
1

Cloud-Based Data Processing

Consensus

Jana Giceva



 Total order broadcast is very useful for state machine replication.

 Can implement total order broadcast by sending all messages via a single leader.

 Problem: what if the leader crashes / becomes unavailable?

 Manual failover:

a human operator chooses a new leader, and reconfigures each node to use a new leader.

Used in many databases. Fine for planned maintenance.

Unplanned outage? Humans are slow, may take a long time until the system recovers.

 Can we automatically choose a new leader?

Fault-tolerant total order broadcast

2



 Traditional formulation of consensus several nodes come to an agreement about a single value.

 In context of total order broadcast – this value is the next message to be delivered.

 Once one node decides on a certain message order, all nodes will decide the same order.

 A consensus algorithm must satisfy the following properties:

 Uniform agreement – no two nodes decide differently

 Integrity – no node decides twice

 Validity – if a node decides value v, then v was proposed by some node.

 Termination – every node that does not crash, eventually decides some value.

 Common consensus algorithms:

 Paxos (Lamport, ‘98): single-value consensus

 Multi-Paxos: generalization to total order broadcast

 Raft (Ongaro and Osterhaut’14), Viewstampted Replication, Zab: 

FIFO-total order broadcast by default

Consensus and total order broadcast

3



 Paxos, Raft, etc. assume a partially synchronous, crash-recovery system model.

 Why not asynchronous?

 FLP result (Fischer, Lynch, Paterson):

There is no deterministic consensus algorithm that is guaranteed to terminate in an asynchronous 

crash-stop system model.

 Paxos, Raft, etc. use clocks only used for timeouts/failure detector to ensure progress. Safety 

(correctness) does not depend on timing.

 There are also consensus algorithms for a partially synchronous Byzantine system model 

(used in Blockchain).

Consensus system models

4



 Leader election

 Multi-Paxos, Raft, etc. use a leader to sequence messages.

 Use a failure detector (timeout) to determine suspected crash or unavailability of a leader.

 On suspected leader crash, elect a new one.

 Prevent two leaders at the same time (“split brain” problem).

 Ensure <= 1 leader per term:

 Term is incremented every time a leader election is started

 A node can only vote once per term

 Require a quorum of nodes to elect a leader in a term

Core of consensus: Leader

5



 Can guarantee unique leader per term.

 Cannot prevent having multiple leaders from different terms.

Example: node 1 is leader in term 𝑡, but due to network partitioning, it can no longer communicate

with nodes 2 and 3. 

Nodes 2 and 3 may elect a new leader in term 𝑡 + 1.

Node 1 may not even know that a new leader has been elected!

Can we guarantee there is only one leader?

6



 For every decision (message to deliver), the leader must first get acknowledgement from a quorum.

Checking if a leader has been voted out.

7



The Raft consensus algorithm



1. Leader election:

• Select one server to act as leader

• Detect crashes, choose new leader

2. Normal operation: log replication

• Leader accepts commands from clients, appends to its log

• Leader replicates its log to other servers (overwrites inconsistencies)

Raft Decomposition

9



 Leader election

 Select one of the servers to act as a leader

 Detect crashes, choose new leader

 Normal operation (basic log replication)

 Safety and consistency after leader changes

 Neutralizing old leaders

 Client interactions

 Implementing linearizable semantics

 Configuration changes

 Adding and removing servers

Raft Overview

10



Node states and transitions in Raft

11

 Follower

passive, but expects regular 

heartbeats

 Candidate

active, issues RequestVote RPCs to 

get elected as a leader

 Leader

active, issues AppendEntries RPCs

 Replicates its log

 Heartbeats to maintain leadership Normal operation: 1 Leader, N-1 followers.



 At most 1 leader per term

 Some terms have no leader (failed election)

 Each server maintains current term value (no global view)

 Exchanged in every RPC

 Peer has later term? Update term, revert to follower

 Incoming RPC has obsolete term? Reply with error

 Terms identify obsolete information

Terms

12

Term 1 Term 2 Term 3 Term 4 Term 5

Elections Normal Operation Split Brain

time



 Followers

 Candidates

 Leaders

 Persistent State

 Log Entry

 RequestVote RPC

 AppendEntries RPC

Raft Protocol Summary

13



Heartbeats and Timeouts

14

 Servers start up as Followers

 Followers expect to receive RPCs from leaders or candidates

 Leaders must send heartbeats (empty AppendEntry RPCs) to maintain authority

 If electionTimeout elapses with no RPCs:

 Follower assumes leader has crashed

 Follower starts new election

 Timeouts typically 100-500ms



 Increment current term

 Change to Candidate state

 Vote for self

 Send RequestVote RPCs to all other

servers, retry until either:

1. Receive votes from majority of servers:

 become a leader, 

 send heartbeats

2. Receive RPC from valid leader:

 return to follower state, become passive

3. No-one wins election (timeout elapses):

 Increment term, start new election

Election basics

15

Become candidate

currentTerm++,

vote for self

Send requestVote

RPCs to other servers

Become leader,

send heartbeats

Become

follower

timeout

RPC from leader

votes from 

majority



 Safety: allow at most one winner per term

 Each server gives only one vote per term (persist on disk)

 Majority is required to win election 

 Liveness: some candidate must eventually win

 Choose election timeouts randomly in [T, 2T] (e.g., 150-300ms)

 One server usually times out and wins election before other time out

 Works well if T >> broadcast time

 Randomized approach simpler than ranking

Election correctness

16

Voted for 

candidate A

B can’t also

get a majority



 Log entry = index, term, command

 Log stored on stable storage (disk); survives crashes

 Entry committed if safe to execute in state machines

 Replicated on majority of servers by leader of its term

Log Structure

17



 Client sends command to leader

 Leader appends command to its log

 Leader sends AppenEntries RPCs to all followers

 Once new entry committed:

 Leader executes command in its state machine, returns result to client

 Leader notifies followers of committed entries in subsequent AppendEntries RPCs

 Followers execute committed commands in their state machines

 Crashed/slow followers?

 Leader retries AppendEntries RPCs until they succeed

 Optimal performance in common case:

 One successful RPC to any majority of servers

Normal Operation

18



 Goal: high level of consistency between the logs

 If log entries on different servers have the same index and term

 They store the same command

 The logs are identical in all preceding entries

 If a given entry is committed, all preceding entries are also committed.

Log Consistency

19



 AppendEntries RPCs include <index, term> of entry preceding new one(s)

 Follower must contain matching entry; otherwise it rejects request

 Leader retries with lower log index

 Implements an induction step, ensures Log Matching Property

AppendEntries Consistency Check

20



 At the beginning of a new leader’s term:

 Old leader may have left entries partially replicated

 No special steps by new leader: just start normal 

operation

 Leader’s log is “the truth”

 Will eventually make follower’s logs identical to leader’s

 Multiple crashes can leave many extraneous log entries:

Leader Changes

21



 Once a log entry has been applied to a state machine, no other state machine must apply

a different value for that log entry

 Raft safety protocol

 If a leader has decided that a log entry is committed, that entry will be present in the logs of

all future leaders

 This guarantees the safety requirement

 Leaders never overwrite entries in their logs

 Only entries in the leader’s log can be committed

 Entries must be committed before applying to state machine

 Committed -> Present in future leader’s logs

 Restrictions on commitment vs. restrictions on leader election

Safety Requirement

22



 Can’t tell which entries are committed!

 During elections, choose candidate with log most likely to contain all committed entries.

 Candidates include index and term of last log entry in RequestVote RPCs

 Voting server denies vote if its log is more up-to-date

 Logs ranked by <lastTerm, lastIndex>

Picking the Best Leader

23



 Case #1/2: Leader decides entry in current term is committed

 Safe: leader for term 3 must contain entry 4

Committing Entry from Current Term

24



 Case #2/2: Leader is trying to finish committing entry from an earlier term

 Entry 3 not safely committed:

 S5 can be elected as leader for term 5

 If elected, it will overwrite entry 3 on S1, S2 and S3!

Committing Entry from Earlier Term

25



 For a leader to decide an entry is committed:

 Must be stored on a majority of servers

 At least one new entry from leader’s term must also be

stored on majority of servers

 Once entry 4 is committed:

 S5 cannot be elected leader for term 5

 Entries 3 and 4 are both safe.

 Combination of election and commitment rules 

makes Raft safe

New Commitment Rules

26



 Leader changes can result in log inconsistencies

Log Inconsistencies

27



 New leader must make follower logs consistent with its own

 Delete extraneous entries

 Fill in missing entries

 Leader keeps nextIndex for each follower:

 Index of next log entry to send to that follower

 Initialized to (1+leader’s last index)

 When AppendEntries consistency check fails, decrement nextIndex and try again:

Repairing Follower Logs

28



 When follower overwrites inconsistent entry, it deletes all subsequent entries:

Repairing Logs, continued

29



 Deposed leader may not be dead:

 Temporarily disconnected from the network

 Other servers elect a new leader

 Old leader becomes reconnected, attempts to commit log entries

 Terms used to detect stale leaders (and candidates)

 Every RPC contains term of sender

 If sender’s term is older, RPC is rejected, sender reverts to follower and updates its term

 If receiver’s term is older, it reverts to follower, updates its term, then processes RPC normally

 Election updates the terms of majority of servers

 Deposed server cannot commit new log entries

Neutralizing Old Leaders

30



 Send commands to leader

 If leader unknown, contact any server

 If contacted server not leader, it will redirect to leader

 Leader does not respond until command has been logged, committed, 

and executed on the leader’s state machine

 If a request times out (e.g., leader crash):

 Client reissues command to some other server

 Eventually redirected to new leader

 Retry request with new leader

Client Protocol

31



 What if a leader crashes after executing command, but before responding?

 Must not execute the command twice.

 Solution: client embeds a unique id in each command

 Server includes id in log entry

 Before accepting command, the leader checks its log for entry with that id

 If id found in log, ignore the new command, return response from old command

 Result exactly-once semantics as long as client does not crash

Client Protocol, continued

32



 System configuration:

 ID, address for each server

 Determines what constitutes a majority

 Consensus mechanism must support changes in the configuration:

 Replace a failed machine

 Change degree of replication

Configuration Changes

33



 Cannot switch directly from one configuration to another: conflicting majorities may arise

Configuration Changes, continued

34



 Raft uses a 2-phase approach:

 Intermediate phase uses joint consensus 

(i.e., needs majority of both old and new configuration for elections, committed).

 Configuration change is just a log entry; applied immediately on receipt (committed or not)

 Once joint consensus is committed, begin replicating log entry for final configuration

Joint Consensus

35



 Additional details:

 Any server from either configuration can serve as leader

 If current leader is not in Cnew, it must step down once Cnew is committed

Joint Consensus, continued

36



1. Leader election

2. Normal operation

3. Safety and consistency

4. Neutralize old leaders

5. Client protocol

6. Configuration changes

Raft Summary

37



 http://thesecretlivesofdata.com/raft/

Graphical visualization of the Raft protocol

38

http://thesecretlivesofdata.com/raft/


 https://raft.github.io/

Reference for paper and pseudo-code

39

https://raft.github.io/


 Consensus brings a list of safety properties to systems where everything else is uncertain:

 Support for agreement, integrity and validity, and fault-tolerant!

 But that all comes at a cost:

 Synchronous-based replication

 Much worse performance than asynchronous 

 Strict quorum majority to operate

 Needs a minimum of 3 nodes to tolerate 1 failure, or minimum of 5 nodes to tolerate 2 failures

 Static membership algorithm

 Cannot simply add or remove nodes in the cluster

 Relies on timeouts to detect failed nodes

 Known to have issues for highly variable network delays

Limitations of consensus

40



The material covered in this class is mainly based on:

 The Raft lecture slides from John Ousterhaut and Diego Ongaro (Stanford) (link)

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and 

Maintainable Systems” by Martin Kleppmann (Chapter 9) (link)

 Slides from “Distributed Systems” course from University of Cambridge (link)

 Raft (https://raft.github.io/)

References

47

https://raft.github.io/slides/raftuserstudy2013.pdf
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://martin.kleppmann.com/2020/11/18/distributed-systems-and-elliptic-curves.html
https://raft.github.io/

