Code Generation for Data Processing
Lecture 10: Unwinding and Debuginfo

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2023/24

308

Motivation: Meta-Information on Program

» Machine code suffices for execution — not true

» Needs program headers and entry point
» Linking with shared libraries needs dynamic symbols and interpreter

» Stack unwinding needs information about the stack

» Size of each stack frame, destructors to be called, etc.
» Vital for C++ exceptions, even for non-C++ code

» Stack traces require stack information to find return addresses
» Use cases: coredumps, debuggers, profilers

» Debugging experience enhanced by variables, files, lines, statements, etc.

309

Adding Meta-Information with GCC

-fexceptions
-fasynchronous-unwind-tables

» g supports different formats and levels (and GNU extensions)
» Exceptions must work without debuginfo
» Unwinding through code without exception-support must work

310

Stack Unwinding

» Needed for exceptions (_Unwind_RaiseException) or forced unwinding

» Search phase: walk through the stack, check whether to stop at each frame
» May depend on exception type, ask personality function
» Personality function needs extra language-specific data
» Stop once an exception handler is found
» Cleanup phase: walk again, do cleanup and stop at handler
» Personality function indicates whether handler needs to be called
» Can be for exception handler or for calling destructors
> If yes: personality function sets up registers/sp/pc for landing pad
» Non-matching handler or destructor-only: landing pad calls _Unwind_Resume

311

Stack Unwinding: Requirements

» Given: current register values in unwind function

» Need: iterate through stack frames
» Get address of function of the stack frame
» Get pc and sp for this function
» Find personality function and language-specific data
» Maybe get some registers from the stack frame
» Update some registers with exception data

» Increased difficulty: stepping through signal handler

312

Stack Unwinding: setjmp/longjmp

» Simple idea — all functions that run code during unwinding do:

> Register their handler at function entry
» Deregister their handler at function exit

» Personality function sets jmpbuf to landing pad
» Unwinder does longjmp

+ Needs no extra information

— High overhead in non-exceptional case

313

Stack Unwinding: Frame Pointer

» Frame pointers allow for fast unwinding

x86_64:
. , push rbp
» fp points to stored caller's fp mov rbp, rsp
» Return address stored adjacent to frame pointer /o
mov rsp, rbp
pop rbp
+ Fast and simple, also without exception ret
— Not all programs have frame pointers aarch64:
» Overhead of creating full stack frame stp x29, x30, [sp, -32]!
» Causes loss of one register (esp. x86) mov x29, sp
/.

» Still needs to find meta-information ldp x29, x30, [sp], 32

» Need to distinguish prologue with wrong info ret

Stack Unwinding: Without Frame Pointer

» Given: pc and sp (bottom of stack frame/call frame)
» In parent frames: retaddr — 1 ~pc and CFA ~sp
» Need to map pc to stack frame size

» sp+framesize = CFA (canonical frame address — sp at call)
» Stack frame size varies throughout function, e.g. prologue

» Case 1: some register used as frame pointer — CFA constant offset to fp
» E.g., for variable stack frame size

» Case 2: no frame pointer: CFA is constant offset to sp

~~ Unwinding must restore register values

» Other reg. can act as frame pointer, register saved in other register, ...
» Need to know where return address is stored

315

Call Frame Information

» Table mapping each instr. to info about registers and CFA

» CFA: register with signed offset (or arbitrary expression)
» Register:
» Undefined — unrecoverable (default for caller-saved reg)
» Same — unmodified (default for callee-saved reg)
> Offset(N) — stored at address CFA+N
> Register(reg) — stored in other register
>

or arbitrary expressions

Call Frame Information — Example 1

CFA rip rbx rbp
foo:

0x0: push rbx rsp+0x08 [CFA-0x08] same same
Ox1: mov ebx, edi | rsp+Ox10 [CFA-0x08] [CFA-0x10] same
0x3: call bar rsp+0x10 [CFA-0x08] [CFA-0x10] same
0x8: mov eax, ebx | rsp+0x10 [CFA-0x08] [CFA-0x10] same
Oxa: pop rbx rsp+0x10 [CFA-0x08] [CFA-0x10] same
O0xb: ret rsp+0x08 [CFA-0x08] same same

317

Call Frame Information — Example 2

‘ CFA rip rbx rbp
foo:

0x0: push rbp rsp+0x08 [CFA-0x08] same same
O0x1: mov rbp, rsp | rsp+0x10 [CFA-0x08] same [CFA-0x10]
Ox4: shl rdi, 4 rbp+0x10 [CFA-0x08] same [CFA-0x10]
0x8: sub rsp, rdi | rbp+0x10 [CFA-0x08] same [CFA-0x10]
Oxb: mov rdi, rsp | rbp+0x10 [CFA-0x08] same [CFA-0x10]
Oxe: call bar rbp+0x10 [CFA-0x08] same [CFA-0x10]
0x13: leave rbp+0x10 [CFA-0x08] same [CFA-0x10]
0x14: ret rsp+0x08 [CFA-0x08] same same

318

Call Frame Information — Example 3

‘ CFA rip rbx rbp
foo:

0x0: sub rsp, 8 rsp+0x08 [CFA-0x08] same same
0x4: test edi, edi | rsp+0x10 [CFA-0x08] same same
0x6: js 0x12 rsp+0x10 [CFA-0x08] same same
0x8: call positive | rsp+0x10 [CFA-0x08] same same
Oxd: add rsp, 8 rsp+0x10 [CFA-0x08] same same
0x11: ret rsp+0x08 [CFA-0x08] same same
0x12: call negative | rsp+0x10 [CFA-0x08] same same
0x17: add rsp, 8 rsp+0x10 [CFA-0x08] same same
Oxla: ret rsp+0x08 [CFA-0x08] same same

319

Call Frame Information: Encoding

» Expanded table can be huge
» Contents change rather seldomly
» Mainly in prologue/epilogue, but mostly constant in-between

» |dea: encode table as bytecode
» Bytecode has instructions to create a now row
» Advance machine code location

v

Bytecode has instructions to define CFA value

v

Bytecode has instructions to define register location

» Bytecode has instructions to remember and restore state

320

Call Frame Information: Bytecode — Example 1

‘ CFA rip rbx
foo:

0: push rbx rsp+8 [CFA-8]

1: mov ebx, edi | rsp+16 [CFA-8] [CFA-16]
3: call bar rsp+16 [CFA-8] [CFA-16]
8: mov eax, ebx | rsp+16 [CFA-8] [CFA-16]
a: pop rbx rsp+16 [CFA-8] [CFA-16]
b: ret rsp+8 [CFA-8] [CFA-16]

DW_CFA_def_cfa: RSP +8
DW_CFA_offset: RIP -8
DW_CFA_advance_loc: 1
DW_CFA_def_cfa_offset: +16
DW_CFA_offset: RBX -16
DW_CFA_advance_loc: 10
DW_CFA_def_cfa_offset: +8

321

Call Frame Information: Bytecode — Example 2

| CFA rip rbp DW_CFA_def_cfa: RSP +8

foo: DW_CFA_offset: RIP -8
0: push rbp rsp+8 [CFA-8] DW_CFA_advance_loc: 1
1: mov rbp, rsp | rsp+16 [CFA-8] [CFA-16] DW_CFA_def_cfa_offset: +16
4: shl rdi, 4 rbp+16 [CFA-8] [CFA-16] DW_CFA_offset: RBP -16
8: sub rsp, rdi | rbp+16 [CFA-8] [CFA-16] DW_CFA_advance_loc: 3
b: mov rdi, rsp | rbp+16 [CFA-8] [CFA-16] DW_CFA_def_cfa_register: RBP
e: call bar rbp+16 [CFA-8] [CFA-16] DW_CFA_advance_loc: 16
13: leave rbp+16 [CFA-8] [CFA-16] DW_CFA_def_cfa: RSP +8
14: ret rsp+8 [CFA-8] [CFA-16]

322

Call Frame Information: Bytecode — Example 3

‘ CFA rip
foo:
0 sub rsp, 8 rsp+8 [CFA-8]
4: test edi, edi | rsp+16 [CFA-8]
6: js 0x12 rsp+16 [CFA-8]
8: call positive | rsp+16 [CFA-8]
d add rsp, 8 rsp+16 [CFA-8]
11 ret rsp+8 [CFA-8]
12: call negative | rsp+16 [CFA-8]
17: add rsp, 8 rsp+16 [CFA-8]
la: ret rsp+8 [CFA-8]

Remember stack: {}

DW_CFA_def_cfa: RSP +8
DW_CFA_offset: RIP -8
DW_CFA_advance_loc: 4
DW_CFA_def_cfa_offset: +16
DW_CFA_advance_loc: 13
DW_CFA_remember_state:
DW_CFA_def_cfa_offset: +8
DW_CFA_advance_loc: 1
DW_CFA_restore_state:
DW_CFA_advance_loc: 9
DW_CFA_def_cfa_offset: +8

323

Call Frame Information: Bytecode

» DWARF*® specifies bytecode for call frame information

v

Self-contained section .eh_frame (or .debug_frame)

» Series of entries; two possible types distinguished using header

» Frame Description Entry (FDE): description of a function
» Code range, instructions, pointer to CIE, language-specific data
» Common Information Entry (CIE): shared information among multiple FDEs

» Initial instrs. (prepended to all FDE instrs.), personality function, alignment
factors (constants factored out of instrs.), ...

» readelf --debug-dump=frames <file>
llvm-dwarfdump --debug-frame <file>

48DWARF Debugging Information Committee. DWARF Debugging Information Format Version 5. Feb. 2017. @. 324

http://dwarfstd.org/doc/DWARF5.pdf

Call Frame Information: .eh_frame_hdr

» Problem: linear search over — possibly many — FDEs is slow

» |dea: create binary search table over FDEs at link-time

» Ordered list of all function addresses and their FDE
» Unwinder does binary search to find matching FDE

» Separate program header entry: PT_GNU_EH_FRAME
» Unwinder needs loader support to find these
» _dl_find_object or d1_iterate_phdr
» FDEs and indices are cached to avoid redundant lookups

325

Call Frame Information: Assembler Directives

» Compilers produces textual CFI
» Assembler encodes CFl into binary format

» Allows for integration of annotated inline assembly
» Inline-asm also needs CFI directives

» Register numbers specified by psABI

» Wrap function with .cfi_startproc/.cfi_endproc
» Many directives map straight to DWARF instructions

» .cfi_def_cfa_offset 16; .cfi_offset Yrbp, -16;
.cfi_def_cfa_register Jrbp

326

Call Frame Information: Assembler Directives — Example

.globl foo

.type foo, @function
foo:

.cfi_startproc

push rbp

.cfi_def_cfa_offset 16

int bar(int+); cfi_offset 6 16

int foo(unsigned long x) {

int arr[x * 4]; mov.rbp, rsp '
.cfi_def_cfa_register 6
return bar(arr);

shl rdi, 4

} .
sub rsp, rdi
mov rdi, rsp

gcc -0 -S foo.c call bar
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.size foo, .-foo

Unwinding: Other Platforms

>

vvyyVvyyvyy

v

Unwinding depends strongly on OS and architecture

Linux uses DWARF

Apple has modified version

Windows has SEH with kernel-support for unwinding
IBM AIX has their own format

AArch32 has another custom format

Additionally: minor differences for return address, stack handling, ...

Needs to work reliably for exception handling

328

Debugging: Wanted Features

» Get back trace ~» CFI
» Map address to source file/line

» Show global and local variables

» Local variables need scope information, e.g. shadowing
» Data type information, e.g. int, string, struct, enum

» Set break point at line/function
» Might require multiple actual breakpoints: inlining, template expansion

» Step through program by line/statement

329

Line Table

» Map instruction to: file/line/column; start of stmt; start of basic block;
is prologue/epilogue; ISA mode

» Table can be huge; idea: encode as bytecode

» Extracted information are bytecode registers
» Conceptually similar to CFl encoding

» llvm-dwarfdump -v --debug-line or readelf -wlL

330

Debugging: Wanted Features

» Get back trace ~ CFI
» Map address to source file/line ~> Line Table

» Show global and local variables

» Local variables need scope information, e.g. shadowing
» Data type information, e.g. int, string, struct, enum

» Set break point at line/function ~~ Line Table/?77
» Might require multiple actual breakpoints: inlining, template expansion

» Step through program by line/statement ~> Line Table

331

DWARF: Hierarchical Program Description

» Extensible, flexible, Turing-complete*® format to describe program

» Forest of Debugging Information Entries (DIEs)

» Tag: indicates what the DIE describes
> Set of attributes: describe DIE (often constant, range, or arbitrary expression)
» Optionally children

» Rough classification:
» DIEs for types: base types, typedef, struct, array, enum, union, ...
» DIEs for data objects: variable, parameter, constant
» DIEs for program scope: compilation unit, function, block, ...

49 J Oakley and S Bratus. “Exploiting the Hard-Working DWARF: Trojan and Exploit Techniques with No Native Executable Code”.
In: WOOT. 2011. @.

332

https://www.usenix.org/events/woot11/tech/final_files/Oakley.pdf

DWARF: Data Types

DW_TAG_structure_type [0x2e]
DW_AT_byte_size (0x08)
DW_AT_sibling (Ox4a)
DW_TAG_member [0x37]

DW_AT_name ("x")

DW_AT_type (0Ox4a "int")

DW_AT_data_member_location (0x00)
DW_TAG_member [0x40]

DW_AT_name ("y")

DW_AT_type (0x4a "int")

DW_AT_data_member_location (0x04)

DW_TAG_base_type [0x4al
DW_AT_byte_size (0x04)

DW_AT_encoding (DW_ATE_signed)
DW_AT_name ("int")

DW_TAG_pointer_type [0xb1]
DW_AT_byte_size (8)
DW_AT_type (0xb6 "char *")

DW_TAG_pointer_type [0xb6]
DW_AT_byte_size (8)
DW_AT_type (0xbb "char")

DW_TAG_base_type [0xbb]
DW_AT_byte_size (0x01)

DW_AT_encoding (DW_ATE_signed_char)
DW_AT_name ("char")

333

DWARF: Variables

DW_TAG_variable [0xa3]

DW_AT_name ("x")
DW_AT_decl_file ("/path/to/main.c")
DW_AT_decl_line (2)
DW_AT_decl_column (0x2e)

DW_AT_type (Ox4a "int")
DW_AT_location (0x3b:

[0x08, 0xOc): DW_OP_breg3 RBX+0, DW_OP_litl, DW_OP_shl, DW_OP_stack_value
[0x0c, 0x0d): DW_OP_entry_value(DW_OP_regb RDI), DW_OP_litl, \
DW_0P_shl, DW_0OP_stack_value)

DW_TAG_formal_parameter [0x7f]
DW_AT_name ("argc")
/]

DWAREF: Expressions

>

Very general way to describe location of value: bytecode

Stack machine, evaluates to location or value of variable

» Simple case: register or stack slot

» But: complex expression to recover original value after optimization
e.g., able to recover i from stored i — 1

» Unbounded complexity!

Can contain control flow

Can dereference memory, registers, etc.

Used for: CFl locations, variable locations, array sizes, ...

335

DWARF: Program Structure

» Follows structure of code

» Top-level: compilation unit
» Entries for namespaces, subroutines (functions)
» Functions can contain inlined subroutines

» Lexical blocks to group variables

» Call sites and parameters

» Each node annotated with pc-range and source location

336

Debugging: Wanted Features

» Get back trace ~ CFI
» Map address to source file/line ~> Line Table
» Show global and local variables ~ DIE tree

» Local variables need scope information, e.g. shadowing
» Data type information, e.g. int, string, struct, enum

» Set break point at line/function ~~ Line Table/DIE tree
» Might require multiple actual breakpoints: inlining, template expansion

» Step through program by line/statement ~> Line Table

337

Other

>

>

Debuginfo Formats

DWAREF is big despite compression
Cannot run in time-constrained environments
» Unsuited for in-kernel backtrace generation

Historically: STABS — string based encoding

» Complexity increased significantly over time

Microsoft: PDB for PE

Linux kernel: CTF for simple type information
Linux kernel: BTF for BPF programs

338

Unwinding and Debuginfo — Summary

vVvyvVvyVvyVvyYVYyYvVvyy

Some languages/setups must be able to unwind the stack

Needs meta-information on call frames

DWAREF encodes call frame information is bytecode program
Runtime must efficiently find relevant information

Stack unwinding typically done in two phases

Functions have associated personality function to steer unwinding
DWARF encodes debug info in tree structure of DIEs

DWAREF info can become arbitrarily complex

339

Unwinding and Debuginfo — Questions

vVvyVvyvVvyvyyvYyy

What are alternatives to stack unwinding?

What are the benefits of stack unwinding through metadata?
What are the two phases of unwinding? Why is this separated?
How to construct a CFl table for a given assembly code?

How to construct DWARF ops for a CFl table?

How to find the correct CFl table line for a given address?
What is the general structure of DWARF debug info?

340

	Unwinding and Debuginfo

