

= but benefits are huge
= DPccg adopts to query graph structure
= considers minimal number of pairs

= especially for "in-between queries” (e.g. stars) much faster

R etk o
Beyond (Regular) Query Graphs

Some queries are more complex

select *
from Rl r, R2 r, R3 r3, Rl R4
R4 rg, R5 rs, R6 I'e ‘ ‘
R Ry
where r;.a=r>.a and r».b=r3.c and ‘ ‘
ry.d=rs.d and rs.e=rg.e and R :

abs(ry.f + r3.f)
= abs(rs.g + r6.8)
= does not induce a graph but a hyper-graph
= graph based DP algorithm not directly applicable

= generic DP algorithms work, but not as efficient

R etk o
Handling Hypergraphs

A hypergraph is a pair H = (V/, E) such that
1. V is a non-empty set of nodes and

2. E is a set of hyperedges, where a hyperedge is an unordered pair (u, v) of non-empty
subsets of V' (u C V and v C V) with the additional condition that uNv = 0.

Nodes in V are totally ordered via an (arbitrary) relation <.

= enumeration is performed by decreasing <

= < orders the search space (DP order, duplicates)

R etk o
Handling Hypergraphs (2)

In principle same approach as for regular graphs:

= start with one node

= expand recursively by following

edges R, R
Problem: R> Rs
= hyperedges are n:m edges ‘ ‘

R3 Re

= where to expand to from
{Rh R27 R3}?

= must still guarantee DP order

R etk o
Handling Hypergraphs - Neighborhood

When computing the neighborhood, choose representatives:

= a hyperedge "leads"” to the least node
(regarding <)
= therefore N({R1, Rz, R3}) = {Ra}

= ensures DP order (and prevents Ry R4
duplicates) ‘ ‘
But: Ra Rs
= leads to (temporarily) disconnected Rs Re
graphs

= {R1, R2, R3, R4} is not connected
= must expand further until Rg reached

Requires checks for connectedness
= can exploit the DP table for cheap tests
= if it is connected, a DP entry must exist

Non-Inner Joins

Some queries use non-inner joins:
= either explicitly (OUTER JOIN etc.) or implicitly (unnesting etc.)
= are not freely reorderable

M ax=C.y MB.x=Ay
/N /\
XNp x=Ay WMax=cy B
/\ /\
A B £ A C

MMiictr ha +alban inFA acrrA11nt Aiivineas iAaTtA Ardari; o

Non-Inner Joins - Reordering Constraints

Examine pair-wise reorderings of operators
= for all 01, 02, check if (R 01 S) 0o T=R o1 (5 (e],) T)

= assume syntax constraints are satisfied

Gives a big compatibility matrix

XX vXKX
+ 4+ 4R

Dynamic Programming - Connected Subgraphs
Non-Inner Joins - TESs

Extract reordering constraints from operator tree in two steps:

1. build the syntactic eligibility set (SES) for each operator
P set of relations that has to be in the input

SES
/Nb:d\ {B,D}
Daee D | {A C}
Ma:b/ \C {A, B}
A/ \B

Dynamic Programming - Connected Subgraphs
Non-Inner Joins - TESs

Extract reordering constraints from operator tree in two steps:

1. build the syntactic eligibility set (SES) for each operator
2. bottom up traversal, build the total eligibility set (TES)

> initialize TES with SES
> check for conflicts with other operators (can be in subtrees!)
» if conflict, add other TES to own TES

SES TES

/Nb:d {BvD} {AvB7D}

/ \ D | {AC} | {ABC}
N, A B A, B
> \ {A,B} | {AB}

TESs capture reordering restrictions by requiring relations, which imply
operators.

Non-Inner Joins - Using TESs
Add the TES to the join edge
= operator "requires” certain relations, so encode it like this

= constructs hyperedges (n:m)

= eliminates invalid reorderings from the search space

Original query graph from previous example: C—A—B—D

A
After adding TESs to the edges: C—| >—D
B

S E = e
Simplifying the Query Graph

The graph-based DP algorithm considers the minimal number of join-pairs
= we therefore cannot expect to get a better runtime for exact solutions
= many problems can be solved exactly, but not all
= depends on the structure of the query graph
= chains are simple, others, e.g., stars, are hard

= how to cope with these queries?

Greedy heuristics would work, but results are much worse than DP solutions.

S E = e
Simplifying the Query Graph - General ldea

If the problem is too complex to solve exactly, simplify the query graph until it gets tractable.

= the query graph describes all join possibilities

= by modifying the query graph we can rule out some possibilities
= this reduces the search space and the optimization time

= we prefer modifications that are "safe”

= uses greedy steps only for the "easy” problems, then use DP

Note: "simplifying” means simpler for the optimizer.
For a human the query graph tends to get strange.

ST E s G
Simplifying a Star Query

Ro — R
graph BN
R3s Ry
Ro M Ry search
joins Ro ™ R»
Ro 5 Rs space
original S8

ST E s G
Simplifying a Star Query

Ro — Ry Ro — Ry
graph |\ | X

R R Rz R,

Ro ™M Ry Ro X Ry
joins Ro ™ R» {Ro, Rl} X Ry

Ro X R3 Ro X R3

original 1st step

search
space
size

Simplifying a Star Query

Ry — Ry Ry — Ry
graph N\ X
Rs R Rz R
Ro ™M Ry Ro X Ry
joins Ro ™ R» {Ro, Ri} X Ry
Ro X R3 Ro X R3
original 1st step
Ry — Ry
graph
R3s Ra
Ro ™M Ry
joins {Ro, Rl} X Ro
{Ro, Ri} X R

I'nd <ten

search
space
size

S E = e
Simplifying a Star Query

Ro — Ry Ro — Ry
graph ERN | X
Rz R Rz R,
Ro ™M Ry Ro X Ry
joins Ro ™ R» {Ro, Ri} X Ry z[e)z::(;h
Ro X R3 Ro X R3 size
original 1st step —_—
b
Ro — Ry Ro — Ry 3
graph 2
Rs R Rs R :
Ro ™M Ry Ro X Ry
joins {Ro, Rl} X Ro {Ro, Rl} X Ro

{Ro, R1} XM R3 {Ro, R1, R} X R3
I'nd <ten 2rd <cten

LIS 6 Cr=r G
Performing A Simplification Step
Given a query graph G = (V,E)

1. examine all joins Xy, X € E that are neighboring
> neighboring = have a relation in common (see [6])
2. make sure that X5 could be ordered before X
» checks for contradictions, requires a fast cycle checker
3. compute the orderingBenefit(MX1,X5)
P this is the heuristical part, different benefit heuristics could be used
4. retain the SlL X SR, 52L Xy Sf with the maximal orderingBenefit
» maintain priority queues to speed up repeated simplification

5. return G’ = (V, E\ {X1} U {(Stu S5 U SK) 1y SEY)

The resulting query graph is more restrictive, i.e., simpler.

(there are more cases due to different possible ways of neighboring)

S E = e
Estimating the Ordering Benefit

We want to prefer orderings that are almost certainly a good idea.
Therefore one approach is to maximize

C((X X1 R]_) Mo Rz)
C((X Xz Ry) X1 Ry)

orderingBenefit(X X1 Ry, X Mo Ry) =

If we cannot compute C due to missing information, use Cyyt.

S E = e
Adjusting the Problem Complexity

How much should we simplify?

= until optimization fits into resource constraints (memory or time)
How do we know when to stop simplifying?

= count the number of connected subgraphs of the query graph

= directly determines memory, indirectly optimization time

= stop counting when the limit is reached
Counting is fast, but not instantaneous

= counting 10,000 subgraphs in a query with 100 relations took ~ 5ms

= we cannot do this after every simplification

Exact limit depends on hardware, a reasonable choice is 10,000 connected subgraphs.

S E = e
Full Optimization Algorithm

Given a Query Graph G = (V, E) and a complexity budget b
1. compute a list G of query graphs
» repeatedly call the simplification step, stop when no change
2. perform binary search over G, find Gp

> for the current element G’, ¢ =#tconnected subgraphs in G’ (count at most b + 1)
» if ¢ > b increase, otherwise decrease

3. return DPhyp(Gp)

Simplifies as much as needed to meet the constraints, than uses DP.

(the algorithm does not materialize G explicitly, see [6])

Simplifying the Query Graph
Time/Quality Trade-off - Grid with 20 Relations

24000

21000
18000
15000
12000
9000
6000
3000

#subgraphs

2108
1800
1500
1200
900
600
300

optimization time [ms]

=W
o u1o
T

costs

= as expected plan quality degrades at some point

60 80 100
number of simplification steps

Simplifying the Query Graph
Time/Quality Trade-off - Star with 20 Relations

500000 |
400000
300000 [
200000
100000 -

#subgraphs

14008 F
12000
10000
8000
6000
4000
2000

optimization time [ms]

10 f f
5,

costs

0
0 50 100 150

number of simplification steps

= same optimization time behavior, but plan quality remains perfect

Adaptive Optimization using Search Space Linearization

= not all join problems are equal
= most queries are small, but we have a incredible long tail
= must handle all of them reasonably, with the correct expectations

= adapt the algorithm to the query complexity

NINOIG -8 Adaptive Optimization

Join ordering: Solved!

/ = Dynamic Programming (DP),

R pioneered by Selinger et al. (1979)
\ T R1 = Large body of follow-up work

_— R9 » bushy plans
» graph awareness
» non-inner joins
» top-down formulations
= Exponential runtime in general

\ = Only viable for relatively small queries
R8 = Generated queries we are increasingly
/ faced with tend to be too large

Solved?
= Huge search space (NP-Hard)

= Too hard to solve optimally
= Heuristics to the rescue!?

frequency

1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08

normalized cost (log scale)
= Suddenly, if just slightly too large
= Likely to result in disastrous plans
= Not the end of the spectrum

Unsolved!

h¢ 6

R

Tableau: “Get Real: How Benchmarks
Fail to Represent the Real World"
(DBTEST 2018)

Queries touching a few hundred relations
are quite common

SAP: 4,598 relations (BTW 2017)

= 60 DBMS A
[}
£
5
c
.S 40 DBMS B
5
BN
£
5
o
2 20 | PostgreSQL
2
(]
£
0 T T T T
10 200 400 600 800 1,000

relations

NINOIG -8 Adaptive Optimization

Adaptive Optimization — The Big Picture

medium?

yes

solve optimally novel technique:
search space
linearization

= For performance and correctness reasons: no cross products

Y

gracefully introduce
greediness to keep
optimization time
reasonable

NINOIG -8 Adaptive Optimization

Adaptive Optimization — The Big Picture

Py

> medium?
yes
Y
solve optimally novel technique: gracefully introduce
search space greediness to keep
linearization optimization time
reasonable

NINOIG -8 Adaptive Optimization

Adaptive Optimization — The Big Picture

Py

> medium?
yes
Y
solve optimally novel technique: gracefully introduce
search space greediness to keep
linearization optimization time
reasonable

NINOIG -8 Adaptive Optimization

Adaptive Optimization — The Big Picture

< 10K DP

no /\ no

. > medium?
entries?

yes

solve optimally novel technique:

search space

DPhyp linearization

Y

gracefully introduce
greediness to keep
optimization time
reasonable

NINOIG -8 Adaptive Optimization

Adaptive Optimization — The Big Picture

< 10K DP corner no

medium?

entries? case?

wolve optimally
search space
DPhyp GOO/DPhyp linearization

novel technique:

Y

gracefully introduce
greediness to keep
optimization time
reasonable

NINOIG -8 Adaptive Optimization

Adaptive Optimization — The Big Picture

< 10K DP
entries?

corner
case?

< 100
relations?

wolve optimally
search space
DPhyp GOO/DPhyp linearization

novel technique:

Y

linearized DP

gracefully introduce
greediness to keep
optimization time
reasonable

NINOIG -8 Adaptive Optimization

Adaptive Optimization — The Big Picture

corner
case?

< 10K DP
entries?

< 100
relations?

Y

wolve optimally
search space greediness to keep
DPhyp GOO/DPhyp linearization optimization time

novel technique: gracefully introduce

reasonable
linearized DP
GOO/linDP

GO
Adaptive Optimization — How to Measure Complexity

Structure DP complexity DP table size

chain O(n?) n?
clique 03" 2"

= Complexity depends on the structure of the query graph
= Size of DP table as measure of complexity

» Analyze query graph to determine the size of the DP table

GO
Adaptive Optimization — Small Queries

Up to 10,000 DP entries
» chains: up to 100 relations
» cliques: less than 14 relations

Run DPhyp

» Adapts to the query graph's structure
» Completely and minimally enumerates all possibly optimal join orders without cross products

= Plan guaranteed to be optimal

= Optimization will be fast

GO
Adaptive Optimization — Medium Queries

= Complexity depends on the structure of the query graph
= Can easily optimize chain queries on 100 relations exactly (polynomial runtime)

= Usually queries are not exactly linear

Still benefit from this fast optimization through search space linearization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known
R1 — R2

R5 — R6

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known
R1 — R2

R5 — R6

R2 Rl R3 R5 R6 R4

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

R2 Rl R3 R5 R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

R2 Rl R3 R5 R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

/ A\

R2 Rl R3 R5 R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

/ A\

R2 Rl R3 R5 R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

/N /A
R2 Rl

R3 R5 R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

/N /A
R2 Rl

R3 R5 R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

/ A\

R2 Rl R3 R5 R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

/ A\ /\

R2 Rl R3 R5 R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

/\ \ /N\

R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is R3 —— R4

known

R1—R2
= Polynomial DP algorithm to generate optimal plan

from this linearization R5 — R6

= Optimally combine optimal solutions for subchains
of increasing size

R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is
known

= Polynomial DP algorithm to generate optimal plan
from this linearization

= Optimally combine optimal solutions for subchains
of increasing size

= But: how to know the optimal order?

R3—R4
Rl — R2
R5 — R6
X
_—
M

R6 R4

NINOIG -8 Adaptive Optimization

Adaptive Optimization — Search Space Linearization

= Assume the order of relations in the optimal plan is
known

= Polynomial DP algorithm to generate optimal plan
from this linearization

= Optimally combine optimal solutions for subchains
of increasing size

= But: how to know the optimal order?

= IKKBZ (TODS 3/'84, VLDB '86):
Optimal left-deep plan in O(n?)

= Good alternative to the optimal relative order of
relations

R3—R4
Rl — R2
R5 — R6
X
_—
M

/\ \ /N\

R6 R4

GO
Adaptive Optimization — Linearized DP

Procedure
1. Linearize using IKKBZ
2. Build best bushy plan for linearization

Properties
= Runs in O(n?)
= Result at least as good as the optimal left-deep plan

= With proper linearization, discovers globally optimal bushy plan

GO
Adaptive Optimization — Large Queries

= Even linearized DP too expensive for the most complex queries
= |terative Dynamic Programming (Kossmann & Stocker, TODS 1,/2000):

1. Greedily build query plan, e.g. using Greedy Operator Ordering (GOO)
2. lteratively refine by optimizing the most expensive sub trees of size k using DP

= Linearization greatly increases reordering freedom
» originally: k~7
» linearized: k =100

Generated Queries — Optimization Time

median optimization time [s]

timeout & |

40

20

10

20

DPSize

30

o o o o
DPhyp
DPSizelLinear
adaptive
1 1 1 1 I 1
40 50 60 70 80 90 100

relations

Generated Queries — Optimization Time

timeout & | ® ® *
= A
) 4
£ /!
] ’
c 4
ke 40)
H /)(x
N ‘. ’
S S
S P .
ol L+ genetic
o X
c 20
.0
mel
(9]
IS

adaptive

0 T T
10 100 200 300 400 500 600 700 800 900 1,000

relations

Generated Queries — Optimization Time

median optimization time [s]

timeout & |

40 |

20

0

* * * * * *
]
DP '
] J
! ’
1 ’
1 4
1 ’
I|near|zedDPl' !
1 xl
! ’
1 ’
1 ,
1 ’
4
1
' X
1 ’
* P
4 4
, X
’ e
4 //
R4 _x" |KKBZ
’* - .
. P adaptive
_ A oo == =
T 1 1 I T T T T

16 100 200 300 400 500 600 700 800 900 1,000

relations

Generated Queries — Optimization Time

timeout & |
— DP
L,
(]
E
5
kS 40 |
© *
N
3 L+ genetic
S L8
c 20 et
% o
(9]
1S
e adaptive
0 -esommmmmp—= T T T T

10 100 200 300 400 500 600 700 800 900 1,000

relations

Generated Queries — Optimization Time

timeout & | ® ® *
= A
) 4
£ /!
] ’
c 4
ke 40)
H /)(x
N ‘. ’
S S
S P .
ol L+ genetic
o X
c 20
.0
mel
(9]
IS

adaptive

0 T T
10 100 200 300 400 500 600 700 800 900 1,000

relations

Adaptive Optimization
Generated Queries — Plan Quality

Plan cost compared to cost of best plan found by any of the algorithms

Optimal plan known (371 queries)

Algorithm median 95% max
DPhyp 1.00 1.00 1.00
Linearized DP 1.00 1.23 2.23
adaptive 1.00 1.10 2.23

= Most of the plans generated by linearized DP are optimal or near-optimal

= Adaptive Optimization additionally benefits from full DPhyp as long as it is fast

Generated Queries — Plan Quality

Linearized DP (< 100 relations; 1,000 queries)

Algorithm median 95% max
IKKBZ 1.00 1.97 58.47
Linearized DP 1.00 1.12 2.57
adaptive 1.00 1.07 2.57

= DP phase in linearized DP significantly increases plan quality

Adaptive Optimization
Generated Queries — Plan Quality

Iterative Dynamic Programming (< 5,000 relations; 2,300 queries)

Algorithm median 95% max
GOO 1.05 2.81 19.18
GOO/DPhyp 101 253 19.18
GOO/linDP 1.00 1.60 4.02
adaptive 1.00 1.59 4.02

= |terative DP benefits from additional freedom induced by linearized DP

= Adaptive Optimization generates good plans across the whole spectrum of queries

WCTNOIE -8 Generating Permutations

Generating Permutations

The algorithms so far have some drawbacks:
= greedy heuristics only heuristics
= will probably not find the optimal solution
= DP algorithms optimal, but very heavy weight
= especially memory consumption is high
= find a solution only after the complete search
Sometimes we want a more light-weight algorithm:
= low memory consumption
= stop if time runs out

= still find the optimal solution if possible

WCTNOIE -8 Generating Permutations

Generating Permutations (2)

We can achieve this when only considering left-deep trees:
= left-deep trees are permutations of the relations to be joined
= permutations can be generated directly
= generating all permutations is too expensive

= but some permutations can be ignored:
Consider the join sequence R1RoR3Ry. If we know that RyR3R» is cheaper than Ry RaR3,

we do not have to consider RiRoR3R,.

Idea: successively add a relation. An extended sequence is only explored if exchanging the last
two relations does not result in a cheaper sequence.

WCTNOIE -8 Generating Permutations

Recursive Search

ConstructPermutations(R)

Input: a set of relations R = {Ry,..., Ry} to be joined
Output: an optimal left-deep join tree

B=¢

P=c¢

for each R, € R {
ConstructPermutationsRec(Po < R; >,R \ {R;},B)
} return B

= algorithm considers a prefix P and the rest R
= keeps track of the best tree found so far B

= increases the prefix recursively

Generating Permtations
Recursive Search (2)

ConstructPermutationsRec(P, R, B)

Input: a prefix P, remaining relations R, best plan B
Output:side effects on B

if [R| =0 {
if B=cV C(B)> C(P){
B=P
}
} else {

for each R; € R {
if C(Po< R, >)<C(P[1:|P]—1]o < R;,P[|P|]] >) {
ConstructPermutationsRec(Po < R; >, R\ {R;}, B)
}

}
}

WCTNOIE -8 Generating Permutations

Remarks

Good:
= linear memory
= immediately produces plan alternatives
= anytime algorithm
= finds the optimal plan eventually
Bad:
= worst-case runtime if ties occur

= worst-case runtime if no ties occur is an open problem

Often fast, can be stopped anytime, but may perform poorly.

BHNOICIS -8 Transformative Approaches

Transformative Approaches

Main idea: [7]
= use equivalences directly (associativity, commutativity)
= would make integrating new equivalences easy
Problems:
= how to navigate the search space
= equivalences have no order
= how to guarantee finding the optimal solution

= how to avoid exhaustive search

Transformative Approaches
Rule Set

Ry X Ry

(Rl X Rz) X R3
Ry X (R2 X R3)
(Rl X Rz) X R3
Ry X (R2 X R3)

R> ™M Ry Commutativity

R; X (R, X R3) Right Associativity
(R1 X Rp) X Ry Left Associativity
(R1 ™ R3) X Ry Left Join Exchange
R» X (Ry M R3) Right Join Exchange

IR T

Two more rules are often used to transform left-deep trees:
= swap exchanges two arbitrary relations in a left-deep tree
= 3Cycle performs a cyclic rotation of three arbitrary relations in a left-deep tree.

To try another join method, another rule called join method exchange is introduced.

Transformative Approaches
Rule Set RS-0

= commutativity
= left-associativity

= right-associativity

BHNOICIS -8 Transformative Approaches

Basic Algorithm

ExhaustiveTransformation({R1, ..., Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done =) // contains all trees processed
ToDo = {T} // contains all trees to be processed
while [ToDo| > 0 {
T = an arbitrary tree in ToDo
ToDo = ToDo \ T;
Done = Done U {T};
Trees = ApplyTransformations(T);
for each T € Trees {
if T & ToDo U Done
ToDo = ToDo U {T}

Transformative Approsches
Basic Algorithm (2)

Apply Transformations(T)
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ()
Subtrees = all subtrees of T rooted at inner nodes
for each S € Subtrees {
if S is of the form S; X S,
Trees = Trees U{Sy X 51}
if S is of the form (51 X S3) X S3
Trees = Trees U{S1 X (52 X S3)}
if S is of the form S; X (S, X S3)
Trees = Trees U{(S51 X Sp) X S3}
}

return Trees;

WETNOIE -8 Transformative Approaches

Remarks

= if no cross products are to be considered, extend if conditions for associativity rules.
= problem 1: explores the whole search space
= problem 2: generates join trees more than once

= problem 3: sharing of subtrees is non-trivial

Transformative Approaches

Search Space

N N N W WP
X % MA- MA- % . 4 x
1 ; o 1 a 1
D I e S S Y N L N
T T N S ST S U ST
\ \ \ \ \ \ \ \
Cl W K K K K KW
M RV K N T N Y W N W
R (P V.
\ P TR I AP AL R (e
% B N% o\ \y(B\ \g(o\ \g(Ky . Ky TRy
N) WO R MRS

BHNOICIS -8 Transformative Approaches

Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:
= for any subset of relations, dynamic programming remembers the best join tree.
= this does not quite suffice for the transformation-based approach.

= instead, we have to keep all join trees generated so far including those differing in the
order of the arguments of a join operator.

= however, subtrees can be shared.

= this is done by keeping pointers into the data structure (see next slide).

BHNOICIS -8 Transformative Approaches

Memo Structure Example

{Rl, R2, R3} {Rl, R2} X R3, R3 X {Rl, Rz},
{Rl, R3} X Ry, Ry X {Rl, R3},
{Rz, R3} X Rl, Rl X {RQ, R3}
{Ra, Rs} {Ra} X {Rs}, {Rs} M {Ro}
{R1, R} {Ri} X {Rs}, {Rs} M {Ry}
{R1, R} {Ri} X{Ro}, {Ro} M {R1}

{Rs} Rs
{Re} Ra
{Ri} Ri

= in Memo Structure: arguments are pointers to classes
= Algorithm: ExploreClass expands a class

= Algorithm: ApplyTransformation2 expands a member of a class

G T A
Memoizing Algorithm

Exhaustive Transformation2(Query Graph G)

Input: a query specification for relations {Ry, ..., Rn}.
Output: an optimal join tree

initialize MEMO structure

ExploreClass({R1, ..., Rn})

return arg minTcgjass {Ry,....R,} C(T)

= stored an arbitrary join tree in the memo structure

= explores alternatives recursively

BHNOICIS -8 Transformative Approaches

Memoizing Algorithm (2)

ExploreClass(C)

Input: aclassC C {Ry,...,Rn}

Output: none, but has side-effect on MEMO-structure

while not all join trees in C have been explored {
choose an unexplored join tree T in C
ApplyTransformation2(T)
mark T as explored

= considers all alternatives within one class

= transformations themselves are done in ApplyTransformation?2

Transformative Approsches
Memoizing Algorithm (3)

ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T))
ExploreClass(right-child(T));
for each transformation 7 and class member of child classes {
for each T’ resulting from applying 7 to T {
if T/ not in MEMO structure {
add T’ to class C of MEMO structure
}

= first explores subtrees
= then applies all known transformations to the tree

R L N A T T

BHNOICIS -8 Transformative Approaches

Remarks

= Applying ExhaustiveTransformation2 with a rule set consisting of Commutativity and
Left and Right Associativity generates 4" — 3"+1 1 27+2 _ n _ 2 duplicates

= Contrast this with the number of join trees contained in a completely filled MEMO
structure: 3" — 2™ 4 n 41

= Solve the problem of duplicate generation by disabling applied rules.

Transformative Approaches
Rule Set RS-1

T1: Commutativity C; Mg G ~ G Xy G

Disable all transformations Ty, T, and T3 for Xy.
T>: Right Associativity (C; Mg G) M1 G3 ~ Gy Mo (G X3 G3)

Disable transformations T, and T3 for X5 and enable all rules for X3.
T3: Left associativity C; Mg (C2 X1 C3) ~ (C1 Yo C2) X3 C3

Disable transformations T» and T3 for X3 and enable all rules for X5.

T Gpsieeles
Example for chain Ry — R, — Rs — Ry

\ Class I Initialization \ Transformation [Step |

{R1, Ro, R3, Ra} || {R1, Ra} X111 {Rs, Ra} | {Rs, Ra} Mooo {R1, Ra} 3

R1 X100 {R2, R3, Ra} 4

{R1, Ra, R3} X100 Ra 5

{R2, R3, Ra} Mooo Rt 8

R4 Mooo {R1, R2, R3} 10

{R2, R3, Ra} Ro X111 {R3, Ra} 4

{Rs, Ra} Mooo R2 6

{R2, R3} M100 R4 6

R4 Mooo {R2, Rs} 7

{R1, R3, Ra}
{R1, Rz, Ra}

{R1, R2, R3} {R1, Ra} X111 R3 5

R3 Mooo {R1, R2} 9

Ry X100 {R2, R3} 9

{R2, R3} Moo R1 9

{Rs, Ra} R3 X111 Ry R4 Mogo Rs 2
{R2, R4}
{Rz, Rs}
{R1, R4}
{R1, R}

{R1, Ro} R X111 Ry R> Moo Ry 1

Transformative Approaches
Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:
T1: Commutativity C3 Mg Gy ~» G X1 G
Disable all transformations T7, T», T3, and T4 for Xj.
T»: Right Associativity (C1 Mg Go) X1 Gz ~» Gy Mo (G M3 G3)
Disable transformations T», T3, and T4 for X>.
T3: Left Associativity Ci Mo (Ga My G3) ~ (G Mp G) X3 G5
Disable transformations T, T3 and T4 for Xs3.
Ta: Exchange (Cy Mg G) My (C3 X Gg) ~ (Cr M3 G3) My (G M5 G4)
Disable all transformations Ty, T», T3, and T4 for Xg.
If we initialize the MEMO structure with left-deep trees, we can strip down the above rule set

to Commutativity and Left Associativity. Reason: from a left-deep join tree we can generate
all bushy trees with only these two rules

WETNOIE -8 Transformative Approaches

Rule Set RS-3

Left-deep trees:
T1 Commutativity Ry Mg Ry ~ R X1 Ry

Here, the R; are restricted to classes with exactly one relation. T7 is disabled for
Xy.

T, Right Join Exchange (C]_ aly) C2) X1 C3 ~ (C]_ Mo C3) X3 G
Disable T, for X3.

Generating Random Join Trees

Generating a random join tree is quite useful:
= allows for cost sampling
= randomized optimization procedures
= basis for Simulated Annealing, lterative Improvement etc.
= easy with cross products, difficult without

= we consider with cross products first

Main problems:
= generating all join trees (potentially)

= creating all with the same probability

T
Ranking/Unranking

Let S be a set with n elements.
= a bijective mapping f : S — [0, n[is called ranking
= a bijective mapping f : [0, n[— S is called unranking

Given an unranking function, we can generate random elements in S by generating a random
number in [0, n[and unranking this number.
Challenge: making unranking fast.

Random Permutations

Every permutation corresponds to a left-deep join tree possibly with cross products.
Standard algorithm to generate random permutations is the starting point for the algorithm:

for each k € [0, n[descending
swap(7[k], m[random(k)])

Array 7 initialized with elements [0, n[.
random(k) generates a random number in [0, k].

Random Permutations

= Assume the random elements produced by the algorithm are r,_1,...,r0 where 0 < r; <.

= Thus, there are exactly n(n —1)(n —2)...1 = n! such sequences and there is a one to
one correspondance between these sequences and the set of all permutations.

= Unrank r € [0, n![by turning it into a unique sequence of values r,_1,..., rp.
Note that after executing the swap with r,_1 every value in [0, n[is possible at position
7[n—1].

Further, w[n — 1] is never touched again.

= Hence, we can unrank r as follows. We first set r,_1 = r mod n and perform the swap.
Then, we define r' = | r/n] and iteratively unrank r’ to construct a permutation of n — 1
elements.

Generating Random Permutations

Unrank(n, r)
Input: the number n of elements to be permuted
and the rank r of the permutation to be constructed

Output:a permutation 7
foreach 0 <i<n

w[i] =i
for each n > i > 0 descending {

swap(w[i — 1], w[r mod i])

r=1\r/i
}

return T,

Generating Random Bushy Trees with Cross Products

Steps of the algorithm:

1. Generate a random number b in [0, C(n)].
Unrank b to obtain a bushy tree with n — 1 inner nodes.
Generate a random number p in [0, n![.

Unrank p to obtain a permutation.

AR

Attach the relations in order p from left to right as leaf nodes to the binary tree obtained
in Step 2.

The only step that we have still to discuss is Step 2.

T
Tree Encoding

= Preordertraversal:

> Inner node: '(’
> Leaf Node: ')’

Skip last leaf node.
= Replace '(" by 1 and ')" by 0
= Just take positions of 1s.
Example: all trees with four inner nodes:
= The ranks are in [0, 14]

Tree Ranking Example

«Wwon
1110000
1234

0

A

A

A
I

12,46
s

X

3 ~_
-~ \X/
-

A

0o
10110100
1346

Join Ordering

«on W0y
o100 1100100
123 1236
2
B4

> \N
AN
/

S~
>X‘_X\X -5

WO O3
11010010 11001100
1247 125,
6 7

B4 b4

AN
AN

x/x/

\

~
s

OO0 0O
10110010 10101100
L340 Ls.6

A
AN
£

A

«Wono 00N

1100010 o100

1237 1245
4

ba b4

Il
3=
~
-

-

-
e oo
-

)

o0 0o
11001010 1011000
1257 LS

s 9

I

2
g

3

/\

0000

10101010

1357
3

Unranking Binary Trees
We establish a bijection between Dyck words and paths in a grid:

4+ 1
[0,0]
34 4 1
[1.4(
2+ 9 3 1
[4.91
1+ 14 5 2
[9,14[

| | | |

I I I I I I I

1 2 3 4 5 6 7

Every path from (0,0) to (2n,0) uniquely corresponds to a Dyck word.

T
Counting Paths

The number of different paths from (0, 0) to (/,/) can be computed by

p(i,j):j+1<1 i+1)

i+1

S(i+j)+1

These numbers are the Ballot numbers.
The number of paths from (i, /) to (2n,0) can thus be computed as:

q(’?./) = p(2n - ’)./)

Note the special case g(0,0) = p(2n,0) = C(n).

T
Unranking Outline

= We open a parenthesis (go from (i,j) to (i + 1,/ + 1)) as long as the number of paths
from that point does no longer exceed our rank r.

= If it does, we close a parenthesis (go from (i,j) to (i +1,j — 1)).

= Assume, that we went upwards to (7, /) and then had to go down to (i +1,j — 1).
We subtract the number of paths from (i + 1, + 1) from our rank r and proceed
iteratively from (i + 1, — 1) by going up as long as possible and going down again.

= Remembering the number of parenthesis opened and closed along our way results in the
required encoding.

T
Generating Bushy Trees

UnrankTree(n, r)
Input: a number of inner nodes n and a rank r € [0, C(n)|
Output:encoding of the inner leafes of a tree
open = 1, close = 0
pos = 2, encoding = < 1 >
while |encoding| < n {
k = g(open+-close+1,open-close+1)
if k<r{
r =r — k, close=close+1
} else {
encoding=encodingo < pos >, open=open+1
}
pos=pos+1

}

return encoding

T
Generating Random Trees Without Cross Products

Tree queries only!
= query graph: G = (V,E), |V| = n, G must be a tree.
= level: root has level 0, children thereof 1, etc.

= Tg: join trees for G

[8]

T
Partitioning Tg

Tg(k) C Tg: subset of join trees where the leaf node (i.e. relation) v occurs at level k.
Observations:

- n=1|Tg| = [T¢0 =1
= n>1 |TGV(0)| = 0 (top is a join and no relation)

= The maximum level that can occur in any join tree is n — 1.
Hence:]Tg(k)\ =0if k> n.

- To=Up_oTeW
. TG‘/(i) ﬂTg(j) = fori##j
- Thus: [Tg| = 0o [T¢™)

G AT
The Specification

= The algorithm will generate an unordered tree with n leaf nodes.

= If we wish to have a random ordered tree, we have to pick one of the 2"~1 possibilities to
order the (n — 1) joins within the tree.

The Procedure

List merges (notation, specification, counting, unranking)

Join tree construction: leaf-insertion and tree-merging

Standard Decomposition Graph (SDG): describes all valid join trees
Counting

AR .

Unranking algorithm

T
List Merge

= Lists: Prolog-Notation: < a|t >

= Property P on elements

= A list /' is the projection of a list L on P, if L’ contains all elements of L satisfying the
property P.
Thereby, the order is retained.

= A list L is a merge of two disjoint lists L1 and Ly, if L contains all elements from L; and
L, and both are projections of L.

Example
R,
R,

\'

(R, S, [1,1,0D

(R, S, [2, 0;0])

(R,-S, {0, 2, 0])

T
List Merge: Specification

A merge of a list L; with a list L, whose respective lengths are /; and /; can be described by an
array o = [ap, . .., a},] of non-negative integers whose sum is equal to /, i.e. Z?:o aj = |h|.
= We obtain the merged list L by first taking ag elements from L;.

= Then, an element from L, follows. Then follow o elements from L; and the next
element of L> and so on.

= Finally follow the last «v, elements of L.

T
List Merge: Counting

Non-negative integer decomposition:

= What is the number of decompositions of a non-negative integer n into k non-negative
integers a; with Ef‘zl Qg = n.

Answer: (”tf}l)

Randornized Approaches
List Merge: Counting (2)

Since we have to decompose /; into h + 1 non-negative integers, the number of possible
merges is M(h, k) = (’172“/2).

The observation M(l, h) = M(h — 1, k) + M(h,k — 1) allows us to construct an array of size
n#* nin O(n?) that materializes the values for M.

This array will allow us to rank list merges in O(h + h).

T
List Merge: Unranking: General Idea

The idea for establishing a bijection between [1, M(/1, k)] and the possible as is a general one
and used for all subsequent algorithms of this section.
Assume we want to rank the elements of some set S and S = U?_S; is partitioned into
disjoint S;.

1. If we want to rank x € Sy, we first find the local rank of x € Sy.

2. The rank of x is then Zf'(:_ol |Si| + Local-rank(x, Sk).

3. To unrank some number r € [1, N], we first find k such that k = min;r < Z{:o |Sil.

4. We proceed by unranking with the new local rank r' = r — Zf(:_ol |Si| within Sk.

T
List Merge: Unranking

We partition the set of all possible merges into subsets.

= Each subset is determined by ag.
For example, the set of possible merges of two lists Ly and Ly with length L = hL =4 is
partitioned into subsets with ag = j for 0 < j < 4.

= In each partition, we have M(h — j, b — 1) elements.

= To unrank a number r € [1, M(h, 2)] we first determine the partition by computing
k=minjr <3>3 M(j, b —1).
Then, Qg = /1 — k.

= With the new rank r' = r — Ef:o M(j, b — 1), we start iterating all over.

Example

k ao (k,h—1) M(k,h—1) rank intervals
0 4 (0,3) 1 [1,1]
1 3 (1,3) 4 [2, 5]
2 2 (2,3) 10 [6, 15]
3 1 (3,3) 20 (16, 35]
4 0 (4,3) 35 [36, 70]

Decomposition

UnrankDecomposition(r, /1, l)
Input: a rank r, two list sizes /; and h
Output:encoding of the inner leafes of a tree
alpha = <>, k=0
while 1 >0A kL >0 {
m= M(k,h—1)
if r<m{
alpha = alphao < i — k>
h=kk=0,h=5h—-1
} else {
r=r—mk=k+1
¥
}

return alphao < I} > o(O1<j<), < 0>

Anchored List Representation of Join Trees

Definition Let T be a join tree and v be a leaf of T. The anchored list representation L of T
is constructed as follows:

= If T consists of the single leaf node v, then L =<>.
= If T=(T;X T,) and without loss of generality v occurs in Ty, then L =< T1|Ly > where
L, is the anchored list representation of T5.
We then write T = (L, v).
Observation If T = (L,v) € Tg then T € Tg(k) <> |L| =k

Leaf-Insertion: Example

T (T, 1) (T, 2) (T, 3)

Leaf-Insertion

Definition Let G = (V/, E) be a query graph, T a join tree of G. v € V be such that
G = G|V\{V} is connected, (v,w) € E, 1 < k < n, and

T = (< Ti, ooy Tt vy Thw1y ooy Ty >,W)

T/ = (< Tl,.. . Tk—lu Tk+1,... R Tn >, W).
Then we call (T', k) an insertion pair on v and say that T is decomposed into (or constructed
from) the pair (T’, k) on v.
Observation: Leaf-insertion defines a bijective mapping between TGV(k) and insertion pairs

(T', k) on v, where T’ is an element of the disjoint union U,'-’;,fflTM,/(i).

Tree-Merging: Example

R, S R,

(R, S, [1,1,0D

(R, S, [2, 0;0])

(R,-S, {0, 2, 0))

T
Tree-Merging

Two trees R = (Lg,w) and S = (Ls, w) on a common leaf w are merged by merging their
anchored list representations.
Definition. Let G = (V, E) be a query graph, w € V, T = (L, w) a join tree of G,
Vi, Vo C V such that G; = G|y, and G; = G|y, are connected, Vi U V, =V, and
VinVo={w}. Fori=1,2:

= Define the property P; to be “every leaf of the subtree is in V;",

= Let L; be the projection of L on P;.

= T,' = (L,’, W).

Let « be the integer decomposition such that L is the result of merging L1 and Ly on . Then,

we call (T1, T2, «) a merge triplet. We say that T is decomposed into (constructed from)
(T1, To,) on V; and V5.

Observation

Tree-Merging defines a bijective mapping between Tgv(k) and merge triplets (71, T2, «), where
T, € TGV:('), T, € T(';Z(k_'), and « specifies a merge of two lists of sizes i and k — i. Further,

the number of these merges (i.e. the number of possibilities for a) is ("7{*77) = (¥).

Standard Decomposition Graph (SDG)

A standard decomposition graph of a query graph describes the possible constructions of join
trees.

It is not unique (for n > 1) but anyone can be used to construct all possible unordered join
trees.

For each of our two operations it has one kind of inner nodes:

= A unary node labeled +, stands for leaf-insertion of v.

= A binary node labeled *,, stands for tree-merging its subtrees whose only common leaf is
w.

Constructing a Standard Decomposition Graph

The standard decomposition graph of a query graph G = (V/, E) is constructed in three steps:
1. pick an arbitrary node r € V as its root node
2. transform G into a tree G’ by directing all edges away from r;
3. call QG2SDG(G, r)

Constructing a Standard Decomposition Graph (2)
QG2SDG(G',v)

Input: a query tree G’ = (V, E) and its root v

Output:a standard query decomposition tree of G’

Let {wi,...,w,} be the children of v
switch n {

case 0: label v with "v”

case 1:

label v as "+,"
QG2SDG(G', wy)
otherwise:
label v as "x,”
create new nodes /, r with label +,
E=E\{(v,w)]1 <i<n}

E=EU{(v,D),(v,r),(,w)}U{(r,w;)|]2 <i<n}
QG2SDG(G', 1), QG2SDG(G', r)
1 return G’

Randornized Approaches
Constructing a Standard Decomposition Graph (3)

T + [0,5,5,5,3]
| ¢ *| [0,0,2,3]
e /N
a c . : / \
/ [0, 1, 1] + + [0, 1]
a | |
[0, 1] +y d [1]

Counting

For efficient access to the number of join trees in some partition Tg(k) in the unranking
algorithm, we materialize these numbers.

This is done in the count array.
The semantics of a count array ¢, c1,. .., Cs] of a node u with label o, (o € {+,*}) of the

SDG is that
= y can construct ¢; different trees in which leaf v is at level /.

Then, the total number of trees for a query can be computed by summing up all the ¢; in the
count array of the root node of the decomposition tree.

Counting (2)

To compute the count and an additional summand adornment of a node labeled +,, we use
the following lemma:

Lemma. Let G = (V, E) be a query graph with n nodes, v € V such that G’ = G|\, is
connected, (v,w) € E, and 1 < k < n. Then

V(k)| Z |TW()

i>k—1

Randornized Approaches
Counting (3)

The sets TV',/(i) used in the summands of the former Lemma directly correspond to subsets
TLRM (K~ 1< j < n—2) defined such that T € 72 if

1 TeTiW,
2. the insertion pair on v of T is (7', k), and
3. T eTal.
Further, |TGV(k)’i\ = |TGM,/(")|. For efficiency, we materialize the summands in an array of arrays

summands.

Counting (4)

To compute the count and summand adornment of a node labeled *,, we use the following
lemma.

Lemma. Let G = (V, E) be a query graph, w € V, T = (L, w) a join tree of G, V1, V, C V
such that G; = G|y, and Gy = G|y, are connected, V4 U Vo =V, and Vi N Vo = {v}. Then

% k v(i v(k—i
701 = 2 () 170 17

1

Counting (5)

The sets Tg‘,’(i) used in the summands of the previous Lemma directly correspond to subsets
TLW (0 < i < k) defined such that T € To®) if

1L TeTdW,

2. the merge triplet on V; and V, of T is (Ty, T, «), and

3. T1 € TGVI(').
Further, [Te"M] = (%) 1759 175,

Randornized Approaches
Counting (6)

Observation: Assume a node v whose count array is [c1, ..., ¢m] and whose summands is

s=1[s...,s"] with s; = [s,...,s!], then
m .
G=29
j=0
holds.

The following algorithm has worst-case complexity O(n3).

Looking at the count array of the root node of the following SDG, we see that the total
number of join trees for our example query graph is 18.

G AT
SDG example

T + [0,5,5,5,3]
| ¢ *| [0,0,2,3]
e /N
a c . : / \
/ [0, 1, 1] + + [0, 1]
a | |
[0, 1] +y d [1]

T
Annotating the SDG

Adorn(v)
Input: a node v of the SDG
Output: v and nodes below are adorned by count and summands

Let {w1,...,w,} be the children of v
switch (n) {
case 0: count(v) = [1] // no summands for v
case 1:
Adorn(wy)
assume count(wi) = [c}, ..., cp |;
count(v) = [0, c1,. .., Cmy41] Where ¢ = 3", 4 ct

summands(v) = [s%, ..., s™T1] where sk = [s§,
k[ct ifo<kandk—1<i
P10 else

k
-y Sp41] and

Randornized Approaches
Annotating the SDG (2)

case 2:

Adorn(wjy)

Adorn(wy)

assume count(wi) = [¢],..., Cp,]

assume count(w,) = [, ..., c2]

count(v) = [cp, - - cm1+m2] where

=" (lf)c c2 /) c? :0fori¢{0,...,m2}

summands() [s0,...,s™*m] where sk = [sk, ..., m1] and

() E |f0§k—/§m2
5 else

Unranking: top-level procedure

The algorithm UnrankLocalTreeNoCross called by UnrankTreeNoCross adorns the standard
decomposition graph with insert-at and merge-using annotations. These can then be used
to extract the join tree.

UnrankTreeNoCross(r,v)
Input: a rank r and the root v of the SDG
Output:adorned SDG

let count(v) = [xo,. .-, Xm]
k=minjr <> x;
rr=r— ¢<:—01 X

UnrankLocalTreeNoCross(v, r/, k)

Unranking: Example

(k)

The following table shows the intervals associated with the partitions Tg for our standard

decomposition graph:

Partition | Interval
79 | [15]
TS [6,10]
T3 | [11,15]
TEW | [16,18]

T
Unranking: the last utility function

The unranking procedure makes use of unranking decompositions and unranking triples. For
the latter and a given X, Y, Z, we need to assign each member in

{x,y,2)[1<x<X,1<y<VY,1<z< 7}

a unique number in [1, XYZ] and base an unranking algorithm on this assignment. We call the
function UnrankTriplet(r, X, Y,Z). ris a rank and X, Y, and Z are the upper bounds for
the numbers in the triplets.

Unranking Without Cross Products

Unranking TreeNoCrossLocal(v, r, k)
Input: an SDG node v, a rank r, a number k identifying a partition
Output: adornments of the SDG as a side-effect
Let {wi,...,w,} be the children of v
switch n {
case 0:
// no additional adornment for v

Randomized Approaches
Unranking Without Cross Products (2)

case 1:
let count(v) = [cp, ..., cn]
let summands(v) = [s0 .

kl—m|n1r<zl —0 :
k1 —
n= r_Z:lo slk
insert-at(v) = k
Unranking TreeNoCrossLocal(wz, r1, k1)

Randornized Approaches
Unranking Without Cross Products (3)

case 2:
let count(v) = [co, ..., cn]
let summands(v) = [s%,...,s"]
let count(w1) = [, ..., ck]
let count(wy) = [¢3, ..., c2)]
ki = min;r < ZJ,::() sk
q=r— Y s
ko =k — ki

(r1, r2, @) = UnrankTriplet(q, c,il,cé, (II‘))
a = UnrankDecomposition(a)
merge-using(v) = «

Unranking TreeNoCrossLocal(wx, r1, k1)
UnrankingTreeNoCrossLocal(wa, 2, k»)

Randomized Approaches
Quick Pick

= problem: build (pseudo-)random join trees fast
= unranking without cross products is quite involved
= idea: randomly select an edge in the query graph

= extend join tree by selected edge

No longer uniformly distributed, but very fast

Randornized Approaches
Quick Pick (2)

QuickPick(Query Graph G)
Input: a query graph G = ({Ri1,...,Rn}, E)
Output: a bushy join tree
E' = E;
Trees = {R1,...,Ra};
while |Trees| > 1 {
choose a random e € E’
E = E'\ {e}
if e connects two relations in different subtrees T, T, € Trees
Trees = Trees\{ T1, T2 }UCreateJoinTree(T1, T2)
¥

return T €Trees

= repeated multiple times to find a good tree

Join Ordering Metaheuristics

Metaheuristics

= provide a very general optimization strategy
= applicable for many different problems
= work well even for very large problems

= but are often considered a "brute-force” method

We consider the metaheuristics formulated for the join ordering problem.

Join Ordering Metaheuristics

lterative Improvement

= Start with random join tree
= Select rule that improves join tree

= Stop when no further improvement possible

Join Ordering Metaheuristics

lterative Improvement (2)

lterativelmprovementBase(Query Graph G)
Input: a query graph G = ({R1,..., Ry}, E)
Output:a join tree
do {
JoinTree = random tree
JoinTree = Iterativelmprovement(JoinTree)
if cost(JoinTree) < cost(BestTree) {
BestTree = JoinTree
¥
} while (time limit not exceeded)
return BestTree

Join Ordering Metaheuristics

lterative Improvement (3)

lterativelmprovement(JoinTree)
Input: a join tree
Output:improved join tree
do {
JoinTree’ = randomly apply a transformation from the rule set to the JoinTree
if (cost(JoinTree') < cost(JoinTree)) {
JoinTree = JoinTree’
}
} while local minimum not reached
return JoinTree

= problem: local minimum detection

Join Ordering Metaheuristics

Simulated Annealing

= [I: stuck in local minimum
= SA: allow moves that result in more expensive join trees

= lower the threshold for worsening

Join Ordering Metaheuristics

Simulated Annealing (2)

SimulatedAnnealing(Query Graph G)

Input: a query graph G = ({Ri1,...,Rn}, E)
Output:a join tree

BestTreeSoFar = random tree

Tree = BestTreeSoFar

Join Ordering Metaheuristics

Simulated Annealing (3)
do {
do {
Tree' = apply random transformation to Tree
if (cost(Tree') < cost(Tree)) {
Tree = Tree'
} else {
with probability o—(cost(Tree’)—cost(Tree))/temperature

Tree = Tree'
¥
if (cost(Tree) < cost(BestTreeSoFar)) {
BestTreeSoFar = Tree’
}
} while equilibrium not reached
reduce temperature
} while not frozen
return BestTreeSoFar

Metaheurisics
Simulated Annealing (4)

Advantages:
= can escape from local minimum

= produces better results than Il

Problems:
= parameter tuning
= initial temperature

= when and how to decrease the temperature

Metaheuristics
Tabu Search

= Select cheapest reachable neighbor (even if it is more expensive)

= Maintain tabu set to avoid running into circles

Join Ordering Metaheuristics

Tabu Search (2)

TabuSearch(Query Graph)
Input: a query graph G = ({Ri1,...,Rn}, E)
Output:a join tree
Tree = random join tree
BestTreeSoFar = Tree
TabuSet = ()
do {
Neighbors = all trees generated by applying a transformation to Tree
Tree = cheapest in Neighbors \ TabuSet
if cost(Tree) < cost(BestTreeSoFar)
BestTreeSoFar = Tree
if (|TabuSet| > limit) remove oldest tree from TabuSet
TabuSet = TabuSetU{Tree}
}

return BestTreeSoFar

LTS
Genetic Algorithms

= Join trees seen as population
= Successor generations generated by crossover and mutation
= Only the fittest survive
Problem: Encoding
= Chromosome <— string

= Gene <— character

Join Ordering Metaheuristics

Encoding

We distinguish ordered list and ordinal number encodings.
Both encodings are used for left-deep and bushy trees.

In all cases we assume that the relations Ry,

.., R, are to be joined and use the index i to
denote R;.

LTS
Ordered List Encoding

1. left-deep trees
A left-deep join tree is encoded by a permutation of 1,...,n. For instance,
(((R1 X Rq) X Rp) X R3) is encoded as “1423".

2. bushy trees
A bushy join-tree without cartesian products is encoded as an ordered list of the edges in
the join graph. Therefore, we number the edges in the join graph. Then, the join tree is
encoded in a bottom-up, left-to-right manner.

LN
R A /\ 1234
LA

LTS
Ordinal Number Encoding

In both cases, we start with the list L =< Ry,..., R, >.

= |eft-deep trees
Within L we find the index of first relation to be joined. If this relation be R; then the
first character in the chromosome string is i. We eliminate R; from L. For every
subsequent relation joined, we again determine its index in L, remove it from L and
append the index to the chromosome string.
For instance, starting with < Ry, R», R3, R4 >, the left-deep join tree
(((Ry ™ Rs) X Rp) X R3) is encoded as “1311".

Metaheurisics
Ordinal Number Encoding (2)

= bushy trees
We encode a bushy join tree in a bottom-up, left-to-right manner. Let R; X R; be the first
join in the join tree under this ordering. Then we look up their positions in L and add
them to the encoding. Then we eliminate R; and R; from L and push R;; to the front of
it. We then proceed for the other joins by again selecting the next join which now can be
between relations and or subtrees. We determine their position within L, add these
positions to the encoding, remove them from L, and insert a composite relation into L
such that the new composite relation directly follows those already present.
For instance, starting with the list < Ry, Rz, R3, Ry >, the bushy join tree
((R1 X Ry) X (R3 X Ry)) is encoded as “12 23 12"

Join Ordering Metaheuristics

Crossover

1. Subsequence exchange

2. Subset exchange

Join Ordering Metaheuristics

Crossover: Subsequence exchange

The subsequence exchange for the ordered list encoding:
= Assume two individuals with chromosomes u1viwy and usvows.

= From these we generate ulv{ wy and uzv§W2 where v,f is a permutation of the relations in
v; such that the order of their appearence is the same as in u3_;v3_;jw3_;.

Subsequence exchange for ordinal number encoding:

= We require that the v; are of equal length (|v1| = |v2]) and occur at the same offset
(lon] = [u2]).
= We then simply swap the v;.

= That is, we generate uivow; and uoviws.

Join Ordering Metaheuristics

Crossover: Subset exchange

The subset exchange is defined only for the ordered list encoding.

Within the two chromosomes, we find two subsequences of equal length comprising the same
set of relations. These sequences are then simply exchanged.

Metaheuristics
Mutation

A mutation randomly alters a character in the encoding.

If duplicates may not occur— as in the ordered list encoding—swapping two characters is a
perfect mutation.

Join Ordering Metaheuristics

Selection

= The probability of survival is determined by its rank in the population.
= We calculate the costs of the join trees encoded for each member in the population.

= Then, we sort the population according to their associated costs and assign probabilities
to each individual such that the best solution in the population has the highest probability
to survive and so on.

= After probabilities have been assigned, we randomly select members of the population
taking into account these probabilities.

= That is, the higher the probability of a member the higher its chance to survive.

LTS
The Algorithm

1. Create a random population of a given size (say 128).

2. Apply crossover and mutation with a given rate.
For example such that 65% of all members of a population participate in crossover, and
5% of all members of a population are subject to random mutation.

3. Apply selection until we again have a population of the given size.

4. Stop after no improvement within the population was seen for a fixed number of
iterations (say 30).

Join Ordering Metaheuristics

Combinations

= metaheuristics are often not used in isolation
= they can be used to improve existing heurstics

= or heuristics can be used to speed up metaheuristics

Join Ordering Metaheuristics

Two Phase Optimization

1. For a number of randomly generated initial trees, lterative Improvement is used to find a
local minima.
2. Then Simulated Annealing is started to find a better plan in the neighborhood of the

local minima.
The initial temperature of Simulated Annealing can be lower as is its original variants.

LTS
AB Algorithm

1. If the query graph is cyclic, a spanning tree is selected.
2. Assign join methods randomly

3. Apply IKKBZ

4. Apply iterative improvement

Join Ordering Metaheuristics

Toured Simulated Annealing

The basic idea is that simulated annealing is called n times with different initial join trees, if n
is the number of relations to be joined.

= Each join sequence in the set S produced by GreedyJoinOrdering-3 is used to start an
independent run of simulated annealing.

As a result, the starting temperature can be descreased to 0.1 times the cost of the initial plan.

GOO-I

Append an iterative improvement step to GOO

Join Ordering Iterative Dynamic Programming

Iterative Dynamic Programming

= Two variants: IDP-1, IDP-2 [9]
= Here: Only IDP-1 base version

Idea:
= create join trees with up to k relations
= replace cheapest one by a compound relation

= start all over again

Join Ordering Iterative Dynamic Programming

Iterative Dynamic Programming (2)

IDP-1({R1,..., Rn}, k)
Input: a set of relations to be joined, maximum block size k
Output:a join tree
foreach 1 <i<n{
BestTree({Ri}) = R;;

}
ToDo = {R1,...,Rn}

Join Ordering Iterative Dynamic Programming

Iterative Dynamic Programming (3)

while [ToDo| > 1 {

k = min(k, |ToDol)
for each 2 < j < k ascending

for all S C ToDo, |S| =i do

for all O C S do
BestTree(S) = CreateJoinTree(BestTree(S \ O), BestTree(0));

find V C ToDo, |V| = k with

cost(BestTree(V)) = min{cost(BestTree(W)) | W C ToDo, |W| = k}
generate new symbol T
BestTree({T}) = BestTree(V)
ToDo = (ToDo \ V) U {T}
for each O C V do delete(BestTree(O))

}
return BestTree({Ry,..., Rn})

Join Ordering Iterative Dynamic Programming

lterative Dynamic Programming (4)

= compromise between runtime and optimality

= combines greedy heuristics with dynamic programming
= scales well to large problems

= finds the optimal solution for smaller problems

= approach can be used for different DP strategies

Order Preserving Joins

= some query languages operatore on lists instead of sets/bags
= order of tuples matters
= examples: XPath/XQuery

= alternatives: either add sort operators or use order preserving operators

Here, we define order preserving operators, list — list
= let L be a list
= L[1] is the first entry in L

= L[2:|L|] are the remaining entries

Order Preserving Selection

We define the order preserving selection ol as follows:

€ ife=c¢
af,(e) =1 <e[l] > oaé(e[2 2lel]) if p(e[1])
os(el2:el]) otherwise

= filters like a normal selection

= preserves the relative ordering (guaranteed)

Order Preserving Cross Product

We define the order preserving cross product x* as follows:
L € if €1 =€
e X = A
L e (e[l]xLeg) o(e1[2: |e1] xL er) otherwise

using the tuple/list product defined as:

~lL € ife=c¢
tx e:= ~L .
< toef[l] >o(tx e[2:]|e|]]) otherwise

= preserves the order of e;

= order of e is preserved for each e; group

Order Preserving Join

The definition of the order preserving join is analogous to the non-order preserving case:

e M,ﬁ e = a,ﬁ(el x L e)

= preserves order of ey, order of e, relative to e;

Equivalences

op(0p(€) = op(ap(e))
of (et ™5 &) = of (e) X5 &) if 7(p1) C A(er)
0;2(e1 NFL,Q &) = e N’,;z aél(ez) if F(p1) C A(e2)
e MPl (62 N;‘,z e3) = (e1 Mél 62) Né2 e3) if]’:(p,-) - A(e,-) U .A(e,-+1)

= swap selections
= push selections down

= associativity

Commutativity

Consider the relations Ry =< [a:1],[a:2] > and R, =< [b: 1],[b: 2] >. Then

RiMt Ry = <[a:1,b:1],[a:1,b:2],[a:2,b:1],[a:2,b:2] >
RoMt Ry = <[a:1,b:1],[a:2,b:1],[a:1,b:2],[a:2,b:2] >

= the order preserving join is not commutative

el
Algorithm

= similar to matrix multiplication
= in addition: selection push down
= DP table is a n x n array (or rather 4 arrays)
= algorithm fills arrays p, s, c, t:
» p: applicable predicates

s: statistics (cardinality, perhaps more)
» c: costs

t: split position for larger plans

= plan is extracted from the arrays afterwards

Order Presening Joins
Algorithm (2)

OrderPreservingJoins(R = {R1, ..., Rn},P)
Input: a set of relations to be joined and a set of predicates
Output:fills p,s, c, t
foreach 1 <i<n{
pli, i] =predicates from P applicable to R;
P =P\ pli,i]
s[i, i] =statistics for opy; 1(Ri)
c[i, i] =costs for oy 1(Ri)

}

Order Presening Joins
Algorithm (3)

for each 2 </ < n ascending {
foreach 1 <i<n-—/+1{

j=i+1—-1

pli, jl=predicates from P applicable to R;, ..., R;

P =P\ plij]

s|i, j]=statistics derived from s[i,j — 1] and s[j,] including p[i, j]
C[i,j]:OO

for each i < k <j {
q = c[i, k] + c[k + 1, j]+costs for s[i, k] and s[k + 1,] and pli, j]
if g <cli,j] {
c[i.j]=q
tfi.j]=k
}
}

}
!

Order Presening Joins
Algorithm (4)

ExtractPlan(R = {R1,..., Ra},t.p)
Input: a set of relations, arrays t and p
Output: a bushy join tree

return ExtractPlanRec(R,t,p,1,n)

ExtractPlanRec(R = {R1,...,Ra}.t,p.i.j)
if i <j{
T1 =ExtractPlanRec(R,t,p,i,t[i, j])
T, =ExtractPlanRec(R,t,p,t[i,j] + 1,/)
return T; Né[iJ] T>
} else {
return o,; 1R

}

Complexity of Join Processing

= We have focused on how to optimize join queries
= But what is the complexity of actually computing a join query?
= Can we do better than a sequence of hash joins for > 2 relations?

Complexity of Join Processing

Within this section
= We assume set semantics and only inner-joins with equality predicates

= For simplicity, we also assume relations contain no attributes other than join attributes.

b Ri.b = Ry.b
Ri — R Ri — R
is shorthand for
a\ /C Ry.a= R3.a\ /RQ.C: R3.c
Rs3 R3

Complexity of Join Processing

= What is the runtime complexity of a join query?
= The best we can do is Q(|Input| + [Output|) = Q> ", |Ri| + [Ri X R X ...)

= For acyclic queries there is an algorithm that achieves O(k(|Input| 4+ |Output|)), with k as
the size of the query graph

= For the general case, the best known algorithm is O(k(|Input| + |Worst Case Output|))

Complexity of Join Processing

Q
Y
o

N/M\Rg
Rl/ \Rz

W N ==
NN DN~

R X Ry

N R ==L
NN DN =
N WD —~O

Rs

Complexity of Join Processing
Goal

= Eliminate dangling tuples, i.e. tuples that won't appear in the join result

= Rl =M yr)(R1 M ... X Ry)
— Intermediate join result sizes are O(|Input| + |Output|) for acyclic queries
—> O(k(|Input| 4 |Output|)) runtime

= How do we compute R! efficiently without evaluating the full join for acyclic queries?

ekl
Semi-Join Reduction & The Yannakakis Algorithm

= Semi join reduction: RXS=(RXS)XS
= Goal: Compute R} := I 4(g)(R1 M ... X Ry) for acyclic QG
= Full Semi-Join Reduction [10]:

» Root the query graph at any node
> Apply semi-join reductions from leaf to root
» Apply semi-join reductions from root to leaf

= The relations are now fully reduced

= Joining the fully reduced relations allows us to compute the acyclic query in polynomial
time in the input and output (result due to Yannakakis [11])

ekl
Semi-Join Reduction & The Yannakakis Algorithm

R R»

[5)
o
o
(@]

Ri —Ro—Rs

W N ==
NN DN =
NN =
w N =

ekl
Semi-Join Reduction & The Yannakakis Algorithm

Rl R2
Ri—Fa = R i -
1 2 2 2
2 2 2 3
3 2
R>

Rs

ekl
Semi-Join Reduction & The Yannakakis Algorithm

Rl R2
i Fe R - -
1 2 2 2
2 2 2 3
3 2
R; Bottom Up

/ \ s Ry =RyXR;
= Ry:=RyXRj

Ry
Rl — Ry — Ry i tl’
1 2
2 2
3 2
R; Bottom Up

/ \ s Ry =RyXR;
= Ry:=RyXRj

ekl
Semi-Join Reduction & The Yannakakis Algorithm

R»
b ¢
1 1
2 2
2 3
Top Down
s R =RiXR
= R3:=R3XR,

Rs

ekl
Semi-Join Reduction & The Yannakakis Algorithm

R R, R3
R s - T
1 2 2 2
2 2 2 3
3 2
R; Bottom Up Top Down Join
/ \ s Ry =RyXR; s R =RiXR = (RINR2)NR3
= Ry:=RyXRj s R = R3X Ry

ekl
Semi-Join Reduction & The Yannakakis Algorithm

= The Yannakakis Algorithm computes the result of an acyclic join query in polynomial time
in the input and output size.

= The resulting plan may be better than the best pure inner-join plan.

= However, the resulting plan may be suboptimal as the semi-joins have additional costs.

= The optimizer should decide when to apply semi-join reduction.

Generalization of Acyclic Queries

= A query is acyclic iff. there is an equivalent query with an acyclic query graph.

= |s the following query cyclic or acyclic?
a

R ——
AN
R3

R>

Generalization of Acyclic Queries

= A query is acyclic iff. there is an equivalent query with an acyclic query graph.
= Is the following query cyclic or acyclic?
a

R ——
AN
R3

R>

= We can find an equivalent query that has an acyclic query graph:

R1ER21R3

Complexity of Join Processing
GYO (Graham-Yu-Ozsoyoglu) reduction

= |dea: Remove “ear” relations as they do not change whether the query is cyclic.
= A relation R; is an ear if:

» R; has no outgoing edges, or
> JR;: JoinAttributes(R;) C JoinAttributes(R;)
assuming, w.l.o.g., all equal attributes have the same name

= If no relations remain in the end, the query is acyclic.

GYOReduction(R)
Input: a set of relations R
Output:a reduced set of relations R’
while There is an ear R;

R:= R\ {Ri}
return R

Complexity of Join Processing
GYO (Graham-Yu-Ozsoyoglu) reduction

= If no relations remain, the query is acyclic.
» GYO reduction order = Semi join order for full reduction

= |f relations remain which cannot be removed, the query is cyclic
» No known output optimal algorithms for cyclic queries.

Join Ordering

Output Size of Join Queries

R — Ry

u]
|

I
il
it
u
S
el
?

Complexity of Join Processing
Output Size of Join Queries

R, 2 R <n-n
<m
< m

a b

Ri — R, — R3

Complexity of Join Processing
Output Size of Join Queries

a

R]__R2 ny-m

ny

INIA TN

na

R]__R2_R3 n]‘.n2.n3

n -n3

ININ TN

na

R —R»

R3

Complexity of Join Processing
Output Size of Join Queries

a

R]__R2 ny-m

ny

INIA TN

na

Ri > Ry~ R -z -

n -n3

ININ TN

na

ny-no-n3

min{ny, n2, n3}

R —R»

INE

R3

IN N

Join Ordering

Output Size of Join Queries

u]
|

I
il
it
u
S
el
?

Output Size of Join Queries

Rl —— R
N e

(VAN VAN VAN VAN

Join Ordering

n -
ny -
ny -

ny -

ny -

n2
n3

n3

n3

Complexity of Join Processing

Can we do even better?

Complexity of Join Processing
Output Size of Join Queries

b . P -
Ry Ry <ni-nm-n3
N S < m-m
a C
Rs3 < nm-n3
< ni-n3

Can we do even better?

< /M- np-nz3 =nt®

Complexity of Join Processing
Output Size of Join Queries

Suboptimality of hash joins:
+ Ri(a,b) = Ra(b,c) = R(c, a) = ([1] X [n]) U ([n] X [1]
= |Ri|=2n—1=0(n)
" RiX Ry = ([n] X [1] X [n]) U ([1] X [n] X [1])
s |[RIXRy|=n*+n—1=0(n?
¢ Ry % Ry X Ry = ([n] X [1] % [1]) U ([] % [n] X [1]) U ([1] X [1] X [n])
= ’R1MR2MR3’:3H—2:O(H)

= No hash join plan is output optimal!

TGI8 Complexity of Join Processing

Output Size of Join Queries

Suboptimality of hash joins (visualized for n = 3):

a b
Ry 3+3-1
a b c
Ri M R, 32 +3-1
c a b c a

Ry X Ry X Rs - 343+3-2

Complexity of Join Processing
Output Size of Join Queries

Constructing the worst case:

= m .= \/B
" Ri(a, b) = Ra(b, c) = Rs(c, a) = [m] X [m]
u |R1| = m2 = Nn

|R1 X Rz’ =m3
|R1 X R2 X R3| = m3 = n1'5

Complexity of Join Processing
Output Size of Join Queries

Constructing the worst case (example for n = 4):

= m=+/n=2

= a=b=c=[m={1,2}

" Ri(a,b) = Ra(b, c) = Rs(c,a) = [m] X [m] = {(1,1),(1,2),(2,1),(2,2)}
Ri(a, b) X Ro(b,c) ={(1,1,1),(1,1,2),(1,2,1),...(2,2,2)}

= Ri(a,b) X Ry(b,c) X R3(c,a) ={(1,1,1),(1,1,2),(1,2,1),...(2,2,2)}

Complexity of Join Processing
Lower Bounds on Worst Case Join Size

Goal: Maximize join result size given query graph and base relation sizes n;:
= |dea: Maximize join size by optimizing the domain sizes v; of the attributes.
= Let R be a set of relations {R1, R2,...} and A a set of attributes {a1, a2,...}.
= Each attribute a; € A is defined to be aj := [v;] with variables v;.

= Each relation is defined to be a cross product of its attributes

Ri = Xgcar)(a)) IRil = Iaeaer)(v)
= The result of the join is thus a cross product of all the attributes
Q = Xaea(a)) QI = TT,ea(v)

maximize i
i I1v
ajG.A
subject to n; > H vi VRieR
aJ-EA(R,-)

Lower Bounds on Worst Case Join Size

Our linear program gives us lower bounds on the worst possible join result size.

Example:

a/S\c = Given |R| = |S|=|T|=|U| =|V| =100
R——T = Candidate solution: |a|] = |b| = |c| = 10 with
|Q| = 103 = 1000
= We know that the worst possible join result size is at least
b 1000.
= Can there be an even worse case?

Complexity of Join Processing
Upper Bounds on Worst Case Join Size (AGM Bound)

maximize H vj
v

ajeA
subject to n; > H vi VRieR
acA(Ry)
e . wi
= minimize n:
i 11
Ri€ER

subject to 1< Z w;, VajeA
i:ajEA(R,')

Complexity of Join Processing
Upper Bounds on Worst Case Join Size (AGM Bound)

S w;

minimize n;

imize][]
RieR
subject to 1< Z w; Vaje A
i:a € A(R;)

= Assign values w; in range [0, 1] to every relation.
= Make sure that every attribute’s connected relations sum up to 1.
= The minimum is equivalent to the maximum of the dual problem.

= Turns out, every correct assignment of values gives a proper upper bound to the worst
case join result size (proven by Atserias, Grohe, and Marx [12]).

Bounds on Worst Case Join Size

Lower Bounds Rel. size 100 Upper Bounds
= la|=1|b|=|c| =1 = R:1,5:1,T:0
= |Q[> |allb|c] =1 PRI = |Q| < |R|}|S|} T|° = 10000
= |a| = |b| = |c| =10 R - R:05,5:05,T:05

> |a cl = < . . 5 _
|Q[> |al|b|c| = 1000 Q| < |R|®®|S|%%| T|°5 = 1000

Bounds on Worst Case Join Size

Rel. size 100
Lower Bounds S Upper Bounds
= |a|=|b|=|c|] =1 a/ \C = R:1,T:1,U:1,5:0,V:0
= |Q = allbl[c] =1 R—F— T = |Q < [RI|T|IU] = 1000000
» |a| = |b] = |c| =10 b ¢ » R:05,7:05U:055:0,V:0
= |Q[> |al[b][c| = 1000 b = |Q| < |R|%%|T|%5|U|%5 = 1000

ekl
Worst Case Optimal Join Algorithms

= All join queries can be computed in time O(k(Worst Case Join Result Size))
= Not output optimal, but potentially faster than pure hash joins
= Only supports inner-joins with simple equality predicates

= |dea: Compute the result attribute by attribute rather than relation by relation

ekl
Worst Case Optimal Join Algorithms

GenericJoin(Q)
Input: a query graph @ with some attributes fixed
Output:the join result
if all attributes of @ are fixed
return the fixed attributes as a result tuple

J:=0

Pick arbitrary attribute a

Assume a occurs in relations R;,..., R;,

Compute A:=T1,(Ry) N ...NM4(R;) in time O(min(|R;,]|, ..., |Ril))
forve A

Q' ;= Q with attribute a fixed to constant v
J := J U GenericJoin(Q’)
return J

ekl
Worst Case Optimal Join Algorithms

Example execution for the triangle join:

GenericJoin(R(a, b) X S(b, c) X T(c, a))
Input: a query graph
Output:the join result

J:=10
Pick attribute a R b
Compute A:=T1,(R)NM,(T)
for v, € A a\ T /C
Fix attribute a to v,
R :=0,=,,(R)
T :=0.=0,(T)

J := J U GenericJoin(R'(b) X S(b, c) X T'(c))
return J

Worst Case Optimal Join Algorithms

Example execution for the triangle join (2):

GenericJoin(R'(b) X S(b, c) X T'(c))
Input: a query graph
Output:the join result
J:=10
Pick attribute b
Compute B :=T,(R’) N Mp(S)
for v, € B
Fix attribute b to vy
S = 0op=y,(5)
J := J U GenericJoin(S'(c) X T'(c))
return J

Worst Case Optimal Join Algorithms

Example execution for the triangle join (3):

GenericJoin(S'(c) X T'(¢))
Input: a query graph
Output:the join result
J:=10
Pick attribute ¢
Compute C:=MN(S)YNN(T)
for v. € C
Fix attribute ¢ to v,
J=JU{(Va, Vb, vc) }
return J

ekl
Worst Case Optimal Join Algorithms

Generic Join:
= Order in which attributes are processed greatly influences execution time.
= Runtime is O(k(Worst Case Join Result Size)), regardless of attribute order.
= Requires lots of precomputation to ensure intersection and fixing operations are fast.
= Multiple practical implementations exist [13, 14, 15].

ekl
Worst Case Optimal Join Algorithms

= WCOJs are, in general, significantly slower than binary hash joins.

= The optimizer must decide when to apply WCOJs. They are most useful if intermediate
results are larger than the worst case result.

= WCOJs and the Yannakakis Algorithm can be combined to improve runtime for complex
query graphs [16].

4. Accessing the Data

In this chapter we go into some details:
= deep into the (runtime) system
= close to the hardware

Goal:

= estimation and optimization of disk access costs

4. Accessing the Data (2)

= disk drives

= database buffer

= physical database organization

= physical algebra

= temporal relations and table functions
= indices

= counting the number of accesses

= disk drive costs

= selectivity estimations

Rl
Assembly

arm .
arm head spindle

assembly

platter

/

cylinder

a. side view

sector track
e head
arm
arm
pivot
L)
b. top view

Accessing the Data Disk Drive

Zones

= outer tracks/sectors longer than inner ones
= highest density is fixed
= results in waste in outer sectors

= thus: cylinders organized into zones

Disk Prive
Zones (2)

= every zone contains a fixed number of consecutive cylinders
= every cylinder in a zone has the same number of sectors per track
= outer zones have more sectors per track than inner zones

= since rotation speed is fixed: higher throughput on outer cylinders

Disk Drive
Track Skew

Read all sectors of all tracks of some consecutive cylinders:
= read all sectors of one track

= switch to next track: small adjustment of head necessary
called: head switch

= this causes tiny delay
= thus, if all tracks start at the same angular position then we miss the start of the first
sector of the next track

= remedy: track skew

Rl
Cylinder Skew

Read all sectors of all tracks of some consecutive cylinders:
= read all sectors of all tracks of some cylinder
= switching to the next cylinder causes some delay

= again, we miss the start of the first sector, if the tracks start all start at the same angular
position

= remedy: cylinder skew

Rl
Addressing Sectors

= physical Address: cylinder number, head (surface) number, sector number
= logical Address: LBN (logical block number)

Rl
LBN to Physical Address

Mapping:
Cylinder \ Track H LBN | number of sectors per track
0 0 0 573
1 573 573
5 2865 573
1 0 3438 573

15041 0 || 35841845 253

Disk Prive
LBN to Physical Address (2)

This ideal view of the mapping is disturbed by bad blocks
= due to the high density, no perfect manufacturing is possible
= as a consequence bad blocks occur (sectors that cannot be used)
= reserve some blocks, tracks, cylinders for remapping bad blocks

Bad blocks may cause hickups during sequential reads

Rl
Reading/Writing a Block

Host sends Controller Data transfer to host Status message to host
command decodes it ‘/‘/ \‘\A / \ \
SCSI bus
Disk | ———] [[7] /
Disk 2 { [[¥
Seek i
Disk 3 Rotational
latency)
Data transfer off mechanism Time
Read service time for disk 1
Read service time for disk 2

Disk Prive
Reading/Writing a Block (2)

1.

2.
3.

the host sends the SCSI command.

the disk controller decodes the command and calculates the physical address.

during the seek the disk drive's arm is positioned such that the according head is correctly

placed over the cylinder where the requested block resides. This step consists of several

phases.

3.1 the disk controler accelerates the arm.

3.2 for long seeks, the arm moves with maximum velocity (coast).

3.3 the disk controler slows down the arm.

3.4 the disk arm settles for the desired location. The settle times differ for read and write
requests. For reads, an aggressive strategy is used. If, after all, it turns out that the block

could not be read correctly, we can just discard it. For writing, a more conservative strategy
is in order.

. the disk has to wait until the sector where the requested block resides comes under the

head (rotation latency).
the disk reads the sector and transfers data to the host.
finally, it sends a status message.

ST
Optimizing Round Trip Time

= caching
= read-ahead

= command queuing

Disk Drive
Seek Time

A good approximation of the seek time where d cylinders have to be travelled is given by

seektime(d) = { 2 i Z;/a Z § EE

where the constants ¢; are disk specific. The constant ¢ indicates the maximum number

cylinders where no coast takes place: seeking over a distance of more than ¢y cylinders results
in a phase where the disk arm moves with maximum velocity.

Rl
Cost model: initial thoughts

Disk access costs depend on
= the current position of the disk arm and
= the angular position of the platters

Both are not known at query compilation time
Consequence:
= estimating the costs of a single disk access at query compilation time may result in large
estimation error

Better: costs of many accesses
Nonetheless: First Simplistic Cost Model to give a feeling for disk drive access costs

ST
Simplistic Cost Model

We introduce some disk drive parameters for out simplistic cost model:
= average latency time: average time for positioning (seek+rotational delay)

> use average access time for a single request
> Estimation error can (on the average) be as “low” as 35%

= sustained read/write rate:
> after positioning, rate at which data can be delivered using sequential read

Disk Drive
Model 2004

A hypothetical disk (inspired by disks available in 2004) then has the following parameters:

Model 2004
Parameter Value Abbreviated Name
capacity 180 GB Dcap
average latency time | 5 ms Diat
sustained read rate 100 MB/s | Dey
sustained write rate | 100 MB/s | Dsyr

The time a disk needs to read and transfer n bytes is then approximated by Djat + n/Dey.

Dik Drive
Sequential vs. Random 1/0O

Database management system developers distinguish between
= sequential |/O and
= random |/0O.

In our simplistic cost model:

= for sequential 1/0, there is only one positioning at the beginning and then, we can assume
that data is read with the sustained read rate.

= for random 1/0O, one positioning for every unit of transfer—typically a page of say
8 KB—is assumed.

ST
Simplistic Cost Model

Read 100 MB
= Sequential read: 5ms + 1s
= Random read (8K pages): 65 s

Disk Drive
Simplistic Cost Model (2)

Problems:
= other applications
= other transactions
= other read operations in the same QEP

may request blocks from the same disk and move away the head(s) from the current position
Further: 100 MB sequential search poses problem to buffer manager

Disk Prive
Time to Read 100 MB (x: number of 8 KB chunks)

64

32

16

1 4 16 64 256 1024

Accessing the Data Disk Drive

Time to Read n Random Pages

3

25

15

0.5

100

200

300

400

500

Disk Prive
Simplistic Cost Model (3)

100 MB can be stored on 12800 8 KB pages.

In our simplistic cost model, reading 200 pages randomly costs about the same as reading
100 MB sequentially.

That is, reading 1/64th of 100 MB randomly takes as long as reading the 100 MB sequentially.

Disk Prive
Simplistic Cost Model (4)

Let us denote by a the positioning time, s the sustained read rate, p the page size, and d
some amount of consecutively stored bytes. Let us calculate the break even point

ne(atpfs) = a+dfs
(a+d/s)/(a+p/s)
= (as+d)/(as+ p)

n

a and s are disk parameters and, hence, fixed. For a fixed d, the break even point depends on

the page size.
Next Figure: x-axis: is the page size p in multiples of 1 K; y-axis: (d/p)/n for d = 100 MB.

Disk Prive
Break Even Point (depending on page size)

512

256 -

64 -

32 -

64

Accessing the Data Disk Drive

Two Lessons Learned

= sequential read is much faster than random read
= the runtime system should secure sequential read

The latter point can be generalized:

= the runtime system of a database management system has, as far as query execution is
concerned, two equally important tasks:
> allow for efficient query evaluation plans and
» allow for smooth, simple, and robust cost functions.

Accessing the Data Disk Drive

Measures to Achieve the Above

Typical measures on the database side are

carefully chosen physical layout on disk
(e.g. cylinder or track-aligned extents, clustering)

disk scheduling, multi-page requests

(asynchronous) prefetching,

piggy-back scans,

buffering (e.g. multiple buffers, replacement strategy) and last but not least
efficient and robust algorithms for algebraic operators

Accessing the Data Disk Drive

Disk Drive: Parameters

Dey) total number of cylinders

Dirack total number of tracks

Dsec total number of sectors

Dipe number of tracks per cylinder (= number of surfaces)
Decmd command interpretation time

Diot time for a full rotation

Digsettie time for settle for read
Dyrsettle time for settle for write
Dhdswitch time for head switch

Disk Prive
Disk Drive: Parameters (2)

D,one total number of zones

D,cyi(i) number of cylinders in zone i

D,spt(i) number of sectors per track in zone i

D,spc(i) number of sectors per cylinder in zone i (= Dipe Dyspt (i)

D,scan(i) time to scan a sector in zone i (= Dot/ Dzspti)

Dik Drive
Disk Drive: Parameters (3)

Dseckavg average seek costs

Delim parameter for seek cost function
D, parameter for seek cost function
Dy, parameter for seek cost function
D¢ parameter for seek cost function
Deq parameter for seek cost function

Drseek(d) cost of a seek of d cylinders
D, (d) _ Dca + ch\/8 ifd < Dclim
feek Dcc + Dcdd if d > Dclim
Dsror(s, i) rotation cost for s sectors of zone i (= sD,scan(/))

Accessing the Data Disk Drive

Extraction of Disk Drive Parameters

= documentation: often not sufficient

= mapping: interrogation via SCSI-Mapping command (disk drives lie)
= use benchmarking tools, e.g.:
» Diskbench

> Skippy (Microbenchmark)
» Zoned

Disk Drive
Seek Curve Measured with Diskbench

12000

10000

8000

6000

4000

2000

0
-15000 -10000 -5000 0 5000 10000 15000

ST
Skippy Benchmark Example

10000

8000

6000

4000

2000

0 200 400 600 800 1000

ST
Interpretation of Skippy Results

= x-axis: distance (sectors)

= y-axis: time

= difference topmost/bottommost line: rotational latency

= difference two lowest ‘lines’: head switch time

= difference lowest ‘line’ topmost spots: cylinder switch time
= start lowest ‘line’: minimal time to media

= plus other parameters

Accessing the Data Disk Drive

Upper bound on Seek Time

Theorem (Qyang)

If the disk arm has to travel over a region of C cylinders, it is positioned on the first of the C

cylinders, and has to stop at s — 1 of them, then sDgeer(C/s) is an upper bound for the seek
time.

Database Buffer
Database Buffer

The database buffer
1. is a finite piece of memory,
2. typically supports a limited number of different page sizes (mostly one or two),
3. is often fragmented into several buffer pools,
4. each having a replacement strategy (typically enhanced by hints).

Given the page identifier, the buffer frame is found by a hashtable lookup.

Accesses to the hash table and the buffer frame need to be synchronized.

Before accessing a page in the buffer, it must be fixed.

These points account for the fact that the costs of accessing a page in the buffer are therefore
greater than zero.

Accessing the Data Database Buffer

Buffer Accesses

Consider page acceses in a buffer with 2 pages:
page no | action

read page 0, place it in buffer

read page 1, place it in buffer

fix page 0 in buffer

swap out a page (e.g. 1), read 2, place it in buffer
fix page 0 in buffer

swap out a page, read 3, place it in buffer

W o NOH+HO

= replacement strategy is imporant

= unfixes omitted

Accessing the Data Database Buffer

Replacement Strategies

Some popular replacement strategies:
= random
= fifo
= lru

IQ2

Iru is very popular

Accessing the Data Database Buffer

Replacement Strategies - random

= when a new page slot is needed, remove a random other page from the buffer
= easy to implements, needs no additional memory

= but does not take the access patterns into account

= primarily used as base line

= suitable for analytic results

Accessing the Data Database Buffer

Replacement Strategies - fifo

= first in - first out
= remove the page that was place in the buffer first
= easy to implement, needs no/few additional memory
= but does not adapt very well do access patterns
= increasing buffer size may hurt it
Fifo Anomaly:
= access pattern: 321032432104
= buffer sizes: 3 vs. 4

Accessing the Data Database Buffer

Replacement Strategies - Iru

= |east recently used

= remove the page that has not been accessed for longest time
= requires a priority queue/linked list

= adapt to access patterns, popular pages stay in memory

= but slow to remove pages

very popular replacement strategy

Database Buffer
Replacement Strategies - 2Q

= two queues

= a fifo queue and a Iru queue

= place pages first in fifo, if they are accessed again place them in Iru
= gets rid of pages that are accessed only once fast

= superior to lru, example of a "real” replacement strategy

P
Replacement Strategies - Effect on the Cost Model

= replacement affects the costs
= cost model needs predictions, though

= very hard to do in general

Typical approaches:
= ignore buffer effects
= assume random replacement

= make use of known access characteristics

RaglaacCate
Physical Database Organization

The database organizes the physical storage in multiple layers:
1. partition: sequence of pages (consecutive on disk)
2. extent: subsequence of a partition
3. segment (file): logical sequence of pages (implemented e.g. as set of extents)
4

. record: sequence of bytes stored on a page

Note:
= partition/extent/page/record are physical structures

= a segment is a logical structure

Accessing the Data Physical Database Organization

Physical Storage of Relations

Mapping of a relation’s tuples onto records stored on pages in segments:

1 1

Accessing the Data Physical Database Organization

Access to Database ltems

= database item: something stored in DB
= database item can be set (bag, sequence) of items
= access to a database item then produces stream of smaller database items

= the operation that does so is called scan

Accessing the Data Physical Database Organization

Scan Example

Using a relation scan rscan, the query

select *
from Student

can be answered by rscan(Student)
(segments? extents?): Assumption:

= segment scans and each relation stored in one segment
= segment and relation name identical

Then fscan(Student) and Student denote scans of all tuples in a relation

RaglaacCate
Model of a Segment

= for our cost model, we need a model of segments.
= we assume an extent-based segment implementation.
= every segment then is a sequence of extents.

= every extent can be described by a pair (Fj, L;) containing its first and last cylinder.
(For simplicity, we assume that extents span whole cylinders.)

= an extent may cross a zone boundary.
= hence: split extents to align them with zone boundaries.

= segment can be described by a sequence of triples (F;, L;, z;) ordered on F; where z; is the
zone number in which the extent lies.

RaglaacCate
Model of a Segment

Sext number of extents in the segment

Schirst(7) ~ first cylinder in extent i (F;)

Sciast(f) last cylinder in extent i (L;)

Szone(i) zone of extent i (z;)

Sepeli number of cylinders in extent i (= Sgjast(/) — Scfirst(7) + 1)
Scec total number of sectors in the segment

(= ZSM Sepe(7) Dzspc(Szone(i)))

RaglaacCate
Slotted Page

273 827

1] ||L|—|

827 —]

= page is organized into areas (slots)
= slots point to data chunks
= slots may point to other pages

Physical Database Organization
Tuple Identifier (TID)

TID is conjunction of
= page identifier (e.g. partition/segment no, page no)
= slot number

TID sometimes called Row Identifier (RID)

Accessing the Data Physical Database Organization

Record Layout

Different layouts possible:

2l

fixed-length size variable-length

size

variable-length

size variable-length

|1 oee]

%

fixed-length offset offset

offset

variable-length

variable-length

F——— codes |

data

%

&8

T fixed-length

leneth and offset encodine

variable-length

strings

Physical Database Organization
Record Layout (2)

Record layout is a compromise:
= space consumption vs. CPU
= data model specific properties: e.g. generalization
= versioning / easy schema migration
= record layout typically not trivial

= accessing an attribute value has non-zero cost

e
Physical Algebra

= building blocks for query execution

= implements the algorithms for query execution
= very generic, reusable components

= describes the general execution approach

= annotated with predicates etc. for query specific parts

Accessing the Data Physical Algebra

Iterator Concept

The general interface of each operator is:
= open
= next
= close
All physical algebraic operators are implemented as iterators.
= produce a stream of data items (tuples)
Implementations vary slightly for performance tuning (concept the same):
= first/next instead of next

= blocks of tuples instead of single tuples

Accessing the Data Physical Algebra

Iterator Example

o
|
X
/N
o r
| |
scan scan

Note: all details (subscripts, implementations etc.) are omitted here

e
Pipelining

Pipelining is fundamental for the physical algebra:
= physical operators are iterators over the data
= they produce a stream of single tuples
= tuple stream if passed through other operators
= pipelining operators just pass the data through, they only filter or augment
= data is not copied or materialized

= very efficient processing

pipeline breakers disrupt this pipeline and materialize data:
= very expensive, can cause superfluous work

= sometimes cannot be avoided, though

Accessing the Data Physical Algebra

Simple Scan

= a rscan operation is rarely supported.
= instead: scans on segments (files).

= since a (data) segment is sometimes called file, the correct plan for the above query is
often denoted by fscan(Student).

Several assumptions must hold:
= the Student relation is not fragmented, it is stored in a single segment,
= the name of this segment is the same as the relation name, and
= no tuples from other relations are stored in this segment.

Until otherwise stated, we assume that these assumptions hold.
Instead of fscan(Student), we could then simply use Student to denote leaf nodes in a
query execution plan.

Physical Algebra
Attributes/Variables and their Binding

select *
from Student

can be expressed as Student([s] instead of Student.
Result type: set of tuples with a single attribute s.
s is assumed to bind a pointer

= to the physical record in the buffer holding the current tuple or

= a pointer to the slot pointing to the record holding the current tuple

e
Building Block

= sCan

= a leaf of a query execution plan
Leaf can be complex.

But: Plan generator does not try to reorder within building blocks
Nonetheless:

= building block organized around a single database item

If more than a single database item is involved: access path

Accessing the Data Physical Algebra

Scan and Attribute Access

Strictly speaking, the plan
Uage>30(5tud€nt[5])

is incorrect (age is not bound!)
We have a choice:

= implicit attribute access

= make attribute accesses explicit

Physical Algebra
Scan and Attribute Access (2)

Explicit attribute access:
Us.age>30(5tudent[s])

Advantage: makes attribute access costs explicit

Physical Algebra
Scan and Attribute Access (3)

Consider:
Us.age>30/\s.age<40(5tUdent[5])

Problem: accesses age twice

Physical Algebra
Scan and Attribute Access (4)

Map operator:

Xarer,...amen(€) ={to[ar:c1,...,an:cr]lt €e,ci=ei(t) V(1 <i<n)}

Accessing the Data Physical Algebra

Loading Attributes

The above problem can now be solved by

O age>30Aage<40 (Xage:s.age (StUdent[S])) .

In general, it is beneficial to load attributes as late as possible. The latest point at which all
attributes must be read from the page is typically just before a pipeline breaker.

Physical Algebra
Loading Attributes (2)

select name
from Student
where age > 30

The plan
rln(Xn:s.name(Ua>30(Xa:s.age(StUdent[s]))))

is better than
nn(Ua > 30(Xn:s.name,a:s.age(StUdent[S])))

Physical Algebra
Loading Attributes (3)

Alternative to this selective successive attribute access:
= scan has list of attributes to be projected (accessed, copied)

= predicate is applied before processing the projection list

Accessing the Data Physical Algebra

Loading Attributes (4)

predicate evaluable on disk representation is called SARGable (search argument)
= boolean expression in simple predicates of the form Afc

If a predicate can be used for an index lookup: index SARGable
Other predicates: residual predicates

Accessing the Data Physical Algebra

Loading Attributes (5)

R[v; p] equivalent to o,(R[v]) but cheaper to evaluate
Remark

= if p is conjunct, order by (f; — 1)/¢;
Example:

Student[s; age > 30, name like ‘%m%']

e
Loading Attributes and Pipeline Breakers

= attribute access not only for scans
= likewise all operators that materialize to disk
= most pipeline breakers
= projection and selection should always be integrated into pipeline breakers
= not that important for pipelining operators
= attribute access must happen before breaking the pipeline
Exception:

= RID join/semijoin techniques

e
Physical Operator - Selection

= consumes a tuple stream
= checks predicate on each tuple

= produces matching tuples

Characteristics:
= pipelining operator

= consumes no memory, causes no 10

iRl AT
Physical Operator - Nested Loop Join

= consumes two tuple streams
= for each tuple from one stream (trad: the left) consumes the whole other stream
= checks predicate on each pair

= produces matching tuples

Characteristics:
= pipelining operator

= consumes no memory, causes no O (at least not directly)

iRl AT
Physical Operator - Blockwise Nested Loop Join

= consumes two tuple streams

= reads one stream (left) blockwise into memory, consumes the whole other stream for each
block

= checks predicate on each pair of tuples

= produces matching tuples

Characteristics:
= pipeline breaker on the left stream
= consumes memory for the blocks, causes no 10 (unusual for a pipeline breaker)

Variants (with hashing etc.) behave basically the same

e
Physical Operator - Sort Merge Join

We only consider the case that the input is already sorted (see Sort) and 1: nor1:1.
= consumes two tuple streams
= skips uniformly through both streams
= checks predicate on each pair (implicitly)

= produces matching tuples

Characteristics:
= pipelining operator

= consumes no memory, causes no 1O

e
Physical Operator - Grace Hash Join

= consumes two tuple streams
= reads one stream and splits it into partitions on disk
= the same of the other stream

= joins the partitions, produces matching tuples

Characteristics:
= full pipeline breaker
= consumes memory for one partition, writes/reads whole data at least once

IO behavior can be predicted relatively easily

e
Physical Operator - Hybrid Hash Join

= consumes two tupIe streams

= reads one stream and splits it into partitions on disk. Tries to keep some partitions in
memory

= reads the other stream, also splits it into partitions on disk, but already joins with
partitions still in memory

= joins partitions on disk, produces matching tuples

Characteristics:
= (typically) full pipeline breaker. Might keep the pipeline for the second stream
= consumes memory for partitioning (size variable), might write/reads whole data
Behavior difficult to predict, might cause no 10, might write everything

e
Physical Operator - Sort

= consumes one input stream

= creates sorted runs, spools runs to disk, merges the runs

= produces sorted output stream

Characteristics:
= pipeline breaker
= consumes memory for one run, reads/write data log n times

Exact behavior depends on implementation, e.g. HeapSort might produce one run, while
QuickSort produces fixed number of runs

e
Physical Operator - Sort Based Group By

We assume that the input is already sorted
= consumes one input stream
= aggregates the input directly

= produces an output tuple whenever the group by attribute changes

Characteristics:
= pipeline breaker (nearly pipelining, though)
= consumes memory for one tuple, causes no 10

Sometimes interleaved with sort (early aggregation)

e
Physical Operator - Hash Bases Group By

= consumes one input stream
= reads the stream, splits into partitions, writes partitions to disk (if needed)

= aggregates partitions, produces output tuples

Characteristics:
= pipeline breaker
= consumes memory for buffering (variable), might read/write the whole data
= two possibilities, similar to Grace Hash vs. Hybrid Hash

Variants with early aggregation etc.

e
Physical Operators - Others

Only mainstream operators included, some are missing:
= projection usually implicit
= duplicate elimination is a special kind of aggregation
= dependent join (nested loop, can be done somewhat differently)
= outer join/semi join/anti join etc. roughly similar to normal joins
= specialized operators for query languages: staircase join, twig join etc.

= their characteristics have to be known to the query optimizer

Accessing the Data Temporal Relations and Table Functions

Temporal Relations

The query optimizer might introduce temporal relations:
= a "relations” just for the query
= allows for reusing intermediate results
= related: temporary views
= more efficient nested loop join
= materializes a subquery
Creating a temporary relation is an expensive operation therefore
= should be decided by the query optimizer
= but often done as rewrite

= typically breaks optimization in parts

Accessing the Data Temporal Relations and Table Functions

Temporal Relations (2)

select e.name, d.name
from Emp e, Deptd
where e.age > 30 and e.age < 40 and e.dno = d.dno

can be evaluated by

Dept[d] Mg,ldno:d.dno Je.age>30/\e.age<40(Emp[d])‘
Better:

Dept[d] Mg.ldno:d.dno temp(0e.age>30ne.age<a0(Emp[d])).
Or:

1. Rtmp = Ue.age>30/\e.age<40(Emp[d]);

2. Dept[d] M40y dno Remple]

Accessing the Data Temporal Relations and Table Functions

Table Functions

A table function is a function that returns a relation.
Example query:

select *
from TABLE(Primes(1,100)) as p

Translation:
Primes(1,100)[p]

Looks the same as regular scan, but is of course computed differently.

Temporal Relations and Table Functions
Table Functions (2)

Special birthdays of Anton:

select *
from Friends f,
TABLE(Primes(

CURRENT_YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p
where f.name = ‘Anton’

Note: The result of the table function depends on our friend Anton.
Translation: uses d-join

Temporal Relations and Table Functions
Table Functions (3)

Definition d-join:
RXS={ros|re R,se 5(t)}.

Translation of the above query:

Xb:XTRY (£.birthday)+100(Tf.name=" Anton" Friends[f])) ™ Primes(c, b)|p]

where we assume that some global entity ¢ holds the value of CURRENT_YEAR.

Temporal Relations and Table Functions
Table Functions (4)

The same for all friends:

select *
from Friends f,
TABLE(Primes(
CURRENT_YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p
Better:
select *
from Friends f,
TABLE(Primes(

CURRENT_YEAR, (select max(birthday) from Friends) + 100)) as p
where p.prime < EXTRACT(YEAR FROM f.birthday) + 100

At the algebraic level: this optimization requires some knowledge

Accessing the Data Indices

Indices

We consider B-Trees only

= key attributes: ay,...,an

= data attributes: di,...,dn

= Often: one special data attribute holding the TID of a tuple
Some notions:

= simple/complex key

= unique/non-unique index

= index-only relation (no TIDs available!)

= clustered/non-clustered index

Indices
Clustered vs. Non-Clustered B-Tree

ANy~ §

= clustering is not always possible (or even desireable)

Indices
Single Index Access Path - Point Query

Exact match query:

select name
from Emp
where eno = 1077

Translation:
I_Iname(Xe:*x‘tid,name:e.name(Empeno[xi eno = 1077]))

Alternative translation using d-join:
ﬂname(Empeno[X; €no = 1077] X Xe:*.tid,name:e.name(‘j))

(x: holds ptr to index entry; *: dereference TID, [J is a singleton scan)

e
Single Index Access Path - Range Query

Range query:

select name
from Emp
where age > 25 and age < 35

Translation:
I_Iname(Xe:*x,tid,name:e.name(Empage[X; 25 < age; age < 35]))

(Start and Stop condition)

Indices
Single Index Access Path - Sequential I/O

Turning random 1/0 into sequential 1/0:

I_Iname(Xe:>|<tid,name:e.name(sortx.tid(Empage[X; 25 < age; age < 35; t’d])))

Note: explicit projection the TID attribute of the index within the index scan.

e
Single Index Access Path - Sorted Output

Query demanding ordered output:

select name, age
from Emp
where age > 25 and age < 35

order by age
Translation:
I_Iname,age(Xe:>c<x.tid,name:e.name(Empage[X; 25 < age; age < 35]))

Note: output of index scan ordered on its key attributes
This order can be exploited in many ways: e.g.: subsequent merge join

Indces
Single Index Access Path - Sorted Output (2)

Turning random 1/O into sequential 1/O requires resort:

nname,age(Sortage(Xe:*tid,name:e.name(sorttid(Empage[X; 25 < age; age < 35; t’d]))))
Possible speedup of sort by dense numbering:

I_I name,age(
sort ank(

Xe:*tid,name:e.name(
sortyid(

Xrank:counter++(
Empage[x; 25 < age; age < 35; tid])))))

e
Single Index Access Path - Other Predicates

Some predicates not index sargable but still useful as residual predicates:

select name
from Emp

where age > 25 and age < 35 and age # 30

Translation:

I_Iname(Xe:>s<x.tid,name:e.name(Empage[X; 25 < age; age < 35; age ?é 30]))

Indces
Single Index Access Path - Other Predicates (2)

Non-inclusive bounds:
select name
from Emp
where age > 25 and age < 35
If supported by index:
I_Inamc—:*(Xe:*x.tid,name:e.name(Empage[X; 25 < age; age < 35]))

If unsupported:

I_Iname(Xe:*x.tid,name:e.name(Empage[X; 25 < age; age < 35; age # 25, age # 35]))

Especially for predicates on strings this might be expensive.

e
Single Index Access Path - Ranges

Start and stop conditions are optional:

select name
from Emp
where age > 60

or

select name
from Emp
where age < 20

e
Single Index Access Path - No Range

Full index scan also useful:

select count(*)
from Emp

Also works for sum/avg.
(notion: index only query)

Indice
Single Index Access Path - No Range (2)

Min/max even more efficient:

select min/max(salary)
from Emp

Accessing the Data Indices

Single Index Access Path - No Range (3)

select name

from Emp

where salary = (select max(salary)
from Emp)

Alternatives: one or two descents into the index.

Indice
Single Index Access Path - No Range (4)

Full index scan:

select salary
from Emp
order by salary

Translation:
Empsalary

e
Single Index Access Path - String Ranges

Predicate on string attribute:

select name, salary
from Emp
where name > 'Maaa’

Start condition: 'Maaa’ < name

select name, salary
from Emp
where name like 'M%'

Start condition: ‘M’ < name

e
Single Index Access Path

an access path is a plan fragment with building blocks concerning a single database items.
hence, every building block is an access path.

above plans mostly touch two database items: a relation and an index on some attribute
of that relation.

if we say that an index concerns the relation that it indexes, such a fragment is an access
path.

for relational systems, the most general case of an access path uses several indices to
retrieve the tuples of a single relation.

we will see examples of these more complex access paths in the following section.

a query that can be answered solely by accessing indexes is called an index only query.

Accessing the Data Indices

Single Index Access Path - Complex Predicates

Query with IN:

select name

from Emp

where age in {28, 29, 31, 32}

Take min/max value for start/stop key plus one of the following as the residual predicate:
= age =28V age =29V age =31V age = 32
= age # 30

Indice
Single Index Access Path - Complex Predicates (2)

A case for the d-join:

select name
from Emp

where salary in {1111, 11111, 111111}
With Sal = {[s : 1111], [s : 11111], [s : 111111]}:

53/[5] X Xe:*tid,name:e.name(Empsalary[X; Salary =S.s; tid])

= gap skipping/zig-zag skipping

e
Single Index Access Path - Compound Keys

In general an index can have a complex key comprising of key attributes ki, ..., k, and data

attributes dy, ..., dn.
Besides a full index scan, the index can be descended to directly search for the desired tuple(s):

If the search predicate is of the form
k1:C1/\k2:C2/\.../\kj:Cj
for some constants ¢; and some j <= n, we can generate the start and stop condition

k1:C1A.../\kj:Cj.

e
Single Index Access Path - Compound Keys

With ranges things become more complex and highly dependent on the implementation of the
facilities of the B-Tree:

ki=ca Nk >cNks=c3
Obviously, we can generate the start condition k; = ¢; A ko > ¢ and the stop condition
kl = C1.
Here, we neglected the condition on k3 which becomes a residual predicate.
However, with some care we can extend the start condition to k1 = ¢c1 A ko > & A k3 = c3:

we only have to keep k3 = c3 as a residual predicate since for ky values larger than ¢, values
different from c3 can occur for ks.

Indice
Single Index Access Path - Compound Keys (2)

If closed ranges are specified for a prefix of the key attributes as in
aa<k<bhAN...Naj< ki< b

we can generate the start key ky = a1 A ... A kj = aj, the stop key k; = by A ... A k;j = b;, and
a <k <bA...Na <k < b

as the residual predicate.

If for some search key attribute k; the lower bound a; is not specified, the start condition can
not contain k; and any k;;.

If for some search key attribute k; the upper bound b; is not specified, the stop condition can
not contain k; and any kj;.

Accessing the Data Indices

Single Index Access Path - Improvements

Two further enhancements of the B-Tree functionality possibly allow for alternative start/stop
conditions:

= The B-Tree implemenation allows to specify the order (ascending or descending) for each
key attribute individually.

= The B-Tree implementation implements forward and backward scans

Accessing the Data Indices

Single Index Access Path - Improvements (2)

Consider search predicate:
haircolor = 'blond' and height between 180 and 190

and index on
sex, haircolor, height

There are only the two values male and female available for sex.

Rewrite:
(sex = 'm' and haircolor = 'blond' and height between 180 and 190)
or (sex = 'f' and haircolor = 'blond' and height between 180 and
190)

Improvement: determine rewrite at query execution time in conjunction with gap skipping.

T
Multi Index Access Path - Example

Query:

select *

from Camera

where megapixel > 5 and distortion < 0.05
and noise < 0.01
zoomMin < 35 and zoomMax > 105

Indexes on all attributes

Indice
Multi Index Access Path - Example (2)

Translation:

((((Cameramegap,-xe/[c; megapixel > 5; tid|
i Cameragistortion|C; distortion < 0.05; tid])
i Camerapoise[c; noise < 0.01; tid])
i Camerazoommin[c; zoomMin < 35; tid)])
i Camerazoommax|C; zoomMax > 105; tid])

Then dereference

= Notion: index and-ing/and merge (bitmap index)

e
Multi Index Access Path - Combining

Questions:

= In which order do we intersect the TID sets resulting from the index scans?

= Do we really apply all indexes before dereferencing the TIDs?
The answer to the latter question is clearly “no”, if the next index scan is more expensive than
accessing the records in the current TID list.
It can be shown that the indexes in the cascade of intersections are ordered on increasing
(fi — 1)/ci terms where f; is the selectivity of the index and ¢; its access cost.
Further, we can stop as soon as accessing the original tuples in the base relation becomes
cheaper than intersecting with another index and subsequently accessing the base relation.

Indice
Multi Index Access Path - Combining (2)

Index-oring (or merge):

select *

from Emp

where yearsOfEmployment > 30
or age > 65

Translation:
EmpyearsofEmployment|C; yearsOfEmployment > 30; tid] U Empage[c; age > 65; tid]

Attention: duplicates
Optimal translation of complex boolean expressions? Factorization?

Indice
Multi Index Access Path - Combining (3)

Index differencing:

select *

from Emp

where yearsOfEmployment # 10
and age > 65

Translation:

Emp,ge[c; age > 65; tid] \ EMpyearsofEmpioyment [C; yearsOfEmployment = 10; tid]

Indice
Multi Index Access Path - Combining (3)

Non-restrictive index sargable predicates (more than half of the index has to be read):

select *

from Emp

where yearsOfEmployment < 5
and age < 60

Then

EmpyearsofEmployment|C; yearsOfEmployment < 5; tid] \ Empage[c; age > 60; tid]

could be more efficient than

EmpyearsofEmployment|C; yearsOfEmployment < 5; tid] N Emp,ge[c; age < 60; tid|

Accessing the Data Indices

Indices and Join

1. speed up joins by index exploitation
2. make join a general index processing operation

(intersection is similar to join (for sets))

Indice
Indices and Join (2)

Turn map
Xe:tid,name:e.name(EMPsatary [X; 25 < age < 35; tid])
into d-join
Empsaiary [x; 25 < age < 35; tid] M Xe:xtid,name:e.name ()
or even join

Empsalary[X; 25 < age < 35] Ny tid=e.tid Emp[e]
Variants: sorting at different places (by plan generator)
= pro: flexibility

= contra: large search space

Indice
Indices and Join (3)

Query:

select name,age
from Person
where name like 'R%’ and age between 40 and 50

Translation:

I_Iname,age(
Empage[a; 40 < age < 50; TIDa, age]
X TIDa=TiDn
Emppame[n; name >’ R'; name <’ S'; TIDn, name])

Indice
Indices and Join (4)

The query

select *
from Emp e, Dept d
where e.name = ‘Maier’ and e.dno = d.dno

can be directly translated to

Ue.name:”Maier”(Emp[e]) We.dno=d.dno Dept[d]

Indice
Indices and Join (5)

If there are indexes on Emp.name and Dept.dno, we can replace de name—"Maier”(Emp[e]) by
an index scan as we have seen previously:

Xe:*x.tid(Empname[X; name =" I\/Iaier”])

Indice
Indices and Join (6)

With a d-join:
Emppame[x; name =" Maier”] M Xe.sx.tia(0)

Abbreviate Emppame[x; name =" Maier”] by E;
Abbreviate Xeux.tid((J) by E.

Indice
Indices and Join (7)

Use index on Dept .dno:
E; X E, X Deptgpoly; y-dno = dno]
Dereference TIDs (index nested loop join):

E; W E; X Deptgnoly; y.dno = dno; dtid : y.tid] W X y.xdtid(D)

Abbreviate Deptynoly; y.dno = dno; dtid : y.tid] by D;
Abbreviate X :xqtig(CJ) by D,
Fully abbreviated, the expression then becomes

E; ™ E, X D; X D,

Accessing the Data Indices

Indices and Join - Performance Improvements

Optimizations: sorting the outer of a d-join is useful under several circumstances since it may
= turn random |/0O into sequential 1/O and/or
= avoid reading the same page twice.

In our example expression:

Accessing the Data Indices

Indices and Join - Performance Improvements (2)

= We can sort the result of expression E; on TID in order to turn random 1/0O into
sequential 1/0, if there are many employees named "Maier"”.
= We can sort the result of the expression E; X E, on dno for two reasons:

» If there are duplicates for dno, i.e. there are many employees named "Maier” in each
department, then this guarantees that no index page (of the index Dept.dno) has to be read
more than once.

> If additionally Dept.dno is a clustered index or Dept is an index-only table contained in
Dept .dno then large parts of the random |/O can be turned into sequential 1/0.

> If the result of the inner is materialized (see below), then only one result needs to be stored.
Note that sorting is not necessary but grouping would suffice to avoid duplicate work.

= We can sort the result of the expression E; X E; X D; on dtid for the same reasons as
mentioned above for sorting the result of E; on TID.

Accessing the Data Indices

Indices and Join - Temping the Inner

Typically, many employees will work in a single department and possibly several of them are
called "Maier".

For everyone of them, we can be sure that there exists at most one department.

Let us assume that referential intregrity has been specified.

Then there exists exactly one department for every employee.

We have to find a way to rewrite the expression

E; X E, X Deptgpoly; y.dno = dno; dtid : y.rid|

such that the mapping dno — dtid is explicitly materialized (or, as one could also say,
cached).

Indice
Indices and Join - Temping the Inner (2)

Use x™at:

EiME; N XZ]j:?Deptdno[y;y.dno:dno]).tid(D)

Accessing the Data Indices

Indices and Join - Temping the Inner (3)

If we further assume that the outer (E; W E,) is sorted on dno, then it suffices to remember

only the TID for the latest dno.
We define the map operator x™%! to do exactly this.
A more efficient plan could thus be

mat,1
Sortdno(Ei M Ea) M thid:(Deptd,,o[y;y.dno:dno]).tid([])

where, strictly speaking, sorting is not necessary: grouping would suffice.

Accessing the Data Indices

Indices and Join - Temping the Inner (4)

Consider: e1 X e

The free variables used in e; must be a subset of the variables (attributes) produced by e, i.e.
Fles) € Afer).

Even if e; does not contain duplicates, the projection of e; on F(ez) may contain duplicates.
If so, materialization could pay off.

However, in general, for every binding of the variables F(e;), the expression e, may produce
several tuples.

This means that using x™? is not sufficient.

Indice
Indices and Join - Temping the Inner (5)

The query

select *
from Emp e, Winew
where e.yearOfBirth = w.year

has the usual suspects as plans.
Assume we have only wines from a few years.
Then, it might make sense to consider the following alternative:

Wine[W] X Ue.yearOfBirth:w.year(Emp[e])

Problem: scan Emp once for each Wine tuple
Duplicates in Wine.year: scan Emp only once per Wine.year value

Indice
Indices and Join - Temping the Inner (6)

The memox operator performs caching:

Wine[W] X memOX(Ue.yearOfBirth:w.year(Emp[e]))

Sorting still beneficial:

Sortw.year(Wine[W]) M memox* (O'e.yearOfBirthzw.year(Emp[e]))

Indice
Indices and Join - Temping the Inner (7)

Things can become even more efficient if there is an index on Emp.yearOfBirth:

sorty.year(Wine[w])
Nmemoxl(Empyea,ofB,-,th[x; x.yearOfBirth = w.year] M X e.4(x.tid) ()

Accessing the Data Indices

Indices and Join - Temping the Inner (8)

Indexes on Emp.year0fBirth and Wine.year.

Join result of index scans.
Since the index scan produces its output ordered on the key attributes, a simple merge join

suffices (and we are back at the latter):

merge .
EmpyearOfBirth[X] D<|x.yearOfBirth:y.year Wlneyeaf[y]

Accessing the Data Indices

Remarks on Access Path Generation

Side-ways information passing
Consider R Xg ,—5p S

= min/max for restriction on other join argument
= full projection on join attributes (leads to semi-join)

= bitmap representation of the projection

AYLEHN R NDEVEIN Counting the Number of Accesses

From Cardinalities to Costs

Given: number of TIDs to dereference
Question: disk access costs?
Two step solution:

1. estimate number of pages to be accessed

2. estimate costs for accessing these pages

Accessing the Data Counting the Number of Accesses

Parameters

Given a set of k TIDs after an index access:

How many pages do we have to access to dereference them?
Let R be the relation for which we have to retrieve the tuples. Then we use the following
abbreviations

N | |R] number of tuples in the relation R

m | ||R]| | number of pages on which tuples of R are stored

B | N/m | number of tuples per page

k number of (distinct) TIDs for which tuples have to be retrieved

We assume that the tuples are uniformely distributed among the m pages. Then, each page
stores B = N/m tuples. B is called blocking factor.

AYLEHN R NDEVEIN Counting the Number of Accesses

Special Cases

Let us consider some border cases.
If k> N— N/mor m=1, then all pages are accessed.
If Kk =1 then exactly one page is accessed.

Accessing the Data Counting the Number of Accesses

General Case

The answer to the general question will be expressed in terms of
= buckets (pages in the above case) and
= jtems contained therein (tuples in the above case).

Later on, we will also use extents, cylinders, or tracks as buckets and tracks or sectors/blocks
as items.

TGRS GG T
Different Settings

Outline:

1. random/direct access
1.1 items uniformly distributed among the buckets

1.1.1 request k distinct items
1.1.2 request k non-distinct items

1.2 non-uniform distribution of items among buckets
2. sequential access

Always: uniform access probability

Counting the Number of Accesses
Direct, Uniform, Distinct

Additional assumption:
The probability that we request a set with k items is

1

(k)

N

k
possibilities to select a k-set.
[Every k-set is accessed with the same probability.]

for all of the

Counting the Number of Accesses
Direct, Uniform, Distinct (2)

Theorem (Waters/Yao)

Consider m buckets with n items each. Then there is a total of N = nm items. If we randomly
select k distinct items from all items then the number of qualifying buckets is

~N,m

Vo' (k)= m= Yy (k) (17)

where YN (k) is the probability that a bucket contains at least one item.

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (3)
Theorem (Waters/Yao (cont.))

The probability is
Ny Jl=pl k< N-—n
y”(k){l k>N-—n

where p is the probability that a bucket contains none of the k items. The following
alternative expressions can be used to calculate p:

(")

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (4)
Proof (1): The total number of possibilities to pick the k items from all N items is

(x)

The number of possibilities to pick k items from all items not contained in a fixed single

bucket is
N—n
k

Hence, the probability p that a bucket does not qualify is

= ("))

Counting the Number of Accesses
Direct, Uniform, Distinct (5)

Proof (2):
N—n
G
(k
(N —n)l KI(N — k)!
KI((N—n) — k)l NI

k N—n—i
N—i

Il
=}

Counting the Number of Accesses
Direct, Uniform, Distinct (6)

Proof(3):

(N = n)l kI(N = k)!
KI((N=n)—k)! N!
(N—=n)l (N—k)!
NI ((N = k) — n)!

LNk

Counting the Number of Accesses
Direct, Uniform, Distinct (7)

Implementation remark:
The fraction m = N/n may not be an integer.
For these cases, it is advisable to have a Gamma-function based implementation of
binomial coeffcients at hand

Evaluation of Yao's formula is expensive. Approximations are more efficient to calculate.

Counting the Number of Accesses
Direct, Uniform, Distinct (8)

Special cases:

If |then YN(k)=
n=1 k/N
n=N 1
k=0 0
k=1 B/N
k=N 1

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (9)

Let N items be distributed over N buckets such that every bucket contains exactly one item.
Further let us be interested in a subset of m buckets (1 < m < N).

If we pick k items then the number of buckets within the subset of size m that qualify is
N k
m)y (k) = my (21)
qualify.

Counting the Number of Accesses
Direct, Uniform, Distinct (10)

Proof:
N—1
YW(k) = (1_(11\(/))
(k)
ey
= (1—%)
_ o (VDN - k)!
= 0 k(v =—1)— k)
N — k
= =)
~)
_ N-N+k
N

k

Counting the Number of Accesses
Direct, Uniform, Distinct (11)

Approximation of Yao's formula (1):

p ~ (L—k/N)"

[Waters]

AYLEHN R NDEVEIN Counting the Number of Accesses

Direct, Uniform, Distinct (12)

Approximation of Yao's formula (2):

y,’:”m(k) can be approximated by:

mx[(1—(1-1/m¥)+
(1/(m?b) * k(k —1)/2 % (1 — 1/m)x1)+
(1.5/(m3b*) * k(k —1)(2k —1)/6 % (1 — 1/m)k71)]

[Whang, Wiederhold, Sagalowicz]

Counting the Number of Accesses
Direct, Uniform, Distinct (13)

Approximation of Yao's formula (3):

N k if k<%
VoK)~ Km i 2 <k<2m
m if 2m <k

[Bernstein, Goodman, Wong, Reeve, Rothnie]

Counting the Number of Accesses
Direct, Uniform, Distinct (14)

Upper and lower bounds for p:

k

Plower = (1_ N n—1
N— 5=

)n

Pupper = ((1- %) (1 — 5 k))n/2

—n+1
forn=N/m.

Dihr and Saharia claim that the maximal difference resulting from the use of the lower and the

upper bound to compute the number of page accesses is 0.224—far less than a single page
access.

Counting the Number of Accesses
Direct, Uniform, Non-Distinct

Lemma

Let S be a set with |S| = N elements. Then, the number of multisets with cardinality k
containing only elements from S is
N+k-1
k

Proof: For a prove we just note that there is a bijection between the k-multisets and the
k-subsets of a N + k — 1-set.

We can go from a multiset to a set by f with
ffa<...<x})={x+0<x+1<...<x+(k—1)}
and from a set to a multiset via g with

g{xa<...<x})={x1—0<x-1<...<x—(k—1)}

Counting the Number of Accesses
Direct, Uniform, Non-Distinct (2)

Theorem (Cheung)

Consider m buckets with n items each. Then there is a total of N = nm items. If we randomly
select k not necessarily distinct items from all items, then the number of qualifying buckets is

Cheung,ly’m(k) = m * Cheung (k) (22)

where

Cheung (k) = [1 — p] (23)

Counting the Number of Accesses
Direct, Uniform, Non-Distinct (3)

Theorem (Cheung (cont.))

with the following equivalent expressions for p:

(an+k71)
~ k
P o= ey (24)
k
k—1 .
N—n+
= (25)
i=0

N—-1-—j
- 1_IN—1+k—/ (26)

AYLEHN R NDEVEIN Counting the Number of Accesses

Direct, Uniform, Non-Distinct (4)

Proof(1):

Eq. 24 follows from the observation that the probability that some bucket does not contain
N—n+k—1
any of the k possibly duplicate items is W
k

Counting the Number of Accesses
Direct, Uniform, Non-Distinct (5)

Proof(2):
Eq. 25 follows from
13 _ (N—n;—k—l)
("

(N=n+k—1) KI((N+k—1)—k)!
K((N=n+k—1)—k)! (N+k—1)I
(N—n—1+k)! (N—1)
(N=n—1)1 (N—1+ k)
k—1

N—n+i

Pl N+

Counting the Number of Accesses
Direct, Uniform, Non-Distinct (6)

Proof(3):
Eq. 26 follows from

(N—n;(i-k—l)
Q)

(N—n+k—1) kI((N+k—1)— k)
K(N—n+k—1)— k! (N+k—1)
(N+k—1—n) (N-—1)!
(N+k—1) (N—1—n)
n—1

N—n+i

LN+ k—n+i
i=0

N—-1-—i
1_‘[N—l—i-k—/

Counting the Number of Accesses
Direct, Uniform, Non-Distinct (7)

Approximation for p:
(1—n/N)¥

[Cardenas]

Counting the Number of Accesses
Direct, Uniform, Non-Distinct (8)

Estimate for the number of distinct values in a bag:

Corollary

Let S be a k-multiset containing elements from an N-set T. Then the number of distinct

items contained in S is Nk
D(N. k) = ———— 27
(’) N+k-1 ()

if the elements in T occur with the same probability in S.

Counting the Number of Accesses
Direct, Uniform, Non-Distinct (9)

Model switching:
y,’:I’m(Distinct(N, k)) ~ CheungnN’m(k)

[for n > 5]

Counting the Number of Accesses
Direct, Non-Uniform, Distinct

So far:
1. every page contains the same number of records, and
2. every record is accessed with the same probability.

Now:
Model the distribution of items to buckets by m numbers n; (for 1 < i < m) if there
are m buckets.
Each n; equals the number of records in some bucket i.

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (2)

The following theorem is a simple application of Yao's formula:
Theorem (Yao/Waters/Christodoulakis)

Assume a set of m buckets. Each bucket contains nj > 0 items (1 < j < m). The total

number of items is N = eri1 n;. If we lookup k distinct items, then the probability that
bucket j qualifies is

N—n;
Wy (k.j) =1~ (7y)] (= Yoy (k) (28)

(k)

and the expected number of qualifying buckets is

m

Wi (k) = Wik,) (29)
j=1

AYLEHN R NDEVEIN Counting the Number of Accesses

Direct, Non-Uniform, Distinct (3)

The product formulation in Eq. 20 of Theorem 2 results in a more efficient computation:
Corollary

If we lookup k distinct items, then the expected number of qualifying buckets is

m

W (k) =3 (1~) (30)

j=1
with

i—1 N—k—i
I MRS k< 31
Pj ()
0 N—-n<k<N

Counting the Number of Accesses
Direct, Non-Uniform, Distinct (4)

If we compute the p; after we have sorted the n; in ascending order, we can use the fact that

nj4+1 -1

N—k—i
Pj+1 = pj * H TN=i

1=nj

Counting the Number of Accesses
Direct, Non-Uniform, Distinct (5)

Many buckets: statistics too big. Better: Histograms

Corollary

For1 < i< L let there be I; buckets containing n; items. Then, the total number of buckets is
m = S"F | |; and the total number of items in all buckets is N = S =, lin;. For k randomly
selected items the number of qualifying buckets is

L
Wi (k) =S YN(k) (32)
i=1

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (6)
Distribution function. The probability that x < n; items in a bucket j qualify, can be
calculated as follows:

= The number of possibilities to select x items in bucket n; is

(%)

= The number of possibilites to draw the remaining k — x items from the other buckets is

(ho2)

= The total number of possibilities to distributed k items over the buckets is

(x)

This shows the following:

Counting the Number of Accesses
Direct, Non-Uniform, Distinct (7)

Theorem

Assume a set of m buckets. Each bucket contains nj > 0 items (1 < j < m). The total
number of items is N = ZJ";I n;. If we lookup k distinct items, then the probability that x
items in bucket j qualify is

nj N—n;
X,i)l(k,X) — (x) (kfx)

N (33)
(i)
Further, the expected number of qualifying items in bucket j is
min(k,n;)
—N,
X,k =Y xXN(k,x) (34)
x=0

In standard statistics books the probability distribution X,C,’(k,x) is called hypergeometric
distribution.

Counting the Number of Accesses
Direct, Non-Uniform, Distinct (8)

Let us consider the case where all n; are equal to n. Then, we can calculate the average
number of qualifying items in a bucket. With y := min(k, n) we have

min(k,n)

X,k = > xxMkx)
x=0

Counting the Number of Accesses

Direct, Non-Uniform, Distinct (9)

(cont.)

=N,

Counting the Number of Accesses
Direct, Non-Uniform, Distinct (10)

—N,m _
an (k) -

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (11)

Let us consider the even more special case where every bucket contains a single item. That is,
N = m and n; = 1. The probability that a bucket contains a qualifying item reduces to

() (D)

XNk, x) =
_ ()
(%)
- X =5

Since x can then only be zero or one, the average number of qualifying items a bucket

contains is also %

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits

When estimating seek costs, we need to calculate the probability distribution for the distance
between two subsequent qualifying cylinders.

We model the situation as a bitvector of length B with b bits set to one.

Then, B corresponds to the number of cylinders and a one indicates that a cylinder qualifies.
[Later: Vector of Buckets]

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (2)

Theorem

Assume a bitvector of length B. Within it b ones are uniformly distributed. The remaining
B — b bits are zero. Then, the probability distribution of the number j of zeros
1. between two consecutive ones,

2. before the first one, and
3. after the last one
is given by
gy ’1)
BE(j) = NOn (35)

b

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (3)

Proof:
To see why the formula holds, consider the total number of bitvectors having a one in position

i followed by j zeros followed by a one.
B—j-2
b—2

This number is
B
b

and each bitvector has b — 1 sequences of the form that a one is followed by a sequence of
zeros is followed by a one.

We can chose B — j — 1 positions for i.
The total number of bitvectors is

Counting the Number of Accesses
Sequential: Vector of Bits (4)

Hence,
. (B—j-1)(%,7,?
BB — b—2
N
(°71Y)

Part (1) follows.

To prove (2), we count the number of bitvectors that start with j zeros before the first one.
There are B — j — 1 positions left for the remaining b — 1 ones.

Hence, the number of these bitvectors is (°,77) and part (2) follows.

Part (3) follows by symmetry.

Counting the Number of Accesses
Sequential: Vector of Bits (5)

We can derive a less expensive way to calculate formula for BE(j) as follows.
For j = 0, we have B2(0) = %.
If j >0, then

BE(J) = B

(B—j—1)!
(b—1)I((B—j—1)—(b—1))!
B!
bI(B—b)!
(B—j—1)! b(B—b)!

(b-1)I((B—j—1)—(b_1)) Bl

Counting the Number of Accesses
Sequential: Vector of Bits (6)

(B—j—1)! bi(B—b)!

By -

BoU) = GoOE=j—D)-(b-1) B
(B—j—1)! (B-b)!

(B—j-1)-(b-D) B

B—j—1)! (B-b)

(B—j— b)! Bl

b (B—j)! (B-b)

B—j (B—b—j) Bl

b b
- 51057

S

This formula is useful when BE(j) occurs in sums over .

Counting the Number of Accesses
Sequential: Vector of Bits (7)

Corollary
Using the terminology of Theorem 8, the expected value for the number of zeros
1. before the first one,
2. between two successive ones, and
3. after the last one
is
B-b

B—b
—=B - -
B, = ZJB/; U)=—7=

= b+1

Counting the Number of Accesses
Sequential: Vector of Bits (8)

Proof:

B—b

-,
Il
o

S

Counting the Number of Accesses
Sequential: Vector of Bits (9)

ST eS0T R)

N
b
= o(C ety) (T

= o) ()

- o (;)

B_bB+1 _ B(b+1)—(Bb+b)
b+1 b+1
B—b

With

Counting the Number of Accesses
Sequential: Vector of Bits (10)

Corollary

Using the terminology of Theorem 8, the expected total number of bits from the first bit to
the last one, both included, is
Bb+b

Btot(B7 b) = b_l_l

(37)

Counting the Number of Accesses
Sequential: Vector of Bits (11)

Proof:
We subtract from B the average expected number of zeros between the last one and the last

bit:

g B-b _ B(b+1l) B-b
b+1 b+1 b+1
_ Bb+B-B+b
N b+1
Bb+ b

b+1

Counting the Number of Accesses
Sequential: Vector of Bits (12)

Corollary

Using the terminology of Theorem 8, the number of bits from the first one and the last one,
both included, is
Bb—-B+2b

El—span(Ba b) = b+ 1

(38)

Counting the Number of Accesses
Sequential: Vector of Bits (13)

Proof (alternative 1):
Subtract from B the number of zeros at the beginning and the end:
Bispan(B,b) = B-— 2%
Bb+B—-2B+2b
b+1
Bb—-B+2b
b+1

Counting the Number of Accesses
Sequential: Vector of Bits (14)

Proof (alternative 2):
Add the number of zeros between the first and the last one and the number of ones:

= =B
Bispan(B,b) = (b—1)B; + b
B—b bb+1

“(b_”b+1 b+1

 Bb—b2—B+b+b>+b

B b+1
Bb—B+2b

b+1

Accessing the Data Counting the Number of Accesses

Sequential: Applications for Bitvector Model

= |f we look up one record in an array of B records and we search sequentially, how many
array entries do we have to examine on average if the search is successful?

= Let a file consist of B consecutive cylinders. We search for k different keys all of which
occur in the file. These k keys are distributed over b different cylinders. Of course, we
can stop as soon as we have found the last key. What is the expected total distance the
disk head has to travel if it is placed on the first cylinder of the file at the beginning of
the search?

= Assume we have an array consisting of B different entries. We sequentially go through all
entries of the array until we have found all the records for b different keys. We assume
that the B entries in the array and the b keys are sorted. Further all b keys occur in the
array. On the average, how many comparisons do we need to find all keys?

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Buckets

Theorem (Yao)

Consider a sequence of m buckets. For1 < i< m, let n,-'be the number of items in a bucket i.
Then there is a total of N = Y, n; items. Let tj = _;_q n; be the number of items in the

first i buckets. If the buckets are searched sequentially, then the probability that j buckets that
have to be examined until k distinct items have been found is

Cor™ (k. Jj) = W (39)

k

Thus, the expected number of buckets that need to be examined in order to retrieve k distinct
items is

€)= D o) = m E_(IN()k) (40)

k

Counting the Number of Accesses
Sequential: Vector of Buckets (2)

The following theorem is very useful for deriving estimates for average sequential accesses
under different models [Especially: the above theorem follows].

Theorem (Lang/Driscoll/Jou)

Consider a sequence of N items. For a batched search of k items, the expected number of

accessed items is
N—1

A(N,k) =N =" Prob[Y < i] (41)
i=1
where Y is a random variable for the last item in the sequence that occurs among the k items
searched.

Accessing the Data Disk Drive Costs

Disk Drive Costs for N Uniform Accesses

The goal of this section is to derive estimates for the costs (time) for retrieving N
cache-missed sectors of a segment S from disk.
We assume that the N sectors are read in their physical order on disk.

This can be enforced by the DBMS, by the operating system'’s disk scheduling policy (SCAN
policy), or by the disk drive controler.

Disk Prive Coss
Disk Drive Costs for N Uniform Accesses (2)

Remembering the description of disk drives, the total costs can be described as
Cdisk = Ccmd =+ Cseek + Csettle + Crot + Cheadswitch (42)

For brevity, we omitted the parameter N and the parameters describing the segment and the
disk drive on which the segment resides.

Subsequently, we devote a (sometimes tiny) section to each summand.

Before that, we have to calculate the number of qualifying cylinders, tracks, and sectors.
These numbers will be used later on.

Rl
Number of Qualifying Cylinder

= N sectors are to be retrieved.
= We want to find the number of cylinders qualifying in extent j.
= Seec denotes the total number of sectors our segment contains.

= Assume: The N sectors we want to retrieve are uniformly distributed among the Sgec
sectors of the segment.

= Scpe(i) = Li — Fi + 1 denotes the number of cylinders of extent i.

Accessing the Data Disk Drive Costs

Disk Costs: Number of Qualifying Cylinder

The number of qualifying cylinders in exent i is:
Scpe(i) * (1 - Prob(a cylinder does not qualify))

The probability that a cylinder does not qualify can be computed by deviding the total number
of possibilities to chose the N sectors from sectors outside the cylinder by the total number of
possibilities to chose N sectors from all Se.c sectors of the segment.

Hence, the number of qualifying cylinders in the considered extent is:

(Ssec_ %zspc(i))

Qc(i) = SepelDV5= (1 (N) = Sepe(i)(1 — g~
(%)

) (43)

Rl
Number of Qualifying Tracks

Let us also calculate the number of qualifying tracks in a partion /.
It can be calculated by

Scpe(i)Depc(1 — Prob(a track does not qualify))

The probability that a track does not qualify can be computed by dividing the number of ways

to pick N sectors from sectors not belonging to a track divided by the number of possible ways
to pick N sectors from all sectors:

] ' S] (Ssec*zzspt(i))
Qe(i) = SCPe(’)DtpcyDZ;(,-)(N) = Scpe(/) Depe(1 = ~—5)

44
o))

Disk Prive Coss
Number of Qualifying Tracks (2)

Just for fun, we calculate the number of qualifying sectors of an extent in zone i. It can be
approximated by

Qs(i) — Scpe(i)Dzspc(i)Sls\/ec (45)

Since all Scpe(i) cylinders are in the same zone, they have the same number of sectors per
track and we could also use Waters/Yao to approximate the number of qualifying cylinders by

SC e DZS C SZOne SC e
Qc(i) = yozzpi(smi(()) (X 0) (46)

If Qs(i) is not too small (e.g. > 4).

Accessing the Data Disk Drive Costs

Command Costs

The command costs C,g are easy to compute. Every read of a sector requires the execution
of a command. Hence

Ccmd = NDcmd

estimates the total command costs.

Disk Drive Costs
Seek Costs

= often the dominant part of the costs

= we look at several alternatives from less to more precise models

IS BR G2
Seek Costs - Upper Bound

The first cylinder we have to visit requires a random seek with cost Dseekavg- (Truely upper
bound: Dfseek(DcyI - 1))

After that, we have to visit the remaining Q.(/) — 1 qualifying cylinders.

The segment spans a total of S¢jast(Sext) — Scfirst(1) + 1 cylinders.

Let us assume that the first qualifying cylinder is the first cylinder and the last qualifying
cylinder is the last cylinder of the segment.

Then, applying Qyang's Theorem 1 gives us the upper bound

5ext) - Scfirst(l) + 1)
Qc(i)—1

Cseek(i) < (QC(I) — 1)Dfseek(SCIaSt(

after we have found the first qualifying cylinder.

Accessing the Data Disk Drive Costs

Seek Costs - lllustration

seek Agap

!

—— = ~——
— = ~——

Scpe Scpe Scpe

Rl
Seek Costs - Steps

Steps:
1. Estimate for Cseekgap

2. Estimates for Cseekext(/)

Accessing the Data Disk Drive Costs

Seek Costs - Interextent Costs

The average seek cost for reaching the first qualifying cylinder is Dseekavg. How far within the
first extent are we now? We use Corollary 4 to derive that the number of non-qualifying
cylinders preceding the first qualifying one in some extent i is

=Sepe(i) _ Sepel(i) — Qe(/)
Qc() Qe(N+1

The same is found for the number of non-qualifying cylinders following the last qualifying

cylinder. Hence, for every gap between the last and the first qualifying cylinder of two extents
i and i+ 1, the disk arm has to travel the distance

Scpe . Sepe(i+1
Dgap() = Byt + Sctirse(i + 1) — Setase(1) — 1+ By
Using this, we get
Sextfl

Cseekgap = Dseekavg + Z Dfseek(Agap(i))
i=1

Disk Prive Coss
Seek Costs - Intraextent Costs (2)

Let us turn to Ceeekext(7). We first need the number of cylinders between the first and the last
qualifying cylinder, both included, in extent i. It can be calculated using Corollary 6:

Eext(i) == Bl_span(scpe(i)a QC(I))

Hence, =(/) is the minimal span of an extent that contains all qualifying cylinders.

Accessing the Data Disk Drive Costs

Seek Costs - Intraextent Costs

Using =(/) and Qyang's Theorem 1, we can derive an upper bound for Ceeekext(/):

. . =(i
Cseekext (i) < (Qc(i) — 1)Dfseek(Q(l.())_1) (47)
Alternatively, we could formulate this as
Cseekext(i) < (Qc(’) - 1)Dfseek(gg::(ei()i)) (48)

by applying Corollary 4.

Disk Prive Coss
Seek Costs - Intraextent Costs (2)

A seemingly more precise estimate for the expected seek cost within the qualifying cylinders of
an extent is derived by using Theorem 8:

Sepe(7)—Qc(7)

Cseekext(i) = Qc(i) Z Dfseek(f + 1)ng€) () (49)
j=0

Disk Drive Costs
Settle Costs

The average settle cost is easy to calculate. For every qualifying cylinder, one head settlement
takes place:

Csettle(i) = Qc(i) Drdsettle (50)

Rl
Rotational Delay

Let us turn to the rotational delay.

For some given track in zone 1/,

we want to read the Q(/) qualifying sectors contained in it.

On average, we would expect that the read head is ready to start reading in the middle of
some sector of a track.

If so, we have to wait for %Dzscan(Szone(i)) before the first whole sector ocurs under the read
head.

However, due to track and cylinder skew, this event does not occur after a head switch or a
cylinder switch.

Instead of being overly precise here, we igore this half sector pass by time and assume we are
always at the beginning of a sector.

This is also justified by the fact that we model the head switch time explicitly.

Disk Prive Coss
Rotational Delay (2)

Assume that the head is ready to read at the beginning of some sector of some track.

Then, in front of us is a — cyclic, which does not matter — bitvector of qualifying and
non-qualifying sectors.

We can use Corollary 5 to estimate the total number of qualifying and non-qualifying sectors
that have to pass under the head until all qualifying sectors have been seen.

The total rotational delay for the tracks of zone i is

rot() Qt() Dzscan(szone(i)) Btot(Dzspt(zone()) Qspt())

where Qspt(i) = ssec’DZSpt Z°"e(i))(N) = Dzspt(Szone(i))% is the expected number of
qualifying sectors per track in extent i. In case Qspt(i) < 1, we set Qspt(i) := 1.

Disk Drive Costs
Rotational Delay (3)

A more precise model is derived as follows.

We sum up for all j the product of (1) the probability that j sectors in a track qualify and (2)
the average number of sectors that have to be read if j sectors qualify.

This gives us the number of sectors that have to pass the head in order to read all qualifying
sectors.

We only need to multiply this number by the time to scan a single sector and the number of
qualifying tracks.

We can estimate (1) using Theorem 7. For (2) we again use Corollary 5.

C”O (I) = SCpe(i) Dtpc Dzscan(szone(i))
min(N, Dzspt (Szone())) < B
* Z XD:;(SZON(,'))(NL/’) Btot(Dzspt(Szone(i))aj)

j=1

Disk Drive Costs
Rotational Delay (4)

Yet another approach:
Split the total rotational delay into two components:
1. Grotpass(i) measures the time needed to skip unqualifying sectors

2. Crotread(f) that for scanning the qualifying sectors

Then
Sext

Crot - Z Crotpass(i) + Crotread (i)
i=1

where the total transfer cost of the qualifying sectors can be estimated as

Crotread(i) = Qs(i) Dzscan(szone(i))

Disk Drive Costs
Rotational Delay (5)

Let us treat the first component (Crotpass(i)).

Assume that j sectors of a track in extent i qualify.

The expected position on a track where the head is ready to read is the middle between two
qualifying sectors.

Since the expected number of sectors between two qualifying sectors is D,spt(Szone(i))/J, the
expected number of sectors scanned before the first qualifying sector comes under the head is

Dzspt(szone (’))
2j

Disk Drive Costs
Rotational Delay (6)

The expected positions of j qualifying sectors on the same track is such that the number
non-qualifying sectors between two successively qualifying sectors is the same.

Hence, after having read a qualifying sector M
until the next qualifying sector shows up.

The total number of unqualifying sectors to be passed if j sectors qualify in a track of zone i is

unqualifying sectors must be passed

Ns(j, I) — Dzspt(zj.one(i)) + (_] o 1) DZSpt(SZO;e(i)) _.j

Disk Prive Coss
Rotational Delay (7)

Using again Theorem 7, the expected rotational delay for the unqualifying sectors then is

Crotpass(i) - Scpe(i) Dtpc Dzscan(Szone(i))
min(N,D;spt(Szone(i)))

* > X5 sonatiy (N)N 1)
j=1

Disk Drive Costs
Head Switch Costs

The average head switch cost is equal to the average number of head switches that occur
times the average head switch cost.

The average number of head switch is equal to the number of tracks that qualify minus the
number of cylinders that qualify since a head switch does not occur for the first track of each
cylinder.

Summarizing
Sext

Cheadswitch — Z(Qt(/) - Qc(’)) thswitch (51)

i=1

where Q; is the average number of tracks qualifying in an extent.

Accessing the Data Disk Drive Costs

Discussion

We neglected many problems in our disk access model:

partially filled cylinders,

= pages larger than a block,

= disk drive's cache,

= remapping of bad blocks,

= non-uniformly distributed accesses,
= clusteredness,

= and so on.

Whereas the first two items are easy to fix, the rest is not so easy.

Accessing the Data Selectivity Estimations

Selectivity Estimations

= previous slides assume that we "know"” how many tuples qualify

= but this has to be estimated somehow

= similar for join ordering algorithms etc.

= cardinalities (and thus selectivities) are fundamental for query optimization

= we will now look at deriving some estimations

Accessing the Data Selectivity Estimations

Examples

SQL examples for typical selectivity problems:

= select *
from rel r
where r.a=10

= select *
from rel r
where r.b>2

= select *
from rell rl,rel2 r2
whererl.a=r2.b

The different problems require different approaches.

Accessing the Data Selectivity Estimations

Heuristic Estimations

Some commonly used selectivity estimations:

predicate selectivity requirement

A=c 1/|D(A)| if index on A
1/10 otherwise

A>c (max(A) — ¢)/(max(A) — min(A)) if index on A, interpol.
1/3 otherwise

Al = A2 1/ max(\D(Al)\, ‘(D(Ag)‘) if index on A1 and A2
1/|D(A1)| if index on A only
1/|D(A2)] if index on A; only
1/10 otherwise

Note: Without further statistics, |D(A)] is typically only known (easily estimated) if A is a key
or there is an index on A.

S
Using Histograms

= selectivity can be calculated easily by looking at the real data
= not feasible, therefore look at aggregated data
= histograms partition the data values into buckets

A histogram Hp : B — N over a relation R partitions the domain of the aggregated attribute
A into disjoint buckets B, such that

Ha(b) = [{r|r € RAR.A € b}|

and thus >,z Ha(b) = |R].

Choosing B is very important, as we will see on the next slides.

Accessing the Data Selectivity Estimations

Using Histograms (2)
A rough histogram might look like this:

100

80

60

Cardinalities

40

20

Domain

100

Selectiviy Estimations
Using Histograms (3)

Given a histogram, we can approximate the selectivities as follows:

A=c
A>c
Al = A

ZbEB:ceb HA(b)

2 bes Ha(b)

b
2 obeBiceb % Ha(b)+3_ b B:min(b)>c Ha(b)
> bes Ha(b)

max(b)—mln(b max(b —mln(b
ZbIEBl,b2€B2,b/:blﬂb2 :b! #0 max(by)—min(by) HAI(1) max(by)—min(by) HAZ(bz)

ZbleBl HAl(bl) ZbQEBQ HA2(b2)

Accessing the Data Selectivity Estimations

Using Histograms - Remarks

= estimations on previous slide can be improved

= in particular, the A = c case is only a rough approximation

= requires more information

= if we interpret the histogram as a density function, P(A = ¢) = 0!
= a reasonable upper bound, though

= the A > ¢ case is more sound

= A; = A assumes independence etc.

S
Building Histograms

= the buckets chosen greatly affect the overall quality

= histogram does not discern items within one bucket

= therefore: try to put items into different buckets

= how to choose the buckets?

= typical constraint: histogram size. n buckets (fixed)

= for a given set of data items, find a good histogram with n buckets

= additional constraint: data distribution is unknown (real data)

S
Building Histograms - Equiwidth

Partitions the domain into buckets with a fixed width

100

80

60 -

Cardinalities

40

20

Domain

100

Selectiviy Estimations
Building Histograms - Equiwidth (2)

Advantages:

= easy to compute

= bucket boundaries can be computed (require no space)
Disadvantages:

= samples the domain uniformly

= does not handle skewed data well

= skew can lead to very uneven buckets

= greater estimation error in large buckets

= particular bad for zipf-like distributions

S
Building Histograms - Equidepth

Chooses the buckets to contain the same number of items

100

80

60 -

Cardinalities

40

20

Domain

100

Accessing the Data Selectivity Estimations

Building Histograms - Equidepth (2)

Advantages:
= adopts to data distribution

= reduces maximum error

Disadvantages:
= more involved (sort or similar)

= both boundaries and depth have to be stored (ties)

Very common histogram building technique

Accessing the Data Selectivity Estimations

Building Histograms - Interpolation

= data is usually not completely random

= can we increase accuracy by interpolation?

= either within buckets (common) or instead of buckets (uncommon)
= histogram is a density function, not continuous, hard to interpolate
= use the equivalent distribution function instead

= very good for estimating A > ¢

Accessing the Data Selectivity Estimations

Discussion

= estimations more complex in practice

= potentially different goals: maximum vs. average error
= histograms for derived values

= histogram convolution

= handling correlations

= multi-dimensional histograms

= cardinality estimators (sketches, MIPS etc.)

5. Physical Properties

= Why Properties

= Distributed Queries
= Ordering

= Grouping

= DAGs

I
Why Properties

= query optimizer chooses the cheapest equivalent plan

= join ordering: the cheapest plan with the same set of relations

= but: plans might produce the same result but behave differently
= for example sort-merge vs. hash join

= hash join could be cheaper, but sort-merge still pay of later

= not directly comparable

Why Properties
Why Properties (2)

How to handle logical equivalent but un-comparable plans?

one alternative: encode differences into search space

for example, different plans for sorting vs. hashing

but: search space explodes

some aspects like "sorting” consist of many alternatives

further: if sorting is cheaper than hashing, we usually prefer sorting
direct encoding into search space too wasteful

use (physical) properties instead

(HOWELEIN i Why Properties

Using Properties

A physical property P defines a partial relation <p with the following characteristics among
plans:

If two plans p; and p; are logically equivalent,
= p; <p py if pp dominates p; concerning P

= p1 =p p2 is p1 and pp are comparable concerning P (p1 <p p2 A p2 <p p1)
A plan can only be pruned if it is dominated or comparable

(HOWELEIN i Why Properties

Using Properties (2)

With properties, the query optimizer does not maintain a single solution but a set of solutions
for each subproblem:

storeSolution(S,p)
P = dpTable[S]
P =1
for Vp' € P {
if p<p'AC(p) > C(p')
return
if ~(p" < pAC(p') = C(p))
P/ — P/ U {p/}
}

dpTable[S] = P' U {p}

Why Properties
Using Properties (3)

= algorithm too simple

= properties can be enforced

= Enforcers make plans comparable
= allows for more pruning

= will see examples for this

= combination of multiple properties needs some care

Distributed Queries
Distributed Queries

= distributed query processing keeps track of the site

= intermediate results can be computed at different sites

= a physical property is therefore the site of the intermediate result
= very simple property, site is either the same or different

= more plans comparable with enforcers

Physical Properties Distributed Queries

Distributed Queries - Comparing Plans

Two plans are comparable, if they produce their result on the same site or the difference is
larger than the shipment costs:

prune(p1,p2)
if p1.site = po.site
return (C(p1) < C(P2))?p1: p2
if C(p1) + C(transfer p1) < C(P)
return p;

if C(p2) + C(transfer py) < C(P)
return py

return {p1, p2}

Physical Properties Distributed Queries

Distributed Queries - Effect on Search organization

= previous slide described how to compare plans, but not how to generate them

= plans must be generated for desired sites

= one possibility: generate plans for all sites

= can be quite wasteful

= alternative: generate plans (for sites) on demand

= difficult to do bottom-up

= usual technique: determine relevant sites beforehand and generate plans for them

= this sites would be called interesting

G
Ordering

= physical tuple order is the classical physical property

= equivalent plans produce the same tuples, but (potentially) in different order
= tuple ordering is very important for many operators

= sort-merge, group by etc.

= explicit order by

= access optimization

Ordering
Ordering (2)

An ordering O is a list of attributes (A1,...,Ap)

A tuple stream satisfied an ordering O, if the tuples are sorted according to A; and for each
1 < i < n the tuples are sorted on A; for identical values of Aq,...,A;_1.

COVSTEIN G Ordering

Interesting Orderings

= optimizer uses existing orderings, or creates new ones (enforcers)
= set of potential orderings very large
= too many orderings increase the search space
= concentrate on relevant orderings: interesting orderings
ordering is interesting, if
= requested by the user
= physically available
= useful for a planed operator

Ordering
Interesting Orderings (2)

= ordering is characterized by a list of attributes

= if a tuple stream is ordered on ay, ..., a,, ant1, it is also ordered on ay, ..., a,
= orderings are affected by operators, in particular they can grow

= therefore, each prefix of an interesting ordering is also interesting

= (somewhat implementation dependent)

= non-interesting orderings are "forgotten” by the optimizer to reduce the search space

G
Physical vs. Logical Ordering

= the physical ordering is the actual order of tuples on disk/in a tuple stream
= the logical ordering is the ordering satisfied by the tuples

= the query optimizer can usually only reason about the logical ordering

= a tuple stream may satisfy multiple logical orderings

= the logical ordering can change, although the physical ordering did not!

COVSTEIN G Ordering

Functional Dependencies

Logical Ordering is affected by functional dependencies:

induces by operators

Tacos(b) = 1b — a}

0a=p = {@ — b, b — a} (even stronger)
0a=10 = {0 — a}

complex operators can induce multiple FDs

FDs allow for deriving new logical orderings

COVSTEIN G Ordering

Example

select a,b,c
from s a,
(select b:b,c:count(*),d:max(d)
from tablefunc(a) group by b)
order by a,b,c

Interesting ordering: (a), (b), (a,b) and (a, b, ¢)
Interesting groupings: {b}
Functional dependencies: b — ¢, b — d

= Note: for {b} grouping is sufficient (next section)

G
Materializing Orderings

= the query optimizer might just maintain a set of all orderings satisfied by a plan
= but FDs increase the set

= sort(a)—select(a=b)

= is compatible with (a), (a, b), (b), (b, a)

= set can grow exponentially

= maintaining set of orderings not feasible

G
Reducing Orderings

Simmen et al. [17] proposed the following scheme:
= remember the base ordering
= remember all functional dependencies
= whenever testing for an ordering, reduce by base ordering and functional dependency

= apply prefix test after this

G
Reducing Orderings - Example

Ordering (b, d, e), test for (a, b, c,e), FDs {a — ¢,0 — a,b — d}

reduce ordering to (b, e)
reduce test to (a, b, e)
reduce test to (b, e)

e

test for prefix
but:
= what would happen if we applied) — a first?

= reductions must be applied back to front

COVSTEIN G Ordering

Reducing Orderings - Discussion

= back-to-front rule is not enough ((a),(a, b,c),{a — b,a, b — c})
= avoiding this requires normalizing the FDs, which is very expensive
= reduction has to be done for each test

= tests happen very frequently (nearly each operator tests)

= memory management is a problem

= better than materializing orderings, but not optimal

Physical Properties

Required Interface for Orderings

Query optimizer just requires few operations:
= initialization
= test for an ordering
= apply function dependency

Concrete ordering not required

Ordering

COVSTEIN G Ordering

Encoding Orderings as FSMs

Use an FSM (ordering (a, b, ¢), FD {b — d})

abcd
€
abc ab

abdc abd

Ordering
Encoding Orderings as FSMs (2)

= FSM described physical orderings

= pretends that FD changes physical ordering
= might be non-deterministic

= has to become deterministic

= conversion in DFSM (via NFA—DFA)

Ordering
Encoding Orderings as FSMs (3)

DFSM

a,ab,abc
abd,abcd,
abdc

a,ab,abc

= node contains all possible physical orderings = logical orderings
= operating on the DFSM is very efficient

= only problem: how to construct it (efficiently)

G
Ordering FSM Construction - Overview

1. Determine the input

1.1 Determine interesting orders
1.2 Determine sets of functional dependencies

2. Construct the NFSM

2.1 Construct nodes of the NFSM

2.2 Filter functional dependencies

2.3 Add edges to the NFSM

2.4 Prune the NFSM

2.5 Add artificial start node and edges

3. Construct the DFSM - convert the NFSM into a DFSM
4. Precompute values

4.1 Precompute the compatibility matrix
4.2 Precompute the transition table

G
Ordering FSM Construction - Determining the Input

= interesting orders (requested, required, index)

O; = Op U Ot (produced vs. tested, allows pruning)

functional dependencies (operators, keys)

handles for O(1) comparisons

F={{b—c},{b—d}}
O = {(b)v (av b)} U {(av b, C)}

COVSTEIN G Ordering

Ordering FSM Construction - Constructing the NFSM

Initial nodes for Oy

L

a,b,c

COVSTEIN G Ordering

Ordering FSM Construction - Constructing the NFSM (2)

Edges for F. Creates artificial node (can be pruned)

a,b

b—c €

a,b,c

COVSTEIN G Ordering

Ordering FSM Construction - Constructing the NFSM (3)

Edges for initialization. (b, ¢) was pruned.

b—>c €

a,b,c

G
Ordering FSM Construction - Constructing the DFSM

(b))
1
2
(a),(a,b))

b—c

C (a),(a,b),(a,b,c))

= tests for Ot are precomputed (materialized)

Standard conversion algorithm

COVSTEIN G Ordering

Pruning Techniques

= reducing the NFSM reduces conversion time

= reducing the DFSM reduces search space

= FDs can be removed if no interesting orderings reachable
= artificial nodes can be merged if the behave identical

= artificial nodes can be removed it they only have € edges

Note: search space reduction is a major benefit!

COVSTEIN G Ordering

Discussion

= orderings essential for query optimizations

= but orderings increase the search space

= management involved

= FSM representation needs O(1) time and space during optimization
= queried very often, but also very fast

= help reduce the search space

Grouping
Grouping

= sometimes ordering is a too strong requirement

= some operators do not need an order, they just want continuous blocks for values
= group by operators are a typical example

= therefore: grouping property

= exploiting groupings is similar to exploiting orderings

Grouping
Grouping (2)

A grouping G is a set of attributes {A1,..., A}

A tuple stream satisfies a grouping G, if tuples with the same values for A;,..., A, are placed
next to each other.

Note that the attributes within a grouping are unordered

Grouping
Ordering vs. Grouping

= ordering is a much stronger requirement than grouping

= every tuple stream that satisfies an ordering O = (A1, ..., A,) also satisfies the grouping
G={A1,...,A)}

= but there is not prefix deduction for groupings

= a tuple stream satisfying {A1, A2} does not necessarily satisfy {A;}
= could be derived from ordering information

= both types should be handled simultaneously

Grouping
Integrating Grouping into Ordering Processing

= groupings are similar to orderings

= can be modelled as FSMs, too (less edges, though)
= idea: build one big integrated FSM

= edges from orderings to corresponding groupings

= unifies these properties, makes pruning etc. much easier

Physical Properties SEITII3

Constructing a Unified FSM

L

a,b,c

= create states for interesting orderings/groupings

Physical Properties Grouping

Constructing a Unified FSM (2)

{b—>c}
9
b,c b
€
{b—>c}
€
a,b b,c
{b—>c} €

a,b,c

= consider functional dependencies

= note: no e edge between groupings

Physical Properties SEITII3

Constructing a Unified FSM (3)

@ b
€
a,b b,c

{b=c} €

{b—>c}

a,b,c

= prune artificial nodes

Physical Properties SEITII3

Constructing a Unified FSM (4)
{b}

{b=>c}

a,b,c

= add additional edges for initialization

Physical Properties SEITII3

Constructing a Unified FSM (4)

{b=c}

4:{b},{b,c}

—_
o
—
—
—_—
o
—

®) {b->c})

Q 2:(b),{b}

[

5:(b),{b},{b.c}

(a,b)
{b—>c}
3:(a),(a,b) H 6:(a),(a,b),(a,b,c)

= construct final DFSM

Physical Properties SEITII3

Discussion

= algorithm for groupings similar to orderings

= include pruning etc.

= unified handling very nice

= easy integration of both into the query optimizer
= FSM representation very fast

= only constant space per plan

DAGs

= execution plans until now were trees

= each operator has one consumer (except the root)
= no overlap

= very easy data flow

= but too limited in expressiveness

= a generalized plan structure requires some care (in this case a new kind of properties)

DAGs (2)

DAG - directed acyclic graph

More general than a tree, an operator can have more than one parent. Allows for more
efficient plans.

Physical Properties DAGs

Motivation for DAGs

common: views or shared expressions
= recognized e.g. by DB2
= uses buffering
= parts optimized independently
= not really a DAG then

I

n:cnat;m:max(s)

—_—_—— e —

I

cid,cnat;s:sum(price)

Meid=ocid

/

Customer Order

DAGs
Motivation for DAGs (2)

Mmkl:m
l—‘m:mkt;d:avg(lax)
magic sets '
= propagate domain information X
= nice optimization, but requires I
DAGs it
[

Ohat=D'
|

Customer Order

DAGs
Motivation for DAGs (3)

U
bypass plans \

= handle tuples different X
depending on predicates T V
= more efficient for disjunctive
B

X
queries \
= more complex data flow
A

DAGs
Motivation for DAGs (4)

= also XPath/XQuery evaluation, distributed queries, dependent join optimizations, ...

= optimizations not always beneficial, proper plan generation required
= buffering/temp reduces benefit, "real” execution required

goal: generic DAG support

Physical Properties B\

DAG Generation - Correctness Problems

X X

N

X X \ X
VAN VAN /N

A B A B cC = A B
= equivalences difficult to check

= here joins (apparently) not freely reorderable

= known equivalences not directly applicable

N

DAGs
DAG Generation - Correctness Problems (2)

L2\

Ma1b=b1.b

7N

Al B:bl

= idea: sharing through renaming = share equivalence
= formal criteria to detect equivalent subproblems

= create logical trees, allows for reusing known equivalences

Physical Properties DAGs

Share Equivalence

A =5 Biff 35, 5.4(A) - A(B) bijective Po4 5(A) = B

= difficult to test in general
= but constructive definition simple
= can be computed easily

= will be the base of a property (next slides)

2
DAG Generation - Optimal Substructure

% %
X % [
— ~
X
/N
A B C B A D
local optimal gIobaI optlmal

= shared plans destroy optimal substructure
= idea: encode sharing into the search space
= share equivalence for operators

= creates equivalence classes, describes possibilities to share

DAGs
DAG Generation - Optimal Substructure (2)

= generalize share equivalence from plans to operators

= would create share equivalent plans if the input were share equivalent
= classifies operators into equivalence classes

= only one operator from an equivalence class is relevant (representative)
= annotate each plan with the equivalence class (property)

= keep plans if they offer more classes (more sharing)

= note: only whole trees can be shared

DAGs
DAG Generation - Search

Search component has to be adjusted:
= incorporate share equivalence
= try to rewrite problems as representatives
= if completely possible (whole tree) only use representatives
= creates implicit renames
= allows for reusing results

= adjust pruning, too

Physical Properties DAGs

Discussion

= DAGs allow for much better plans

= generation somewhat involved

= share equivalence as property guarantees optimal solution
= many details omitted here

= cost model

= execution

End of Slides (for now)

u]
|

I
il
it
u
S
el
?

Physical Properties

Hao

636

637

Self Tuning

References

[1] Leonidas Fegaras.
A new heuristic for optimizing large queries.
In DEXA, pages 726—735, 1998.

[2] Toshihide Ibaraki and Tiko Kameda.
On the optimal nesting order for computing n-relational joins.
ACM Trans. Database Syst., 9(3):482-502, 1984.

[3] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo.
Optimization of nonrecursive queries.
In VLDB, pages 128-137, 1986.

[4] Chiang Lee, Chi-Sheng Shih, and Yaw-Huei Chen.
Optimizing large join queries using a graph-based approach.
IEEE Trans. Knowl. Data Eng., 13(2):298-315, 2001.

[5] Guido Moerkotte and Thomas Neumann.
Analysis of two existing and one new dynamic programming algorithm for the generation
of optimal bushy join trees without cross products.

In VLDB, pages 930-941, 2006.

[6] Thomas Neumann.
Query simplification: graceful degradation for join-order optimization.
In SIGMOD Conference, pages 403—414, 2009.

[7] Arjan Pellenkoft, César A. Galindo-Legaria, and Martin L. Kersten.
The complexity of transformation-based join enumeration.
In VLDB, pages 306—-315, 1997.

[8] César A. Galindo-Legaria, Arjan Pellenkoft, and Martin L. Kersten.
Fast, randomized join-order selection - why use transformations?
In VLDB, pages 85-95, 1994.

[9] Donald Kossmann and Konrad Stocker.

Iterative dynamic programming: a new class of query optimization algorithms.
ACM Trans. Database Syst., 25(1):43-82, 2000.

[10] Philip A. Bernstein and Nathan Goodman.
Power of natural semijoins.

References

[11]

[12]

[13]

[14]

SIAM J. Comput., 10(4):751-771, 1981.

Mihalis Yannakakis.
Algorithms for acyclic database schemes.
In VLDB, pages 82-94. IEEE Computer Society, 1981.

Albert Atserias, Martin Grohe, and Daniel Marx.

Size bounds and query plans for relational joins.

In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
October 25-28, 2008, Philadelphia, PA, USA, pages 739-748. IEEE Computer Society,
2008.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra.

Worst-case optimal join algorithms: [extended abstract].

In Michael Benedikt, Markus Krétzsch, and Maurizio Lenzerini, editors, Proceedings of
the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 37-48. ACM, 2012.

Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas

Neumann. L

= Dacx

References

[15]

[16]

[17]

Adopting worst-case optimal joins in relational database systems.
Proc. VLDB Endow., 13(11):1891-1904, 2020.

Todd L. Veldhuizen.
Leapfrog triejoin: a worst-case optimal join algorithm.
CoRR, abs/1210.0481, 2012.

Susan Tu and Christopher Ré.

Duncecap: Query plans using generalized hypertree decompositions.

In Timos K. Sellis, Susan B. Davidson, and Zachary G. lves, editors, Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 2077-2078. ACM, 2015.

David E. Simmen, Eugene J. Shekita, and Timothy Malkemus.
Fundamental techniques for order optimization.
In SIGMOD, pages 57-67, 1996.

	Introduction
	Query Processing
	Optimization Overview
	Query Execution

	Textbook Query Optimization
	Algebra Revisited
	Canonical Query Translation
	Logical Query Optimization
	Physical Query Optimization

	Join Ordering
	Basics
	Search Space
	Greedy Heuristics
	IKKBZ
	MVP
	Dynamic Programming
	Dynamic Programming - Connected Subgraphs
	Simplifying the Query Graph
	Adaptive Optimization
	Generating Permutations
	Transformative Approaches
	Randomized Approaches
	Metaheuristics
	Iterative Dynamic Programming
	Order Preserving Joins
	Complexity of Join Processing

	Accessing the Data
	Disk Drive
	Database Buffer
	Physical Database Organization
	Physical Algebra
	Temporal Relations and Table Functions
	Indices
	Counting the Number of Accesses
	Disk Drive Costs
	Selectivity Estimations

	Physical Properties
	Why Properties
	Distributed Queries
	Ordering
	Grouping
	DAGs

	Query Rewriting
	Self Tuning
	Appendix
	References

