
33

Code Generation for Data Processing
Lecture 2: Compiler Front-end

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2023/24

34

Compiler Front-end

Source
Program Lexer Parser

Semantic
Analysis

Syntax
Tree

Tokens AST

Errors

▶ Typical architecture: separate lexer, parser, and context analysis
▶ Allows for more efficient lexical analysis
▶ Smaller components, easier to understand, etc.

▶ Some languages: preprocessor and macro expansion

35

Lexer

▶ Convert stream of chars to stream of words (tokens)
▶ Detect/classify identifiers, numbers, operators, . . .
▶ Strip whitespace, comments, etc.

a+b*c → ID(a) PLUS ID(b) TIMES ID(c)

▶ Typically representable as regular expressions

36

Typical Token Kinds

▶ Punctuators () [] { } ; = + += | ||

▶ Identifiers abc123 main

▶ Keywords void int __asm__

▶ Numeric constants 123 0xab1 5.7e3 0x1.8p1

▶ Char constants ’a’ u’œ’

▶ String literals "abc\x12\n"

▶ Internal EOF COMMENT UNKNOWN INDENT DEDENT
▶ Comments might be useful for annotations, e.g. // fallthrough

37

Lexer Implementation

def nextToken(inp: str) -> tuple[str, str, str]:
Get next token, return (kind, value, remainder)
inp = inp.lstrip()
if not inp:

return "EOF", "", inp
if inp[0].isdigit():

m = re.match(r’[1-9][0-9]*|0([0-7]+|x[0-9a-fA-F]+|)’, inp)
return "NUM", m[0], inp[m.end():]

if inp[0].isalpha():
m = re.match(r’[a-zA-Z][a-zA-Z0-9_]*’, inp)
if m[0] in KEYWORDS: return m[0], m[0], inp[m.end():]
return "IDENT", m[0], inp[m.end():]

if inp[:2] == "+=": return "PLUSEQ", inp[:2], inp[2:]
if inp[:1] == "+": return "PLUS", inp[:1], inp[1:]
...
raise Exception()

38

Lexing C??=

main() <%
// yay, this is C99??/
puts("hi␣world!");
puts("what’s␣up??!");

%>

Output: what’s up|

▶ Trigraphs for systems with more limited encodings/char sets
▶ Digraphs to provide a more readable alternative...

39

Lexer Implementation

▶ Essentially a DFA (for most languages)
▶ Set of regexes → NFA → DFA

▶ Respect whitespace/separators for operators, e.g. + and +=
▶ Automatic tools (e.g., flex) exist; most compilers do their own
▶ Keywords typically parsed as identifiers first

▶ Check identifier if it is a keyword; can use perfect hashing
▶ Other practical problems

▶ UTF-8 homoglyphs; trigraphs; pre-processing directives

40

Parsing

▶ Convert stream of tokens into (abstract) syntax tree
▶ Most programming languages are context-sensitive

▶ Variable declarations, argument count, type match, etc.
⇝ separated into semantic analysis

Syntactically valid: void foo = doesntExist / "abc";
▶ Grammar usually specified as CFG

41

Context-Free Grammar (CFG)

▶ Terminals: basic symbols/tokens
▶ Non-terminals: syntactic variables
▶ Start symbol: non-terminal defining language
▶ Productions: non-terminal → series of (non-)terminals

stmt → whileStmt | breakStmt | exprStmt
whileStmt → while (expr) stmt
breakStmt → break ;
exprStmt → expr ;

expr → expr + expr | expr * expr | expr = expr | (expr) | number

42

Hand-written Parsing – First Try

▶ One function per non-terminal

▶ Check expected structure

▶ Return AST node

▶ Need look-ahead!

def parseBreakStmt(...):
matchToken("break")
matchToken("SEMICOLON")
return ("breakStmt",)

def parseWhileStmt(...):
matchToken("while")
matchToken("LPAREN")
expr = parseExpr(...)
matchToken("RPAREN")
stmt = parseStmt(...)
return ("whileStmt", expr, stmt)

def parseStmt(...):
whoops!

43

Hand-written Parsing – Second Try

▶ Need look-ahead to distinguish
production rules

▶ Consequences for grammar:
▶ No left-recursion
▶ First n terminals must allow

distinguishing rules
▶ LL(n) grammar; n typically 1

⇒ Not all CFGs (easily) parseable
(but most programming langs. are)

▶ Now... expressions

def parseBreakStmt(...):
... # as before

def parseWhileStmt(...):
... # as before

def parseStmt(...):
tok = peekToken()
if tok == "break":

return parseBreakStmt(...)
if tok == "while":

return parseWhileStmt(...)
expr = parseExpr(...)
matchToken("SEMICOLON")
return ("exprStmt", expr)

44

Ambiguity

expr → expr + expr | expr * expr | expr = expr | (expr) | number

Input: 4 + 3 ∗ 2

E

E

4 + 3

* 2

E

4 + E

3 * 2

45

Ambiguity – Rewrite Grammar?

primary → (expr) | number
expr → primary + expr | primary * expr | primary = expr | primary

Input: 4 + 3 ∗ 2

E

4 + E

3 * 2

Input: 4 ∗ 3 + 2

E

4 * E

3 + 2

46

Ambiguity – Precedence

Input: 4 ⋆ 3 ⃝ . . .

⋆

4 ⃝

3 . . .

⃝

⋆

4 3

. . .

▶ prec(⃝) > prec(⋆)

▶ Equal prec. and ⋆ is
right-associative

▶ prec(⃝) < prec(⋆)

▶ Equal prec. and ⋆ is
left-associative

47

Hand-written Parsing – Expression Parsing

▶ Start with basic expr.:

▶ Number, variable, etc.

▶ Parenthesized expr.
▶ Parse full expression
▶ Next token must be)

▶ Unary expr: followed by expr.
with higher prec.
▶ - < unary - < []/->

def parsePrimaryExpr(...):
handle numbers, unary operators,
variables, parenthesized expr.
... # trivial ;)

def parseExpr(..., minPrec=0):
lhs = parsePrimaryExpr(...)
... # (next slide)

48

Hand-written Parsing – Expression Parsing

▶ Only allow ops. with higher
prec. on the right child

▶ Operator precedence
▶ * → (3, left-assoc)
▶ + → (2, left-assoc)
▶ = → (1, right-assoc)

▶ Right-assoc.: allow same prec.
▶ Assignment, ternary

def parsePrimaryExpr(...):
handle numbers, unary operators,
variables, parenthesized expr.
... # trivial ;)

def parseExpr(..., minPrec=0):
lhs = parsePrimaryExpr(...)
while True:
tok = nextToken()
prec, rassoc = OPERATORS[tok]
if prec < minPrec:
return lhs

XXX: handling for: (, [, ?:
newPrec = prec if rassoc else prec+1
rhs = parseExpr(..., newPrec)
lhs = ("expr", tok, lhs, rhs)

49

Hand-written Parsing – Expression Parsing

OPERATORS = {
"*": (3, False),
"+": (2, False),
"=": (1, True),

}

def parsePrimaryExpr(...):
handle numbers, unary operators,
variables, parenthesized expr.
... # trivial ;)

def parseExpr(..., minPrec=0):
lhs = parsePrimaryExpr(...)
while True:
tok = nextToken()
prec, rassoc = OPERATORS[tok]
if prec < minPrec:
return lhs

XXX: handling for: (, [, ?:
newPrec = prec if rassoc else prec+1
rhs = parseExpr(..., newPrec)
lhs = ("expr", tok, lhs, rhs)

50

Top-down vs. Bottom-up Parsing

Top-down Parsing
▶ Start with top rule
▶ Every step: choose expansion
▶ LL(1) parser

▶ Left-to-right, Leftmost Derivation
▶ “Easily” writable by hand
▶ Error handling rather simple
▶ Covers many prog. languages

Bottom-up Parsing
▶ Start with text
▶ Reduce to non-terminal
▶ LR(1) parser

▶ Left-to-right, Rightmost
Derivation

▶ Strict super-set of LL(1)
▶ Often: uses parser generator
▶ Error handling more complex
▶ Covers nearly all prog. languages

51

Parser Generators

▶ Writing parsers by hand can be large effort

▶ Parser generators can simplify parser writing a lot
▶ Yacc/Bison, PLY, ANTLR, . . .

▶ Automatic generation of parser/parsing tables from CFG
▶ But: lexer often written by hand either way

▶ Used heavily in practice (unless error handling is important)

52

Bison Example – part 1

%define api.pure full
%define api.value.type {ASTNode *}
%param { Lexer* lexer }
%code{
static int yylex(ASTNode ** lvalp , Lexer* lexer);
}
%token NUMBER
%token WHILE "while"
%token BREAK "break"

// precedence and associativity
%right ’=’
%left ’+’
%left ’*’
%%

53

Bison Example – part 2

%%
stmt : WHILE ’(’ expr ’)’ stmt { $$ = mkNode(WHILE , $1, $2); }

| BREAK ’;’ { $$ = mkNode(BREAK , NULL , NULL); }
| expr ’;’ { $$ = $1; }
;

expr : expr ’+’ expr { $$ = mkNode(’+’, $1, $2); }
| expr ’*’ expr { $$ = mkNode(’*’, $1, $2); }
| expr ’=’ expr { $$ = mkNode(’=’, $1, $2); }
| ’(’ expr ’)’ { $$ = $1; }
| NUMBER
;

%%
static int yylex(ASTNode ** lvalp , Lexer* lexer) {

/* return next token , or YYEOF /... */ }

54

Parsing in Practice

▶ Some use parser generators, e.g. Python
some use hand-written parsers, e.g. GCC, Clang

▶ Optimization of grammar for performance
▶ Rewrite rules to reduce states, etc.

▶ Useful error-handling: complex!
▶ Try skipping to next separator, e.g. ; or ,

▶ Programming languages are not always context-free
▶ C: foo* bar;
▶ May need to break separation between lexer and parser

55

Parsing C++

▶ C++ is not context-free (inherited from C): T * a;

▶ C++ is ambiguous: Type (a), b;
▶ Can be a declaration or a comma expression

▶ C++ templates are Turing-complete2

▶ C++ parsing is hence undecidable3

▶ Template instantiation combined with C T * a ambiguity

2TL Veldhuizen. C++ templates are Turing complete. 2003. .
3J Haberman. Parsing C++ is literally undecidable. 2013. .

http://port70.net/~nsz/c/c%2B%2B/turing.pdf
https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html

56

Semantic Analysis

▶ Syntactical correctness ̸⇒ correct program
void foo = doesntExist / ++"abc";

▶ Needs context-sensitive analysis:
▶ Variable existence, storage, accessibility, . . .
▶ Function existence, arguments, . . .
▶ Operator type compatibility
▶ Attribute allowance

▶ Additional type complexity: inference, polymorphism, . . .

57

Semantic Analysis: Scope Checking with AST Walking

▶ Idea: walk through AST (in DFS-order) and validate on the way
▶ Keep track of scope with declared variables

▶ Scope = (Map[Name → Type] names, Scope parent)
▶ Might need to keep track of defined types separately

▶ For identifiers: check existence and get type
▶ For expressions: check types and derive result type
▶ For assignment: check lvalue-ness of left side

▶ Might be possible during AST creation
▶ Needs care with built-ins and other special constructs

58

Semantic Analysis and Post-Parsing Transformations

▶ Check for error-prone code patterns
▶ Completeness of switch, out-of-range constants, unused variables, ...

▶ Check method calls, parameter types

▶ Duplicate code for templates
▶ Make implicit value conversions explicit
▶ Handle attributes: visibility, warnings, etc.

▶ Mangle names, split functions (OpenMP), ABI-specific setup, ...
▶ Last step: generate IR code

59

Parsing Performance

Is parsing/front-end performance important?

▶ Not necessarily: normal compilers
▶ Some languages (e.g., Rust) need unbounded time for parsing

▶ Somewhat: JIT compilers
▶ Start-up time is generally noticable

▶ Somewhat more: Developer tools
▶ Imagine: waiting for seconds just for updated syntax highlighting
▶ Often uses tricks like incremental updates to parse tree

60

Data Types

▶ Important part of programming languages
▶ Might have large variety and compatibility

▶ Numbers, Strings, Arrays, Compound Types (struct/union), Enum,
Templates, Functions, Pointers, . . .

▶ Class hierarchy, Interfaces, Abstract Classes, . . .
▶ Integer/float compatibility, promotion, . . .

▶ Might have implicit conversions

61

Data Types: Implementing Classes

▶ Simple class/struct: trivial, just bunch of fields
▶ Methods take (pointer to) this as implicit parameter

▶ Single inheritance: also trivial – extend struct at end

▶ Virtual methods: store vtable in object representation
▶ vtable = table of function pointers for virtual methods
▶ Each sub-class has their own vtable

▶ Multiple inheritance is much more involved
▶ Dynamic casts: needs run-time type information (RTTI)

62

Recommended Lectures

AD IN2227 “Compiler Constructions” covers parsing/analysis in depth

AD CIT3230000 “Programming Languages” covers dispatching/mixins/...

63

Compiler Front-end – Summary

▶ Lexer splits input into tokens
▶ Essentially Regex-Matching + Keywords; rather simple

▶ Parser constructs (abstract) syntax tree from tokens
▶ Top-down vs. bottom-up parsing
▶ Typical: top-down for control flow; bottom-up for expressions
▶ Respect precedence and associativity for operators

▶ Semantic analysis ensures meaningful program
▶ Some data structures are complex to implement

▶ Some programming languages are more difficult to parse

64

Compiler Front-end – Questions

▶ What are typical components of a compiler front-end?
▶ What output does the lexer produce?
▶ How does a parser disambiguate rules?
▶ What is the typical way to handle operator precedence?
▶ Why are not all programming languages describable using CFGs?
▶ How to implement classes with virtual functions?

	Compiler Front-end

