
1

Cloud-Based Data Processing

Cluster-level Scheduling and

Resource Management

Jana Giceva

 Performance is measured in terms of throughput, response time, and availability.

 In the cloud, performance targets are tuned for the requirements of each workload:

 Latency or response time of specific requests

 Throughput: the number of requests performed per second

 Example SLO

“Client requests will have a response within 500ms at P90, at loads up to 25 K requests / second”

Performance

2

 A common technique to reduce latency at scale is to parallelize

across many machines.

 A single transaction involves multiple components of a system.

 Big fan-out and latencies add up

 Component-level variability amplified by scale

 Hard to get a holistic end-to-end view of a single operation

 Resource consumption for each operation is distributed

across multiple nodes.

Challenges in a distributed system

3

 Recall the tail-at-scale?

 99th percentile for a random request to finish is 10ms

 99th percentile for all requests to finish is 140ms.

 Waiting for the slowest 5% of the request to finish is responsible for half of the total 99th percentile latency.

Tail at scale

4

 Variability can arise from many reasons:

 Shared hardware resources:

that may lead to contention (CPU cores, caches, memory-, network bandwidth, etc.)

 Background tasks and daemons:

although using a limited set of resources on average, when scheduled can generate a short disruption

 Global resource sharing:

network switches or shared file systems can become a contented hot-spot

 Queuing:

multiple layers of queuing at intermediate servers and network switches amplify the variability

 Maintenance:

background activities (e.g., recovery, log compaction, garbage collection, etc.)

 etc.

including hardware trends like power limits, energy management, etc.

Why does variability exist?

5

 Performance tuning by taking a systematic approach:

 Enable telemetry to collect metrics and instrument your code.

 Use correlated tracing so that you can view all the steps in a transaction.

 Monitor the 90/95/99th percentiles, not just average. The average can mask outliers.

 The sampling rate also matters. If it is too low, it can hide spikes or outliers that indicate problems.

 Look for opportunities to parallelize (replication and partitioning are your friends).

 Watch out for skews and hot-spots – balance the service distribution and load (e.g., repartitioning).

 Issue the same request to multiple replicas (after a short delay) and use the result(s) that arrive first

General best practices (client’s perspective)

6

 A client is interested in low latency for its own

transaction(s) and high availability

 Tail latency, or percentiles 90/95/99th

 An application is interested in good tail latency

at a given throughput and high availability

 Tail latency by itself is not as important,

needs a high (guaranteed) throughput as well

 A cloud vendor:

 Needs to meet the SLAs to the client applications

 But also maximize the utilization of its fleet and

consolidate many workloads/applications.

Optimization goals

7

 Batch – Production workloads that execute tasks (in containers) that run for seconds to minutes.

 e.g., MapReduce, Hadoop, Scope, Tex, etc.

 Perform off-line computation, not sensitive to machine failures, no strict placement requirements

except optional data locality to avoid data movement.

 Long-running jobs

 Streaming systems: process data streams in near-real time via data-flows of

long-running operators that are deployed using containers (e.g., Storm, Flink, Kafka etc.)

 Interactive data-intensive applications: employ long-standing workers (executors), to avoid

container start-up costs and to process data that resides in memory with low latency (Spark, Impala, etc.)

 Latency-sensitive applications: serve requests using long-standing containers to achieve low end-to-

end latency (e.g., Hbase, ZooKeeper, Memcached, etc.)

 ML frameworks use long-running executors to efficiently perform iterative computations (e.g.,

TensorFlow, Spark MLLibs, etc.)

Applications with different WL requirements

8

 Publicly available cluster traces confirm the

diversity of workloads in terms of job runtimes

and resource demand.

 Google: 80% of the jobs use containers in the

cluster that have durations of less than 12 min,

while the longest last more than a month.

 Alibaba: a significant imbalance in terms of container

resource usage between long-running on-line services and off-line batch analytics.

 Microsoft: at least 10% of each cluster’s machines are used for long-running applications (12+ hours),

while in two clusters the machines are used exclusively by them.

Workload diversity

9

Workload scheduling within a framework

10

Workloads in data processing frameworks are represented as generic dataflow graphs

 Nodes perform computation

 Edges represent data flow across the nodes.

 Dataflow computation is performed in parallel tasks that usually run as part of

long running containers in the cluster.

Representing application’s workload

11

 An application consists of several jobs. Each job is represented as a DAG of operators.

 Operators in the DAG are grouped into stages (also called operator chaining or pipelining).

 Each stage is a collection of tasks, where each task performs computation over a

different partition of data.

 At each stage boundary, data is written to a local cache (memory, or disk) and then transferred over

the network to tasks in the downstream stages.

Execution steps in a dataflow engine I

12

 A scheduler is responsible for assigning tasks to containers in the cluster.

 For execution, a container receives a computation task and a reference to its input data.

 The scheduler’s decisions are data-driven:

 Which operator in the DAG graph is ready for execution (has satisfied dependencies).

 Spawn parallel tasks on particular machines in the cluster that have the binary

by respecting the resource needs and data locality.

Execution steps in a dataflow engine II

13

 Depending on the execution model of the dataflow system, tasks are executed on a container in

 continuous operator model – low RT by immediately processing a stream of data

 bulk-synchronous model – higher throughput with optimized execution within each batch of data.

 executor model

 Tasks are dispatched to executors (long-running containers).

 Executors are deployed on machines in the cluster (worker nodes) and typically run for the entire

lifetime of an application (avoiding repeated container scheduling latencies and initialization costs).

Execution model

14

 Early dataflow systems followed an execution model

targeting a particular use-case.

 Batch vs. stream processing

 (e.g., Hadoop, Spark, Presto, Storm, Flink)

 Modern dataflow platforms evolved to support

both stream and batch applications

(e.g., Spark’s structured streaming, Flink’s Table API or Apache Beam, etc.)

 Today hybrid applications have both latency-sensitive stream jobs with latency-tolerant batch jobs.

 e.g., real-time service to detect malicious behavior

 with a batch-based ML-training model job going over historical data

 stream job doing inference over the trained model to detect malicious behavior on real-time data.

Evolution of the execution model

15

Scheduling hybrid dataflow applications

16

 Problem when scheduling a

hybrid stream/batch application.

 Real-time inference job

 Historical data training job

 The training tasks require up to 3x more time and 2x more resources than the latency-sensitive tasks.

 The scheduling policy can significantly affect total job execution time = throughput,

efficient usage of resources, and meet the tasks’ latency requirements.

Scheduling hybrid dataflow applications

17

 Basic approach: each jobs uses a dedicated set of resources

 Separate engines for stream and batch processing

 Used in existing production environments with general purpose resource

managers that have dedicated queues for latency-critical jobs.

 FIFO: unified stream/batch engines use this policy on shared executor worker

machines (based on job’s priorities and submission jobs).

 each job gets priority on all resources as long as its stages have tasks to launch.

 FAIR: runs tasks on shared executors in a round-robin fashion. All jobs receive an

equal share of resources.

 Achieves better overall utilization and reduces the stream response time.

Scheduling hybrid dataflow applications

18

 KILL: to avoid the queuing delays for the latency-sensitive stream, one policy is to

do a non-work conserving preemption by killing tasks of the batch job.

 Side-effects may be bad for overall system performance

 The batch job needs to start from scratch  more redundant work.

 SUSPEND: Ideally, the framework should suspend the batch jobs in favor of higher-

priority stream tasks and resume them when resources are available.

 Both minimizes the queuing latency and the wasted work.

Cluster-level scheduling

19

 Cluster managers enable resource sharing across users, frameworks and applications

 Package hardware resources (e.g., CPU, disk, memory) in containers, allocated on demand

 Optimization goals:

 machines are efficiently shared,

 container and thus application performance is not hindered, and

 the majority of application- and cluster-level requirements are satisfied.

 But, meeting these goals is hard:

 cluster workloads grow richer,

 workload requirements become more diverse, and

 clusters grow in size.

Cluster scheduling

20

 The cluster scheduler receives a job.

 These requests identify:

 The executable binary, the resources needed,

the number of replicas, the job priority, etc.

Behind the curtains

21

 Each replica is a task.

 The role of the scheduler is

to place each task

onto a suitable machine.

But how efficient is that?

22

 Users tend to be conservative and often over-estimate the resources they’d need.

 Better than an expensive job to be terminated because it exceeded the resource limit.

 Yet, that results in a lot of waste of hardware resources!

 Hence, look for opportunities for resource reclamation.

Benefits of resource reclamation

23

Closely matching the resource

requirements, but leads to more

out-of-memory events!

Sweet-spot between efficient

resource usage and OOMs job

terminations.

 Cluster with 275 node

 8 CPU cores, 128 GB memory, 3 TB of HDD storage, connected on a 10Gbps betwork.

 Various LRAs are deployed such as HBase, TensorFlow and Storm

 Constraints:

 Affinity: collocate the containers of a long running

application on the same node or group of nodes as

other containers

e.g., to reduce network traffic between communicating

containers within the same or across different applications.

Sensitivity of job/task placement I

24

 Cluster with 275 node

 8 CPU cores, 128 GB memory, 3 TB of HDD storage, connected on a 10Gbps betwork.

 Various LRAs are deployed such as HBase, TensorFlow and Storm

 Constraints:

 Anti-affinity: may be desirable to place the containers

on different machines through intra- and inter-application

anti-affinity.

 E.g. to minimize resource interference.

.

Sensitivity of job/task placement II

25

 Higher quality container placement using sophisticated scheduling in general is essential for achieving

higher cluster utilization, more predictable application performance and increased application resilience.

 Yet, high placement latency (in the order of seconds) is unacceptable for particular types of workloads

such as batch jobs with shorter container runtimes.

 Trade-off between low scheduling latency and high quality container placement

Policy quality/placement time trade-offs

26

Cluster scheduling architectures

27

 Centralized

Schedulers use the same scheduling logic to choose placements for all

and maintain up-to-date information centrally.

 Pros: high quality placement by implementing sophisticated scheduling algorithms.

 Cons: (potentially) long placement latency

 e.g., Borg, Bistro, Quincy, Firmament, Quasar, etc.

 Two-level

A simpler resource manager that allocates containers, and a number of application

specific schedulers, aware of their independent needs.

 Resources are managed centrally, but scheduling is delegated to frameworks

that deal with workloads requirements: batch, streaming, ML, etc.

 e.g. Apache Mesos (for Apache Spark).

Cluster scheduling architectures

28

 Shared-state

Similar to 2-level scheduling, but allow multiple application schedulers with a different

internal scheduling logic to have a complete view of the cluster state.

 e.g., (Google’s) Omega supports multiple schedulers with each dealing with a

fraction of the total cluster workload, Kubernetes

 Distributed

Schedulers that achieve extreme scalability and low-latency allocations.

 Use worker nodes that pull tasks directly from distributed schedulers or

maintain a queue of tasks locally to minimize the period when they remain idle.

 e.g. Sparrow and Microsoft’s Apollo.

Cluster scheduling architectures

29

 Hybrid

combine the high quality placement of centralized schedulers and

the low scheduling latency of distributed schedulers.

 e.g., Microsoft’s Mercury, Yaq, academia Hawk

Google’s traces suggest:

99% of the resources are

taken by 1% of the jobs.

Yet, the scheduler needs to

ensure not to damage the

“mice” jobs.

Hybrid schedulers with affinities

30

 Task-based jobs go directly to the

task-scheduler, which does the

resource allocation.

 Long-running applications (LRAs)

go to the LRA scheduler that makes

placement decisions, later passed

to the task-scheduler that does

allocations.

 To manage placement constraints (both from the application owners and cluster operators), a new

central component keeps all the data (global view of all active constraints).

 The LRA placement is then an optimization problem under a set of constraints, expressed as an

integer linear programming (ILP) problem.

Implementing it in practice

31

YARN – centralized architecture, where the

Resource Manager (RM) allocates resources

on Node Managers (NMs) for applications

submitted to the cluster.

Any application-specific scheduling logic is

done by the Application Master.

The Node Managers launch and manage

containers and monitor resource availability.

MEDEA extends YARN by adding:

 Constraint Manager (CM)

 LRA scheduler

Results

32

Shorter runtimes

Less constraints are

violated.

Better cluster utilization.

The material covered in this class is mainly based on:

 PhD thesis from Dr. Panagiotis Garefalakis

 Supporting Long-Running Applications in Shared Compute Clusters (Imperial College London, 2020) (link)

 Slides by Dr. John Wilkes (Google) – Cluster management at Google with Borg – coping with scale (link)

Papers:

 Dean and Barros. The tail at scale. Communications of the ACM’13.

 Verma et al. Large-scale cluster management at Google with Borg. EuroSys’15.

 Delgado et al. Hawk: Hybrid Datacenter Scheduling. ATC’15.

 Burns et al. Borg, Omega, and Kubernetes. ACM Queue’16.

 Garefalakis et al. Medea: scheduling of long running applications in shared production clusters. EuroSys’18

 Garefalakis et al. Neptune: scheduling suspendable tasks for unified streaming/batch applications. SoCC’19

Further reading:

 Ousterhaut et al. Sparrow: Distributed, Low Latency Scheduling. SOSP’13

 Karanasos et al. Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters. ATC’15.

 Gog et al. Firmament: Fast, Centralized Cluster Scheduling at Scale. OSDI’16

References

33

https://www.doc.ic.ac.uk/~pg1712/static/thesis/Garefalakis-P-2020-PhD-Thesis.pdf
http://www.inf.ed.ac.uk/teaching/courses/exc/slides/Wilkes.pdf

