Motivation: Fast Query Execution

- Databases are often used in latency-critical situations
 - Mostly transactional workload

- Databases are often used for analyzing large data sets
 - Mostly analytical workload; queries can be complex
 - Latency not that important, but throughput is

- Databases are also used for storing data streams
 - Streaming databases, e.g. monitoring sensors
 - Throughput is important; but queries often simple
Data Representation

- Relational algebra: set/bag of tuples
 - Tuple is sequence of data with different types
 - All tuples in one relation have same schema
 - Order does not matter
 - Duplicates might be possible (bags)

- Might have special values, e.g. NULL

- Values might be variably-sized, e.g. strings

- But: databases have *high* degree of freedom wrt. data representation
Query Plan

- Query often specified in “standardized format” (SQL)
- SQL is transformed into (logical) query plan
- Logical query plan is optimized
 - E.g., selection push down, transforming cross products to joins, join ordering
- Physical query plan
 - Selection of actual implementation for operators
 - Determine use index structures, access paths, etc.
Query Plan: Subscripts

- Query plan strongly depends on query

- Operators have query-dependent subscripts
 - E.g., selection/join predicate, aggregation function, attributes
 - Implementation of these also depends on schema

- Can include arbitrarily complex expressions

- Examples: $\sigma_{s.matrnr=h.matrnr} \land \sigma_{a.x < 5 \cdot (b.y - a.z)}$
Subscripts: Execution

- Option: keep as tree, interpret
 - Simple, flexible
 - Slow

- Option: compile to bytecode
 - More efficient
 - More effort to implement, some compile-time

- Option: compile to machine code
 - Code can be complex to accurately represent semantics
 - Most efficient
 - Most effort to implement, may need short compile-times
SQL Expressions

- Arithmetic expressions are fairly simple
 - Need to respect data type and check for errors (e.g., overflow)
 - Numbers in SQL are (fixed-point) decimals

- String operations can be more complex
 - like expressions
 - Regular expressions – strongly benefit from optimized execution
 - But: full-compilation may not be worth the effort
 - often, calling runtime functions is beneficial
 - Support Unicode for increased complexity
Query Execution: Simplest Approach

$H \Join J_{s.matrnr=h.matrnr}$

- Execute operators individually
- Materialize all results after each operator
- “Full Materialization”

- Easy to implement
- Can dynamically adjust plan
 - Inefficient, intermediate results can be big
Iterator Model

- Idea: stream tuples through operators
- Every operator implements set of functions:
 - `open()`: initialization, configure with child operators
 - `next()`: return next tuple (or indicate end of stream)
 - `close()`: free resources

- Current tuple can be passed as pointer or held in global data space
 - Possible: only single tuple is processed at a time

Iterator Model: Example

```cpp
struct TableScan : Iter {
    Table* table;
    Table::iterator it;
    void open() { it = table.begin(); }
    Tuple* next() {
        if (it != table.end())
            return *it++;
        return nullptr;
    }
};

struct Select : Iter {
    Predicate p;
    Iter base;
    void open() { base.open(); }
    Tuple* next() {
        while (Tuple* t = base.next())
            if (p(t))
                return t;
        return nullptr;
    }
};

struct Cross : Iter {
    Iter left, right;
    Tuple* curLeft = nullptr;
    void open() { left.open(); }
    Tuple* next() {
        while (true) {
            if (!curLeft) {
                if (!(curLeft = left.next()))
                    return nullptr;
                right.open();
            }
            if (Tuple* tr = right.next())
                return concat(curLeft, tr);
            curLeft = nullptr;
        }
    }
};
```

- HashJoin builds hash table on first read; materialization might be useful
Iterator Model

- “Pull-based” approach
- Widely used (e.g., Postgres)
- Often have separate function for `first()` or `rewind`

 - Fairly straight-forward to implement
 - Avoids data copies, no dynamic compilation
 - Only single tuple processed at a time, bad locality
 - *Huge* amount virtual function calls
Push-based Model

- Idea: operators push tuples through query plan bottom-up

- Every operator implements set of functions:
 - open(): initialization, store parents
 - produce(): produce items
 - Table scan calls consume() of parents
 - Others call produce() of their child
 - consume(): consume items from children, push them to parents

- Only one tuple processed at a time

struct TableScan {
 Table table;
 Consumer cons;
 void produce() {
 for (Tuple* t : table)
 cons.consume(t, this);
 }
};

struct Select {
 Predicate p;
 Producer prod;
 Consumer cons;
 void produce() { prod.produce(); }
 void consume(Tuple* t, Producer src) {
 if (p(t))
 cons.consume(t)
 }
};

struct Cross {
 Producer left, right;
 Consumer cons;
 Tuple* curLeft = nullptr;
 void produce() { left.produce(); }
 // Materializing one side might be better
 void consume(Tuple* t, Producer src) {
 if (src == left) {
 curLeft = t;
 right.produce();
 } else { // src == right
 cons.consume(concat(curLeft, t));
 }
 }
};
Push-based Model

- “Push-based” approach
- More recent approach

+ Fairly straightforward, but less intuitive than iterator
+ Avoids data copies, no dynamic compilation
 - Only single tuple processed at a time, bad locality
 - Huge amount virtual function calls
Pull-based Model vs. Push-based Model

- Two fundamentally different approaches
- Push-based approach can handle DAG plans better
 - Pull-model: needs explicit materialization or redundant iteration
 - Push-model: simply call multiple consumers

- Performance: nearly identical
 - Push-based model needs handling for limit operations
 otherwise table scan would not stop, even all tuples are dropped
- But: push-based code is nice after inlining

Pipelining

- Some operators need materialized data for their operation
 - Pipeline breaker: operator materializes input
 - Full pipeline breaker: operator materializes complete input before producing
- Other operators can be *pipelined* (i.e., no materialization)
 - Aggregations
 - Join needs one side materialized (pipeline breaker on one side)
 - Sorting needs all data (full pipeline breaker)
- System needs to take care of semantics, e.g. for memory management
Code Generation for Push-Based Model

- Inlining code in push-based model yields nice code
- No virtual function calls
- Producer iterates over materialized tuples and loads relevant data
 - Tight loop over base table – data locality
- Operators of parent operators are applied inside the loop
- Pipeline breaker materializes result (e.g., into hash table)
\[\sigma_{s.matrnr=h.matrnr} \]

\[
\times
\]

\[
\text{studenten} \quad \text{hoeren}
\]
How to Generate Code

- Code generator executes produce/consume methods
 - Method bodies don’t do actual operations, but construct code
 - E.g., call IRBuilder
 - Call to helper functions for complex operations
 e.g. hash table insert/lookup, string operations, memory allocation, etc.

- Resulting code doesn’t contain produce/consume methods
 only loops that iterate over data
 - No overhead of function calls

- Generate (at most) one function per pipeline
 - Allows for parallel execution of different pipelines
What to Generate

- Code generation allows for substantial performance increase
 - *Fairly* popular, even in commercial systems, despite engineering effort
 - Competence in compiler engineering is a problem, though

- Bytecode
 - Extremely popular: fairly simple, portable, and flexible

- Machine code through programming language (C, C++, Scala, …)
 - Also popular: no compiler knowledge required, but compile-times are bad

- Machine code through compiler IR (mostly LLVM)
- Machine code through specialized IR (Umbra only)
What to Generate

- Query Plan
 - MAT
 - Scala
 - Voila
 - PIT
 - CLite
 - C/C++

- Umbra IR
 - LLVM IR
 - LLVM MIR
 - Emitter
 - Compiler

- Query Program
 - HyPer
 - Umbra
 - Hekaton
 - LegoBase
 - Voila
“Redshift generates C++ code specific to the query plan and the schema being executed. The generated code is then compiled and the binary is shipped to the compute nodes for execution [12, 15, 17]. Each compiled file, called a segment, consists of a pipeline of operators, called steps. Each segment (and each step within it) is part of the physical query plan. Only the last step of a segment can break the pipeline.”

“Figure 7(a) illustrates [...] from an out-of-box TPC-H 30TB dataset [...]. The TPC-H benchmark workload runs on this instance every 30 minutes and we measure the end-to-end runtime. Over time, more and more optimizations are automatically applied reducing the total workload runtime. After all recommendations have been applied, the workload runtime is reduced by 23% (excluding the first execution that is higher due to compilation).
Compile Times: Umbra

TPC-H $sf=30$, AMD Epyc 7713 (64 Cores, 1TB RAM)
Vectorized Execution

- Problem: still only process single tuple at a time
- Doesn’t utilize vector extensions of CPUs

- Idea: process multiple tuples at once
 - Also allows eliminating data-dependent branches, which are not well-predictable
 - Especially relevant when selectivity is between 10–90%

- Use of SIMD instructions requires column-wise store
 - Row-wise store would require gather operation for each load
 - Gather is very expensive
Vectorized Execution: SIMD Instructions

- **Obvious candidate:** initial selection over tables
 - Load vector of elements, use SIMD operations for comparison
 - Write back compressed result to temporary location for use in subsequent operations
 - Special compress instructions (AVX-512, SVE) highly beneficial

- **Other operations much more difficult to vectorize**
 - Initial hash table lookup requires gather; collisions difficult
 - When many elements are masked out, performance suffers
Vectorized Execution

- Bytecode interpretation substantially benefits from vectorized execution
- Key benefit: less dispatch overhead
- Typically much larger “vectors” (>1000)

- Comparison with non-vectorized machine code generation:
 - Vectorization often beneficial for initial scan
 - Code generation is faster than bytecode-interpred vec. execution
 - But: a good vectorized engine is not necessarily slow
- Vectorized execution probably more popular than code generation
Query Compilation – Summary

- Databases have trade-off between low latency and high throughput
- Evaluation needed for operators and subscripts
- Subscripts easy to compile
- Operator execution: full materialization vs. pipelined execution
- Pull-based vs. push-based execution
- Push-based allows for good code generation
- Bytecode and programming languages are widely used in practice
- Vectorized execution improves performance without native code gen.
Query Compilation – Questions

- Why are low compile times important for databases?
- What is the difference between push-based and pull-based execution?
- Why does push-based execution allow for higher performance?
- How to generate code for a query?
- How does vectorized execution improve performance?
- Why do many database engines not use machine code generation?