
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme

Prof. Alfons Kemper, Ph.D.

Database System Concepts for Non-Computer Scientist - WiSe 24/25
Alice Rey (rey@in.tum.de)

http://db.in.tum.de/teaching/ws2425/DBSandere/?lang=en

Sheet 07

Repetition 1
Find those students who have attended all lectures that they wrote a test in.

1

Solution:
The requirement that students in the query result should have attended all lectures
that they were tested in, can be rephrased as follow: “For a given student, there should
be no test/exam, that has no entry in attend”. This can then be translated into sql
easily.

select s.*
from Students s
where not exists(select * from test t

where s.studNr = t.studNr
and not exists

(select *
from attend a
where a.studNr = s.studNr

and a.lectureNr = t.lectureNr));

This query is an example of a “for all query” where the counting-based technique can
not be applied. The reason is that we can not simply count the number of attended
lectures, because we need to make sure that the attended lectures match the ones that
were tested.
An alternative way that only requires one “not exists” would be to connect the students
with their tests and if available add the corresponding attend entry. If there is no
attend available, the “left outer join” will leave the “lecture” column empty (adds a
“null” value). If we find in our “not exists” subquery an entry where the lecture is null,
we can remove

with students_tests_optLectures as (
select s.studnr student, t.lecturenr test, a.lecturenr lecture
from students s inner join test t on s.studnr = t.studnr

left outer join attend a on s.studnr = a.studnr and a.lecturenr =
t.lecturenr

)

select *
from students
where not exists (select * from students_tests_optLectures where

studnr = student and lecture is null)

A second alternative without “not exists” would be to directly search for those students
with a null-entry in the with-statement with an additional where clause. The resulting
“students_test_woLectures” contains a list of all students that took a test without
attending the lecture. Since we are interested in the opposite, we use a set operation
to select all students “except” those who took a test without attending the respective
lecture.

with students_tooktest_didnotattendlecture as (
select distinct s.studnr
from students s inner join test t on s.studnr = t.studnr

left outer join attend a on s.studnr = a.studnr and a.lecturenr =
t.lecturenr

where a.lecturenr is null
)

select studnr from students
except

select * from students_tooktest_didnotattendlecture

2

Exercise 2
„Busy Students“: Find all students that have more weekly hours in total than the average
student. Try to simplify the query using the with construct. (Also consider students that
do not attend any lecture).
Solution:
The following query determines the „busy students“:

select s.*
from Students s
where s.studNr in
(select a.studNr
from attend a, Lectures l
where a.lectureNr = l.lectureNr
group by a.studNr
having sum(weeklyHours) >

(select sum(cast(weeklyHours as decimal(5,2)))
/ count(distinct(s2.studNr))

from Students s2
left outer join attend a2

on a2.studNr = s2.studNr
left outer join Lectures l2

on l2.lectureNr = a2.lectureNr));

By using the with construct or case, we can write a query that is much easier to read.
First with with:

with TotalWeeklyHours as (
select sum(cast(weeklyHours as decimal(5,2))) as CountWeeklyHours
from attend a, Lectures l
where l.lectureNr = a.lectureNr

),
TotalStudents as (

select count(studNr) as CountStudents
from Students

)
select s.*
from Students s
where s.studNr in (

select a.studNr
from attend a, Lectures l
where a.lectureNr = l.lectureNr
group by a.studNr
having sum(weeklyHours)

> (select CountWeeklyHours / CountStudents
from TotalWeeklyHours, TotalStudents));

And here with case:
with WeeklyHoursPerStudent as (
select s.studNr,

cast((case when sum(l.weeklyHours) is null
then 0 else sum(l.weeklyHours)

end) as real) as CountWeeklyHours
from Students s

3

left outer join attend a on s.studNr = a.studNr
left outer join Lectures l on a.lectureNr = l.lectureNr

group by s.studNr
)

select s.*
from Students s
where s.studNr in (select weeklyHours.studNr

from WeeklyHoursPerStudent weeklyHours
where weeklyHours.CountWeeklyHours

> (select avg(CountWeeklyHours)
from WeeklyHoursPerStudent));

Exercise 3
Create SQL DML statements for the following tasks:

a) “Professor meeting”: Move all professors to room 419.
b) “Lazy students”: Remove all students from the database who have ever failed a test

(grade worse than 4.0).
Solution:

a) “Professor meeting”: Move all professors to room 419.
update Professors set room = 419;

b) “Lazy students”: Remove all students from the database who have ever failed a test
(grade worse than 4.0).

delete from students s
where exists (select *

from test t
where t.grade > 4.0
and t.studNr = s.studNr);

Exercise 4
Write a SQL statement to create a view that gives an overview of the difficulty of each
lecture. The difficulty of a lecture is defined as the sum of the weekly hours of that lecture
and its direct predecessors. In our example instantiation of the university schema, the
following query on your view should yield the result (only partially shown):

select * from LectureDifficulties;

lectureNr title difficulty
5216 Bioethik 6

4630 Die 3 Kritiken 4
...

4

Solution: Using a correlated subquery:
create view LectureDifficulties(lectureNr, title, difficulty) as (
select l.lectureNr, l.titel, l.weeklyhours
+ (select (case when sum(l2.weeklyhours) is null then 0

else sum(l2.weeklyhours) end)
from Require r, Lectures l2
where l.lectureNr = r.successor

and r.predecessor = l2.lectureNr)
from Lectures l
);

Using a CTE/with-Statement:
create view LectureDifficulties(lectureNr, title, difficulty) as (

with predecessor_sum as (
select r.successor as lecturenr, sum(l.weeklyhours) as sum
from require r, lectures l
where l.lecturenr = r.predecessor
group by r.successor

)
select l.lecturenr, l.title, (case when predecessor_sum is null

then 0 else predecessor_sum end) + l.weeklyhours
from lectures l left outer join predecessor_sum p on l.lecturenr =

p.lecturenr
);

Optional 5
Considering the following table definitions:

1) create table A(a int primary key);
create table B(b int);

2) create table A(a int primary key);
create table B(b int references A(a));

Assuming the cardinalities (number of tuples) of the relation A and B are |A| and |B|,
respectively. How many tuples are produced by the following queries. If no exact estimate
is possible, give a range. Alternatively you can use mathematical set operations.

a) select * from A, B;

b) select * from A join B on A.a = B.b;

c) select * from A left outer join B on A.a = B.b;

d) select * from A right outer join B on A.a = B.b;

e) select * from A full outer join B on A.a = B.b;

5

Solution:

As ranges:

1) 2)
a) exactly: |A| · |B| exactly: |A| · |B|
b) between 0 and |B| exactly: |B|
c) between |A| and |A|+ |B| − 1 between max(|A|, |B|) and |A|+ |B| − 1
d) exactly: |B| exactly: |B|
e) between max(|A|, |B|) and |A|+ |B| between max(|A|, |B|) and |A|+ |B| − 1

1) A.a is a primary key, B.b is not referencing A.a
a) The query produces a cross product of A and B.
b) The query joins A and B and produces pairs of matching tuples. Since B.b is

not referencing A.a, B.b could contain only values that do not occur in A.a. In
that case we get no results. If all tuples of B match elements of A, we get |B|
elements.

c) The query left outer joins A and B. If an element in A does not find a partner
in B, it is still added to the result with B.b = null. If a tuple in A finds multiple
partners in B, all combinations are added. So, we get at least |A| result tuples
even if B does not contain any matches. If all elements in B.b match with the
same A.a, we have the other extreme: |B| result tuples for the one A.a that
matches all elements in B.b and |A|-1 result tuples for the other tuples in A.

d) The query right outer joins A and B. If an element in B does not find a partner
in B, it is still added to the result with A.a = null. Since A.a is a primary key,
each B.b can only be equal to one A.a value and therefore no duplicates will be
produced which gives us exactly |B| result tuples.

e) The query full outer joins A and B. Elements of both sides are still added to
the result with the respective opposite site set to null. We get at least as many
elements as we have in |A| and in |B|: max(|A|, |B|). If we don’t have any matches
A.a = B.b, then all elements are inserted with the opposite site being set to null
which gives us |A| + |B| elements in total.

2) A.a is a primary key, B.b references A.a
a) The query produces a cross product of A and B.
b) Since B.b is referencing A.a, there exists for each B.b an entry A.a with the same

value, therefore we get exactly |B| result tuples.
c) In the minimum case, we have either more elements in A and we find at most one

match in |B| which gives us |A| elements, or we have more elemts in B and have
for every element in A at least one match in B, then we get |B| result tuples.
Since both is possible we have at least max(|A|,|B|) result tuples. If all elements
in B match the same A.a this gives us |B| result entries and |A|-1 for the rest of
the entries in A that have no match in B.

d) Since each element in B has to find a partner in A, the right outer join will not
add any additional result entries with A.a being null, so we get |B| elements like
for the inner join.

e) If A contains more elements and each element has at most one match in B, we
get |A| elements. If we have more elements in B and all elements of A have at
least one match, we get |B| elements. In total, we will get at least max(|A|,|B|)
elements. Since each element in B has to find a match in A, we get the same
max as for the left outer join: All elements of B are the same and matched to
one element in A producing |B| result tuples, and |A|-1 result tuples for the rest
of the elements in A.

6

