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Exercise 1
Write a SQL statement to create a view that gives an overview of the difficulty of each
lecture. The difficulty of a lecture is defined as the sum of the weekly hours of that lecture
and its direct predecessors. In our example instantiation of the university schema, the
following query on your view should yield the result (only partially shown):

select * from LectureDifficulties;

lectureNr title difficulty
5216 Bioethik 6

4630 Die 3 Kritiken 4
... ... ...

Solution: Using a correlated subquery:
create view LectureDifficulties(lectureNr, title, difficulty) as (
select l.lectureNr, l.titel, l.weeklyhours
+ (select (case when sum(l2.weeklyhours) is null then 0

else sum(l2.weeklyhours) end)
from Require r, Lectures l2
where l.lectureNr = r.successor

and r.predecessor = l2.lectureNr)
from Lectures l
);

Using a CTE/with-Statement:
create view LectureDifficulties(lectureNr, title, difficulty) as (

with predecessor_sum as (
select r.successor as lecturenr, sum(l.weeklyhours) as sum
from require r, lectures l
where l.lecturenr = r.predecessor
group by r.successor

)
select l.lecturenr, l.title, (case when predecessor_sum is null

then 0 else predecessor_sum end) + l.weeklyhours
from lectures l left outer join predecessor_sum p on l.lecturenr =

p.lecturenr
);

Exercise 2
Considering the following table definitions:
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1) create table A(a int primary key);
create table B(b int);

2) create table A(a int primary key);
create table B(b int references A(a));

Assuming the cardinalities (number of tuples) of the relation A and B are |A| and |B|,
respectively. How many tuples are produced by the following queries. If no exact estimate
is possible, give a range. Alternatively you can use mathematical set operations.

a) select * from A, B;

b) select * from A join B on A.a = B.b;

c) select * from A left outer join B on A.a = B.b;

d) select * from A right outer join B on A.a = B.b;

e) select * from A full outer join B on A.a = B.b;
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Solution:

As ranges:

1) 2)
a) exactly: |A| · |B| exactly: |A| · |B|
b) between 0 and |B| exactly: |B|
c) between |A| and |A|+ |B| − 1 between max(|A|, |B|) and |A|+ |B| − 1
d) exactly: |B| exactly: |B|
e) between max(|A|, |B|) and |A|+ |B| between max(|A|, |B|) and |A|+ |B| − 1

1) A.a is a primary key, B.b is not referencing A.a
a) The query produces a cross product of A and B.
b) The query joins A and B and produces pairs of matching tuples. Since B.b is

not referencing A.a, B.b could contain only values that do not occur in A.a. In
that case we get no results. If all tuples of B match elements of A, we get |B|
elements.

c) The query left outer joins A and B. If an element in A does not find a partner
in B, it is still added to the result with B.b = null. If a tuple in A finds multiple
partners in B, all combinations are added. So, we get at least |A| result tuples
even if B does not contain any matches. If all elements in B.b match with the
same A.a, we have the other extreme: |B| result tuples for the one A.a that
matches all elements in B.b and |A|-1 result tuples for the other tuples in A.

d) The query right outer joins A and B. If an element in B does not find a partner
in B, it is still added to the result with A.a = null. Since A.a is a primary key,
each B.b can only be equal to one A.a value and therefore no duplicates will be
produced which gives us exactly |B| result tuples.

e) The query full outer joins A and B. Elements of both sides are still added to
the result with the respective opposite site set to null. We get at least as many
elements as we have in |A| and in |B|: max(|A|, |B|). If we don’t have any matches
A.a = B.b, then all elements are inserted with the opposite site being set to null
which gives us |A| + |B| elements in total.

2) A.a is a primary key, B.b references A.a
a) The query produces a cross product of A and B.
b) Since B.b is referencing A.a, there exists for each B.b an entry A.a with the same

value, therefore we get exactly |B| result tuples.
c) In the minimum case, we have either more elements in A and we find at most one

match in |B| which gives us |A| elements, or we have more elemts in B and have
for every element in A at least one match in B, then we get |B| result tuples.
Since both is possible we have at least max(|A|,|B|) result tuples. If all elements
in B match the same A.a this gives us |B| result entries and |A|-1 for the rest of
the entries in A that have no match in B.

d) Since each element in B has to find a partner in A, the right outer join will not
add any additional result entries with A.a being null, so we get |B| elements like
for the inner join.

e) If A contains more elements and each element has at most one match in B, we
get |A| elements. If we have more elements in B and all elements of A have at
least one match, we get |B| elements. In total, we will get at least max(|A|,|B|)
elements. Since each element in B has to find a match in A, we get the same
max as for the left outer join: All elements of B are the same and matched to
one element in A producing |B| result tuples, and |A|-1 result tuples for the rest
of the elements in A.
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Exercise 3
Look at the following (familiar) ER-diagram and create SQL DDL statements to create the
respective tables.
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Lösung:

create table city (name varchar(50) not null,
state varchar(50) not null,
primary key(name, state)

);

create table station (name varchar not null primary key,
num_platforms int,
cityName varchar(50) not null,
state varchar(50) not null,
foreign key(cityName, state)

references city(name, state)
);

create table train (trainNo int not null primary key,
num_wagons int,
start varchar not null references station,
end varchar not null references station

);

create table connects (from varchar not null references station,
to varchar not null references station,
trainNo int not null references train,
departure date,
arrival date,
primary key(from, trainNo)

);
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