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 Total order broadcast is very useful for state machine replication.

 Can implement total order broadcast by sending all messages via a single leader.

 Problem: what if the leader crashes / becomes unavailable?

 Manual failover:

a human operator chooses a new leader, and reconfigures each node to use a new leader.

Used in many databases. Fine for planned maintenance.

Unplanned outage? Humans are slow, may take a long time until the system recovers.

 Can we automatically choose a new leader?

Fault-tolerant total order broadcast
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 Traditional formulation of consensus several nodes come to an agreement about a single value.

 In context of total order broadcast – this value is the next message to be delivered.

 Once one node decides on a certain message order, all nodes will decide the same order.

 A consensus algorithm must satisfy the following properties:

 Uniform agreement – no two nodes decide differently

 Integrity – no node decides twice

 Validity – if a node decides value v, then v was proposed by some node.

 Termination – every node that does not crash, eventually decides some value.

 Common consensus algorithms:

 Paxos (Lamport, ‘98): single-value consensus

 Multi-Paxos: generalization to total order broadcast

 Raft (Ongaro and Osterhaut’14), Viewstampted Replication, Zab: 

FIFO-total order broadcast by default

Consensus and total order broadcast
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 Paxos, Raft, etc. assume a partially synchronous, crash-recovery system model.

 Why not asynchronous?

 FLP result (Fischer, Lynch, Paterson):

There is no deterministic consensus algorithm that is guaranteed to terminate in an asynchronous 

crash-stop system model.

 Paxos, Raft, etc. use clocks only used for timeouts/failure detector to ensure progress. Safety 

(correctness) does not depend on timing.

 There are also consensus algorithms for a partially synchronous Byzantine system model 

(used in Blockchain).

Consensus system models
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 Leader election

 Multi-Paxos, Raft, etc. use a leader to sequence messages.

 Use a failure detector (timeout) to determine suspected crash or unavailability of a leader.

 On suspected leader crash, elect a new one.

 Prevent two leaders at the same time (“split brain” problem).

 Ensure <= 1 leader per term:

 Term is incremented every time a leader election is started

 A node can only vote once per term

 Require a quorum of nodes to elect a leader in a term

Core of consensus: Leader
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 Can guarantee unique leader per term.

 Cannot prevent having multiple leaders from different terms.

Example: node 1 is leader in term 𝑡, but due to network partitioning, it can no longer communicate

with nodes 2 and 3. 

Nodes 2 and 3 may elect a new leader in term 𝑡 + 1.

Node 1 may not even know that a new leader has been elected!

Can we guarantee there is only one leader?
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 For every decision (message to deliver), the leader must first get acknowledgement from a quorum.

Checking if a leader has been voted out.
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The Raft consensus algorithm



1. Leader election:

• Select one server to act as leader

• Detect crashes, choose new leader

2. Normal operation: log replication

• Leader accepts commands from clients, appends to its log

• Leader replicates its log to other servers (overwrites inconsistencies)

Raft Decomposition
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 Leader election

 Select one of the servers to act as a leader

 Detect crashes, choose new leader

 Normal operation (basic log replication)

 Safety and consistency after leader changes

 Neutralizing old leaders

 Client interactions

 Implementing linearizable semantics

 Configuration changes

 Adding and removing servers

Raft Overview
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Node states and transitions in Raft
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 Follower

passive, but expects regular 

heartbeats

 Candidate

active, issues RequestVote RPCs to 

get elected as a leader

 Leader

active, issues AppendEntries RPCs

 Replicates its log

 Heartbeats to maintain leadership Normal operation: 1 Leader, N-1 followers.



 At most 1 leader per term

 Some terms have no leader (failed election)

 Each server maintains current term value (no global view)

 Exchanged in every RPC

 Peer has later term? Update term, revert to follower

 Incoming RPC has obsolete term? Reply with error

 Terms identify obsolete information

Terms
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Term 1 Term 2 Term 3 Term 4 Term 5

Elections Normal Operation Split Brain

time



 Followers

 Candidates

 Leaders

 Persistent State

 Log Entry

 RequestVote RPC

 AppendEntries RPC

Raft Protocol Summary
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Heartbeats and Timeouts
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 Servers start up as Followers

 Followers expect to receive RPCs from leaders or candidates

 Leaders must send heartbeats (empty AppendEntry RPCs) to maintain authority

 If electionTimeout elapses with no RPCs:

 Follower assumes leader has crashed

 Follower starts new election

 Timeouts typically 100-500ms



 Increment current term

 Change to Candidate state

 Vote for self

 Send RequestVote RPCs to all other

servers, retry until either:

1. Receive votes from majority of servers:

 become a leader, 

 send heartbeats

2. Receive RPC from valid leader:

 return to follower state, become passive

3. No-one wins election (timeout elapses):

 Increment term, start new election

Election basics
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Become candidate

currentTerm++,

vote for self

Send requestVote

RPCs to other servers

Become leader,

send heartbeats

Become

follower

timeout

RPC from leader

votes from 

majority



 Safety: allow at most one winner per term

 Each server gives only one vote per term (persist on disk)

 Majority is required to win election 

 Liveness: some candidate must eventually win

 Choose election timeouts randomly in [T, 2T] (e.g., 150-300ms)

 One server usually times out and wins election before other time out

 Works well if T >> broadcast time

 Randomized approach simpler than ranking

Election correctness
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Voted for 

candidate A

B can’t also

get a majority



 Log entry = index, term, command

 Log stored on stable storage (disk); survives crashes

 Entry committed if safe to execute in state machines

 Replicated on majority of servers by leader of its term

Log Structure
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 Client sends command to leader

 Leader appends command to its log

 Leader sends AppenEntries RPCs to all followers

 Once new entry committed:

 Leader executes command in its state machine, returns result to client

 Leader notifies followers of committed entries in subsequent AppendEntries RPCs

 Followers execute committed commands in their state machines

 Crashed/slow followers?

 Leader retries AppendEntries RPCs until they succeed

 Optimal performance in common case:

 One successful RPC to any majority of servers

Normal Operation
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 Goal: high level of consistency between the logs

 If log entries on different servers have the same index and term

 They store the same command

 The logs are identical in all preceding entries

 If a given entry is committed, all preceding entries are also committed.

Log Consistency
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 AppendEntries RPCs include <index, term> of entry preceding new one(s)

 Follower must contain matching entry; otherwise it rejects request

 Leader retries with lower log index

 Implements an induction step, ensures Log Matching Property

AppendEntries Consistency Check
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 At the beginning of a new leader’s term:

 Old leader may have left entries partially replicated

 No special steps by new leader: just start normal 

operation

 Leader’s log is “the truth”

 Will eventually make follower’s logs identical to leader’s

 Multiple crashes can leave many extraneous log entries:

Leader Changes

21



 Once a log entry has been applied to a state machine, no other state machine must apply

a different value for that log entry

 Raft safety protocol

 If a leader has decided that a log entry is committed, that entry will be present in the logs of

all future leaders

 This guarantees the safety requirement

 Leaders never overwrite entries in their logs

 Only entries in the leader’s log can be committed

 Entries must be committed before applying to state machine

 Committed -> Present in future leader’s logs

 Restrictions on commitment vs. restrictions on leader election

Safety Requirement
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 Can’t tell which entries are committed!

 During elections, choose candidate with log most likely to contain all committed entries.

 Candidates include index and term of last log entry in RequestVote RPCs

 Voting server denies vote if its log is more up-to-date

 Logs ranked by <lastTerm, lastIndex>

Picking the Best Leader
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 Case #1/2: Leader decides entry in current term is committed

 Safe: leader for term 3 must contain entry 4

Committing Entry from Current Term
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 Case #2/2: Leader is trying to finish committing entry from an earlier term

 Entry 3 not safely committed:

 S5 can be elected as leader for term 5

 If elected, it will overwrite entry 3 on S1, S2 and S3!

Committing Entry from Earlier Term
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 For a leader to decide an entry is committed:

 Must be stored on a majority of servers

 At least one new entry from leader’s term must also be

stored on majority of servers

 Once entry 4 is committed:

 S5 cannot be elected leader for term 5

 Entries 3 and 4 are both safe.

 Combination of election and commitment rules 

makes Raft safe

New Commitment Rules
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 Leader changes can result in log inconsistencies

Log Inconsistencies
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 New leader must make follower logs consistent with its own

 Delete extraneous entries

 Fill in missing entries

 Leader keeps nextIndex for each follower:

 Index of next log entry to send to that follower

 Initialized to (1+leader’s last index)

 When AppendEntries consistency check fails, decrement nextIndex and try again:

Repairing Follower Logs
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 When follower overwrites inconsistent entry, it deletes all subsequent entries:

Repairing Logs, continued
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 Deposed leader may not be dead:

 Temporarily disconnected from the network

 Other servers elect a new leader

 Old leader becomes reconnected, attempts to commit log entries

 Terms used to detect stale leaders (and candidates)

 Every RPC contains term of sender

 If sender’s term is older, RPC is rejected, sender reverts to follower and updates its term

 If receiver’s term is older, it reverts to follower, updates its term, then processes RPC normally

 Election updates the terms of majority of servers

 Deposed server cannot commit new log entries

Neutralizing Old Leaders
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 Send commands to leader

 If leader unknown, contact any server

 If contacted server not leader, it will redirect to leader

 Leader does not respond until command has been logged, committed, 

and executed on the leader’s state machine

 If a request times out (e.g., leader crash):

 Client reissues command to some other server

 Eventually redirected to new leader

 Retry request with new leader

Client Protocol
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 What if a leader crashes after executing command, but before responding?

 Must not execute the command twice.

 Solution: client embeds a unique id in each command

 Server includes id in log entry

 Before accepting command, the leader checks its log for entry with that id

 If id found in log, ignore the new command, return response from old command

 Result exactly-once semantics as long as client does not crash

Client Protocol, continued
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 System configuration:

 ID, address for each server

 Determines what constitutes a majority

 Consensus mechanism must support changes in the configuration:

 Replace a failed machine

 Change degree of replication

Configuration Changes
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 Cannot switch directly from one configuration to another: conflicting majorities may arise

Configuration Changes, continued
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 Raft uses a 2-phase approach:

 Intermediate phase uses joint consensus 

(i.e., needs majority of both old and new configuration for elections, committed).

 Configuration change is just a log entry; applied immediately on receipt (committed or not)

 Once joint consensus is committed, begin replicating log entry for final configuration

Joint Consensus
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 Additional details:

 Any server from either configuration can serve as leader

 If current leader is not in Cnew, it must step down once Cnew is committed

Joint Consensus, continued
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1. Leader election

2. Normal operation

3. Safety and consistency

4. Neutralize old leaders

5. Client protocol

6. Configuration changes

Raft Summary
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 http://thesecretlivesofdata.com/raft/

Graphical visualization of the Raft protocol
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 https://raft.github.io/

Reference for paper and pseudo-code
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 Consensus brings a list of safety properties to systems where everything else is uncertain:

 Support for agreement, integrity and validity, and fault-tolerant!

 But that all comes at a cost:

 Synchronous-based replication

 Much worse performance than asynchronous 

 Strict quorum majority to operate

 Needs a minimum of 3 nodes to tolerate 1 failure, or minimum of 5 nodes to tolerate 2 failures

 Static membership algorithm

 Cannot simply add or remove nodes in the cluster

 Relies on timeouts to detect failed nodes

 Known to have issues for highly variable network delays

Limitations of consensus
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The material covered in this class is mainly based on:

 The Raft lecture slides from John Ousterhaut and Diego Ongaro (Stanford) (link)

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and 

Maintainable Systems” by Martin Kleppmann (Chapter 9) (link)

 Slides from “Distributed Systems” course from University of Cambridge (link)

 Raft (https://raft.github.io/)
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