Code Generation for Data Processing
Lecture 13: Query Compilation

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2023/24

397



Motivation: Fast Query Execution

» Databases are often used in latency-critical situations
» Mostly transactional workload

» Databases are often used for analyzing large data sets

» Mostly analytical workload; queries can be complex
» Latency not that important, but through-put is

» Databases are also used for storing data streams

» Streaming databases, e.g. monitoring sensors
» Throughput is important; but queries often simple

398



Data Representation

» Relational algebra: set/bag of tuples

» Tuple is sequence of data with different types
» All tuples in one relation have same schema
» Order does not matter

» Duplicates might be possible (bags)

» Might have special values, e.g. NULL
» Values might be variably-sized, e.g. strings

» But: databases have high degree of freedom wrt. data representation

399



Query Plan

» Query often specified in “standardized format” (SQL)

» SQL is transformed into (logical) query plan
» Logical query plan is optimized
» E.g., selection push down, transforming cross products to joins,
join ordering
» Physical query plan

» Selection of actual implementation for operators
» Determine use index structures, access paths, etc.

400



Query Plan: Subscripts

» Query plan strongly depends on query

» Operators have query-dependent subscripts

> E.g., selection/join predicate, aggregation function, attributes
» Implementation of these also depends on schema

» Can include arbitrarily complex expressions

HJ
s.matrnr=h.matrnr+ ¥ a.x<5-(b.y—a.z)

» Examples: x

401



Subscripts: Execution

» Option: keep as tree, interpret

+ Simple, flexible
— Slow

» Option: compile to bytecode

+ More efficient
— More effort to implement, some compile-time

» Option: compile to machine code

» Code can be complex to accurately represent semantics
+ Most efficient
— Most effort to implement, may need short compile-times

402



SQL Expressions

» Arithmetic expressions are fairly simple
> Need to respect data type and check for errors (e.g., overflow)
» Numbers in SQL are (fixed-point) decimals

» String operations can be more complex
P> like expressions
» Regular expressions — strongly benefit from optimized execution
» But: full-compilation may not be worth the effort
often, calling runtime functions is beneficial

» Support Unicode for increased complexity

403



Query Execution: Simplest Approach

» Execute operators individually

» Materialize all results after each operator
HJ

[x]s.matrnr:h.matrnr > “FU” Materia“zation”
/ AN
studenten hoeren + Easy to implement

+ Can dynamicnamically adjust plan

— Inefficient, intermediate results can be big

404



lterator Model®®

» Idea: stream tuples through operators
» Every operator implements set of functions:

» open(): initialization, configure with child operators
» next(): return next tuple (or indicate end of stream)
» close(): free resources

» Current tuple can be pass as pointer or held in global data space
» Possible: only single tuple is processed at a time

55G Graefe. “Volcano—an extensible and parallel query evaluation system”. In: |EEE Transactions on Knowledge and Data
Engineering 6.1 (1994), pp. 120-135.

405



lterator Model: Example

struct TableScan : Iter {
Table* table;
Table::iterator it;
void open() { it = table.begin(); }
Tuple* next() {
if (it != table.end())
return *it++;
return nullptr;
I
struct Select : Iter {
Predicate p;
Iter base;
void open() { base.open(); }
Tuple* next() {
while (Tuple* t = base.next())
if (p(t))
return t;
return nullptr;

P

struct Cross : Iter {
Iter left, right;
Tuple* curLeft = nullptr;
void open() { left.open(); }
Tuple* next() {
while (true) {
if (!curLeft) {
if (!(curLeft = left.next()))
return nullptr;
right.open();
}
if (Tuple* tr = right.next())
return concat(curLeft, tr);
curLeft = nullptr;
}
}
}s

» HashJoin builds hash table on first read; materialization might be useful

406



lterator Model

\4

“Pull-based” approach

v

Widely used (e.g., Postgres)

» Often have separate function for first() or rewind

+ Fairly straight-forward to implement
+ Avoids data copies, no dynamic compilation
— Only single tuple processed at a time, bad locality

— Huge amount virtual function calls

407



Push-based Model?®

» |dea: operators push tuples through query plan bottom-up

» Every operator implements set of functions:

» open(): initialization, store parents
» produce(): produce items

» Table scan calls consume () of parents
» Others call produce() of their child

» consume(): consume items from children, push them to parents

» Only one tuple processed at a time

56T Neumann. “Efficiently compiling efficient query plans for modern hardware”. In: VLDB 4.9 (2011), pp. 539-550.

408



Push-based Model: Example

struct TableScan {
Table table;
Consumer cons;
void produce() {
for (Tuplex t : table)
cons.consume(t, this);
¥
};
struct Select {
Predicate p;
Producer prod;
Consumer cons;
void produce() { prod.produce(); }
void consume(Tuple* t, Producer src) {
if (p(t))
cons. consume (t)

struct Cross {
Producer left, right;
Consumer cons;
Tuple* curLeft = nullptr;
void produce() { left.produce(); }
// Materializing one side might be better
void consume(Tuple* t, Producer src) {
if (src == left) {
curLeft = t;
right.produce();
} else { // src == right
cons.consume (concat (curLeft, t));
}
}
};

409



Push-based Model

\4

“Push-based” approach

» More recent approach

+ Fairly straight-forward, but less intuitive than iterator
-+ Avoids data copies, no dynamic compilation
— Only single tuple processed at a time, bad locality

— Huge amount virtual function calls

410



Pull-based Model vs. Push-based Model®’

» Two fundamentally different approaches
» Push-based approach can handle DAG plans better

» Pull-model: needs explicit materialization or redundant iteration
» Push-model: simply call multiple consumers

» Performance: nearly identical

» Push-based model needs handling for limit operations
otherwise table scan would not stop, even all tuples are dropped

» But: push-based code is nice after inlining

57 A Shaikhha, M Dashti, and C Koch. “Push versus pull-based loop fusion in query engines”. In: Journal of Functional Programming
28 (2018). 411



Pipelining

>

Some operators need materialized data for their operation

» Pipeline breaker: operator materializes input
» Full pipeline breaker: operator materializes complete input before producing

Other operators can be pipelined (i.e., no materialization)
Aggregations
Join needs one side materialized (pipeline breaker on one side)

Sorting needs all data (full pipeline breaker)

System needs to take care of semantics, e.g. for memory management

412



Code Generation for Push-Based Model

» Inlining code in push-based model yields nice code

» No virtual function calls
» Producer iterates over materialized tuples and loads relevant data
» Tight loop over base table — data locality

» Operators of parent operators are applied inside the loop

» Pipeline breaker materializes result (e.g., into hash table)

413



Code Generation: Example

struct Query {
Output out;
Table tabLeft, tabRight;
Tuple* curLeft = nullptr;
void produce() {
Os.matrnr=h.matrnr for (Tuplex tl : tabLeft) {
‘ curlLeft = tl;

X for (Tuple* tr : tabRight) {
// \\ Tuplex t = concat(curlLeft, tr);
studenten hoeren if (t.s_matrnr == t.h_matrnr)

out.write(t);

414



How to Generate Code

» Code generator executes produce/consume methods
» Method bodies don't do actual operations, but construct code
» E.g., call IRBuilder
» Call to helper functions for complex operations
e.g. hash table insert/lookup, string operations, memory allocation, etc.

» Resulting code doesn’t contain produce/consume methods
only loops that iterate over data
» No overhead of function calls

» Generate (at most) one function per pipeline
» Allows for parallel execution of different pipelines

415



What to Generate

» Code generation allows for substantial performance increase

» Fairly popular, even in commercial systems, despite engineering effort
» Competence in compiler engineering is a problem, though

» Bytecode
» Extremely popular: fairly simple, portable, and flexible
» Machine code through programming language (C, C++, Scala, ...)
» Also popular: no compiler knowledge required, but compile-times are bad
» Machine code through compiler IR (mostly LLVM)
» Machine code through specialized IR (Umbra only)

416



What to Generate

Query Plan
HekatoR SE0B2XK 512
\ eg (/,,7%
’ MATHScalaHVoila ‘ HyPer (T
Umbra IR
PIT CLite :
C/CH o LLVM IR

Compi/er

/

Query Program

417



Case Study: Amazon Redshift>®

“Redshift generates C++ code specific to the query plan and the schema being
executed. The generated code is then compiled and the binary is shipped to the
compute nodes for execution [12, 15, 17]. Each compiled file, called a segment,
consists of a pipeline of operators, called steps. Each segment (and each step
within it) is part of the physical query plan. Only the last step of a segment can
break the pipeline.”

58N Armenatzoglou et al. “Amazon Redshift Re-invented”. In: SIGMOD. 2022.

418



Case Study: Amazon Redshift>?

L Execution Time —8—
95 Distkey Event
— 90 Sortkey Event
=
£
g 75 ﬂ\
E 70 \
65
60 d
0 10 20 30 40 50 60 70

Timeline (hours)

“Figure 7(a) illustrates [...] from an out-of-box TPC-H 30TB dataset [...]. The TPC-H
benchmark workload runs on this instance every 30 minutes and we measure the
end-to-end runtime. Over time, more and more optimizations are automatically applied
reducing the total work- load runtime. After all recommendations have been applied,
the workload runtime is reduced by 23% (excluding the first execution that is higher
due to compilation).

59N Armenatzoglou et al. “Amazon Redshift Re-invented”. In: SIGMOD. 2022.

419



Compile Times: Umbra

Lowe_r Latency

10000 M

8000 M~

6000 M—

4000 M

Throughput [Tuples/s]

2000 M~

Latency [s]
® Interpreted % Flying Start 4 LLVM m LLVM opt C (03)

TPC-H sf=30, AMD Epyc 7713 (64 Cores, 1TB RAM)

420



Vectorized Execution

» Problem: still only process single tuple at a time

» Doesn't utilize vector extensions of CPUs

» ldea: process multiple tuples at once

» Also allows eliminating data-dependent branches, which not well-predictable
» Esp. relevant when selectivity is between 10-90%

» Use of SIMD instructions requires column-wise store

» Row-wise store would require gather operation for each load
» Gather is very expensive

421



Vectorized Execution: SIMD Instructions

» Obvious candidate: initial selection over tables
» Load vector of elements, use SIMD operations for comparison
» Write back compressed result to temporary location
for use in subsequent operations
» Special compress instructions (AVX-512, SVE) highly beneficial

» Other operations much more difficult to vectorize

» Initial hash table lookup requires gather; collisions difficult
» When many elements are masked out, performance suffers

422



Vectorized Execution

» Bytecode interpretation substantially benefits from vectorized execution
» Key benefit: less dispatch overhead
» Typically much larger “vectors” (>1000)

» Comparison with non-vectorized machine code generation:

» Vectorization often beneficial for initial scan
» Code generation is faster than bytecode-interpred vec. execution
» But: a good vectorized engine is not necessarily slow

» Vectorized execution probably more popular than code generation

423



Query Compilation — Summary

vVvyvVvyVvyVvyYVYyYvVvyy

Databases have trade-off between low latency and high throughput
Evaluation needed for operators and subscripts

Subscripts easy to compile

Operator execution: full materialization vs. pipelined execution
Pull-based vs. push-based execution

Push-based allows for good code generation

Bytecode and programming languages are widely used in practice

Vectorized execution improves performance without native code gen.

424



Query Compilation — Questions

Why are low compile times important for databases?

What is the difference between push-based and pull-based execution?
Why does push-based execution allow for higher performance?

How to generate code for a query?

How does vectorized execution improve performance?

vvyVvyVvyyvYyy

Why do many database engines not use machine code generation?

425



	Query Compilation
	Overview
	Subscripts
	Query Execution


