
1

Cloud-Based Data Processing

Consistency

Jana Giceva

 Consistency guarantees needed

when data is replicated!

 Inconsistencies occur regardless of

the replication method.

 Most systems provide at least

eventual consistency –

all replicas eventually converge to

the same value/state.

 The edge cases of eventual

consistency only become apparent

when there is a fault in the system or

at high concurrency.

Consistency guarantees

2
image src: Wikipedia

 Consistency models vs isolation levels:

Transaction isolation – avoiding race conditions due to concurrently executing transactions.

 Serializable

 Repeatable read

 Read committed

 Read uncommitted

Distributed consistency – coordinating the state of replicas in the face of delays and faults.

 Strict

 Linearizability

 Causal

 Monotonic reads/writes

 Read-your-writes

 etc.

Consistency models vs isolation levels

3

Consistency

A word that means many different things in different contexts:

 ACID: a transaction transforms the database from one consistent state to another

Here consistent = satisfying application specific invariants

e.g., every course with students enrolled must have at least one lecturer

 Read-after-write consistency (Lecture 3: Replication)

 Replication: replica should be consistent with other replicas

 Consistent = in the same state (when exactly?)

 Consistent = read operations return same result?

 Consistency model: many to choose from

Consistency

5

 Recall atomicity in the context of ACID transactions

 A transaction either commits or aborts

 If it commits, its updates are durable

 If it aborts, it has no visible side-effects

 ACID consistency (preserving invariants) relies on atomicity

 If the transaction updates data on multiple nodes, this implies

 Either all nodes must commit, or all must abort

 If any node crashes, all must abort

 Ensuring this is the atomic commitment problem.

Looks a bit similar to consensus?

Distributed Transactions

6

Consensus

 One or more nodes propose a value

 Any one of the proposed values is decided

 Crashed nodes can be tolerated, as long as a

quorum is working.

Atomic commit versus consensus

7

Atomic commit

 Every node votes whether to commit or abort

 Must commit if all nodes vote to commit;

must abort if 1+ nodes vote to abort

 Must abort if a participating node crashes

Two-phase commit (2PC)

8

 Two-phase commit protocol

most common algorithm to ensure atomic

commitment across multiple nodes.

[Gray, 1978]

 Not to be confused with two-phase locking (2PL).

 What if the coordinator crashes?

 Coordinator writes the decision to disk

 When it recovers, it reads decision from disk

and sends it to replicas

 Problem if coordinator crashes after prepare,

but before broadcasting decision

 Algorithm is blocked until coordinator recovers

 Solution: consensus (total order broadcast).

Fault-tolerant 2PC (1/2)

9

 Fault tolerant 2PC based on Paxos Commit

[Gray and Lamport, 2006]

 Every node that participates in the transaction

uses total order broadcast to disseminate its vote

(commit or abort).

 If node A suspects that node B has failed, then A

may try to vote to abort on behalf of B.

Fault-tolerant 2PC (2/2)

10

 Fault tolerant 2PC based on Paxos Commit

[Gray and Lamport, 2006]

 Potential race condition if two (conflicting) votes

received from the same node (e.g., by node A

voting on B’s behalf).

 Resolved due to total order broadcast +

counting only the first vote to arrive.

Linearizability

 Multiple nodes concurrently accessing replicated data.

How do we define consistency here?

 The strongest option: linearizability [Herlihy and Wing, 1990]

 Informally: every operation takes effect atomically, sometime after it started and before it finished

 All operations behave as if executed on a single copy of the data

even if there are in fact multiple replicas

 Consequence: every operation returns an “up to date” value (a.k.a. “strong consistency”)

Not just for distributed systems, also in shared memory concurrency

(memory on multicore CPUs is not linearizable by default)

 Note: linearizability ≠ serializability!

Linearizability

12

 Serializability – isolation property of transactions, where every transaction may read and write multiple

objects. It guarantees that transactions will behave the same as if they had executed in some serial order.

 Linearizability – recency guarantee on reads and writes of a register (an individual object). It does not

group operations together into transactions, so it does not prevent problems such as write skew or

phantoms, unless you take additional measures such as materializing conflicts.

 A database may provide both Serializability and Linearizability, and this combination is known as

strict serializability or strong one-copy serializability (strong 1SR).

Implementations of 2PL or actual serial execution are typically linearizable.

However, SSI (serializable snapshot isolation) is not, by design.

Linearizability vs Serializability

13

 In what circumstances is linearizability useful?

 Locking and leader election

Coordination services like ZooKeeper and etc are often used to implement distributed locks and leader

election. Libraries like Apache Curator provide higher-level recipes on top of ZooKeeper (e.g., how to

actually implement locks).

 Constraints and uniqueness guarantees

Uniqueness constraints are common in databases. If you want to enforce it, you need linearizability.

The operation is similar to an atomic compare-and-swap.

 Cross-channel timing dependencies

Coordinating message delivery through

more than one communicating channel.

When do we want linearizability?

14

 The main purpose is to guarantee that nodes

observe the system in an “up-to-date” state.

 We saw it before with read-after-write

consistency, but it defines consistency model

for reads and writes by the same node.

Linearizability generalizes this idea to

operations made concurrently by different

nodes.

 From the client’s side, an operation takes some

amount of time:

 starts when the request is sent,

 Finishes when the result is returned.

Read-after-write consistency revisited

15

 Focus on client-observable behavior:

when and what an operation returns.

 Ignore how the replication system is implemented.

 Did operation A finish before operation B started?

 Even if the operations are on different nodes.

 This is not happens-before:

we want client 2 to read value written by client 1,

even if the clients have not communicated!

From the client’s point of view

16

 Client 2’s get operation overlaps in time with client

1’s set operation.

 Maybe the set operation takes effect first?

 But also, the get operation may be executed first.

 Either outcome is fine in this case.

 Note that, operation A finishing before operation B

started is not the same as A happened before B.

 It is possible that two operations do not overlap in

time, but are still concurrent according to the

happens-before relation

 because no communication has occurred between

the operations.

Operations overlapping in time

17

 Linearizability is not only a

relationship between a set and

a get, but also among multiple

get operations.

 Example: replica A gets the

update value to x quickly, but

replicas B and C are delayed.

Not linearizable, despite quorum reads/writes

18

 Client 2’s operation finishes before client 3’s operation starts.

 Linearizability therefore requires client 3’s operation to observe

a state no older than client 2’s operation.

 This example violates linearizability because 𝑣0 is older than 𝑣1.

Not linearizable, despite quorum reads/writes

19

 Can make quorum operations

linearizable

[ABD algorithm, Attiya et al. 1995]

 As before, send the updates to all

replicas, and wait for acknowledgement

from a quorum of replicas.

 For a read, a client must first send the

request to all replicas and wait for

responses from a quorum.

 If some include a more recent value

then the client must write back the

most recent value to all stale replicas

(like in read-repair).

 The get operation finishes only after the most recent value is stored on a quorum of replicas.

Making quorum reads/writes linearizable

20

 To ensure linearizability of get (quorum read) and set (blind write to quorum):

 When an operation finishes, the value read/written is stored on a quorum of replicas.

 Every subsequent quorum operation will see that value.

 Multiple concurrent writes may overwrite each other.

 What about an atomic compare-and-swap operation?

 𝐶𝐴𝑆(𝑥, 𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒, 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒) sets 𝑥 to 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒 iff current value of 𝑥 is 𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒.

 Can we implement linearizable compare-and-swap in a distributed system?

 Not, with the ABD algorithm.

 But, yes with consensus (total order broadcast to the rescue again!).

Linearizability for different types of operations

21

Linearizable compare-and-swap (CAS)

22

 Broadcast every operation we want to

perform.

 Execute the operation when it is delivered.

 Like in state-machine replication, this ensures

that an operation has the same effect and

outcome on every replica.

Eventual consistency

 Linearizability advantages:

 Makes a distributed system behave as if it were non-distributed.

 Simple for applications to use.

 Downsides:

 Performance cost: lots of messages and waiting for responses

 Scalability limits: leader can be a bottleneck.

 Availability problems: if you cannot contact a quorum of nodes, you cannot process any operation.

 Eventual consistency: a weaker model than linearizability. Different trade-off choices.

Eventual consistency

24

 A system can be either strongly Consistent (linearizable), or Available in the presence

of a network Partition [Gilbert and Lynch, 2002].

The CAP theorem

25

C must either wait indefinitely for

the network to recover, or return a

potentially stale value.

A system can be both linearizable

and available as long as there is

no network partition

[Kleppmann, 2015].

 Optimistic replication: Replicas process operations based only on their local state.

 Eventual consistency: If there are no more updates, eventually all replicas will be in the

same state [Vogels, 2009] -- no guarantees how long it may take.

 Strong eventual consistency [Shapiro et al., 2011].

 Eventual delivery: every update made to one non-faulty replica is eventually processed

by every non-faulty replica.

 Convergence: any two replicas that have processed the same set of updates are in the

same state (even if updates where processed in a different order).

 Properties:

 Does not require waiting for network communication

 Causal broadcast (or weaker) can disseminate updates

 Concurrent updates → conflicts need to be resolved.

Eventual consistency

26

 Many examples where causality is important.

 Causality imposes an ordering on events:

 cause comes before effect;

 a message is sent before that message is received;

 the question comes before the answer.

 If a system obeys the ordering imposed by causality, we say that it is causally consistent.

 For example, snapshot isolation provides causal consistency:

when you read from the database, and you see some piece of data,

then you must also be able to see any data that causally preceded it.

Causal consistency

27

 The difference between a total order and a partial order is reflected in the two consistency models:

 Linearizability: total order of operations: if the system behaves as if there is only a single copy of the

data, and every operation is atomic. For any two operations we can always say which one happened first.

 Causality: we say that two operations are concurrent if neither happened before the other – i.e., they are

incomparable if they are concurrent. This means causality defines a partial but not total order.

 Linearizability implies causality, but comes at a cost.

 Causal consistency is the strongest possible consistency model that does not slow down due to network

delays, and remains available in the face of network partitions.

 Many systems that appear to require linearizability in fact only really require causal consistency, so

researchers are actively working on that topic.

Causality vs. linearizability

28

Problem Must wait for

communication

Requires synchrony

Atomic commit All participating nodes Partially synchronous

Consensus,

total order broadcast,

linearizable CAS

Quorum Partially synchronous

Linearizable get/set Quorum Asynchronous

Eventual consistency,

causal broadcast,

FIFO broadcast

Local replica only Asynchronous

Minimum system model requirements

29

s
tr

e
n
g
th

 o
f

a
s
s
u
m

p
ti
o
n
s

Collaboration and conflict resolution

30

 Today, we use a lot of collaboration software

 Examples: calendar sync, Google docs, etc.

 Several users/devices working on a shared file / documents

 Each user device has local replica of the data

 Update local replica anytime (even while offline), sync when network available

 Challenge: how to reconcile concurrent updates?

 Families of algorithms:

 Conflict-free Replicated Data Types (CRDTs)

 Operation-based

 State-based

 Operational Transformations (OT)

Collaboration and conflict resolution

31

 Example: two nodes initially start with the

same calendar entry.

 Node A changes the title from “Lecture”

to “Lecture 1”

 Node B changes the time from 12:00 to

10:00.

 The updates happen while A and B are

temporarily unable to communicate.

 Once the connection is restored, the

final calendar entry reflects both the

change in the title and to the time.

Conflicts due to concurrent updates

32

 Conflict-free Replicated Data Types (CRDTs) are a family of algorithms that perform such conflict

resolution [Shapiro et al., 2011].

 Replicated object that an application accesses

through the object-oriented interface of an

abstract datatype: set, list, map, tree, etc.

 Example – map from keys to values

 Local state consists of the set of values

(timestamp, key, value) triples.

 On read, return the local value

 On write, create a globally unique timestamp

and do reliable broadcast of the triple.

 Resolve conflicts using the last-writer-wins

(LWW) approach.

Operation-based CRDT: map

33

 Reliable broadcast may deliver updates in any order:

 broadcast(set, 𝑡1, “title”, “Lecture 1”)

 broadcast(set, 𝑡2, “time”, “10:00)

 Recall strong eventual consistency:

 Eventual delivery: every update made to one non-faulty replica is eventually processed by every non-

faulty replica

 Convergence: any two replicas that have processed the same set of updates are in the same state

 CRDT algorithm implements this:

 Reliable broadcast ensures every operation is eventually delivered to every (non-crashed) replica

 Applying an operation is commutative: order of delivery does not matter

Operation-based CRDTs

34

An alternative CRDT algorithm for the

same map datatype.

 The definition of values and the function for

reading the value of a key is as before.

 The update: instead of broadcasting each

operation, we directly apply the value

locally and then broadcast the whole of

values.

 On delivery of the message to another

replica, we merge together the two replica

states using a merge function.

 The function compares the timestamp of

entries with the same key.

State-based map CRDT

35

 Merge operation ⊔ must satisfy: ∀ 𝑠1, 𝑠2, 𝑠3, …

 Commutative: 𝑠1⊔ 𝑠2 = 𝑠2⊔ 𝑠1

 Associative: 𝑠1⊔ 𝑠2 ⊔ 𝑠3 = 𝑠1⊔ 𝑠2⊔ 𝑠3

 Idempotent: 𝑠1⊔ 𝑠1 = 𝑠1

 State-based versus operation-based:

 Operation-based CRDT typically has smaller messages

 State-based CRDT can tolerate message loss/duplication

 Not necessarily uses broadcast

 Can also merge concurrent updates to replicas e.g., in quorum replication, etc.

State-based CRDTs

36

 Set-up: think of a collaboratively editable

text document as a list of characters.

 When several users may concurrently

update a text document: if not careful, their

operations may clash on more complex

data structures like lists.

 Instead of reaching to a state ABCD,

user A gets ABDC.

Collaborative text editing: the problem

37

Operational transformation – class of

algorithms specifically targeting such conflicts

 A node keeps track of the history of

operations it has performed.

 When it receives another node’s operation

that is concurrent to its own operations, it

transforms the incoming operation relative

to its own concurrent operations.

 𝑇 𝑜𝑝1, 𝑜𝑝2 takes two operations: incoming

and local and returns a transformed

operation 𝑜𝑝1
′ , such that applying 𝑜𝑝1

′ on

the local state has the same effect as

originally intended.

Operational transformation

38

Rather than identifying the positions in text

using indexes, label each character with a

unique identifier.

For e.g., a rational number in range (0,1):

 0 represents the beginning of a text,

1 the end.

 When inserting a new character

between two existing ones, we assign

the character with a position number

between 𝑖 and 𝑗, i. e. , ൗ𝑖+𝑗
2 .

 This way, conflict resolution becomes

much simpler.

Text editing CRDT

39

Operation-based text CRDT (1/2)

40

Operation-based text CRDT (2/2)

41

 Use causal broadcast so that insertion of a character is delivered before its deletion

 Insertion and deletion of different characters commute

Overview of systems

42

Taxonomy of existing KVS systems

43

The material covered in this class is mainly based on:

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and

Maintainable Systems” by Martin Kleppmann (Chapter 9) (link)

 Slides from “Distributed Systems” course from University of Cambridge (link)

Papers:

 Consistency, Availability, and Convergence – Mahajan et al. (TR from UT Austin, 2011)

 Highly Available Transactions: Virtues and Limitations – Bailis et al. (VLDB’14)

 Don’t settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS – Lloyd et al. (SOSP’11)

 A comprehensive study of Convergent and Commutative Replicated Data Types – Shapiro et al. (2011)

 Anna: a KVS for Any Scale – Wu et al. (ICDE’18)

Other useful resources:

 https://www.microsoft.com/en-us/research/wp-content/uploads/2011/10/ConsistencyAndBaseballReport.pdf

References

44

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://martin.kleppmann.com/2020/11/18/distributed-systems-and-elliptic-curves.html

