
24

Cloud-Based Data Processing

Distributed Data: Partitioning

Jana Giceva



 What are the benefits of replication?

 What are the challenges?

 In leader-based replication, the leader sends a replication log to its followers. 

What are different ways to implement it?

 What must one be careful of when issuing the read requests to the followers?

 What is leaderless replication?

 How is it implemented?

 Give an example of a quorum.

Replication 

25



 There are two common ways data is distributed across multiple nodes.

 Replication

 Keeps a copy of the same data on different nodes (potentially different locations).

 Provides redundancy – If some nodes are unavailable, others can continue serving requests.

 Reduces latency especially for high load or wide distribution of users across the globe.

 Partitioning

 Split the big dataset into smaller subsets called partitions.

 Each partition placed on a separate node.

 One can combine both replication and partitioning!

Replication vs. Partitioning

26



Partitioning



 For very large datasets, or very high throughput, we need to break the data up into partitions.

 Q: Why?

 Clarifying terminology:

 What we call a partition here is called a shard in MongoDB, Elasticsearch, and SolrCloud; region in 

Hbase, a tablet in BigTable, a vnode in Cassandra and Riak, and a vBucket in Couchbase.

 Partitions are defined in such a way that a piece of data belongs to exactly one partition.

Partitioning

28



 Improve scalability

 Different partitions can be placed on different nodes in a shared nothing cluster

 Improve performance

 Data operations on each partition work on smaller data volume

 Operations that affect more than one partition can run in parallel

 Improve security

 Can separate sensitive and non-sensitive data into different partitions and 

apply different security controls to the sensitive data

 Improve availability

 Avoid a single point of failure. If one partition becomes unavailable, the others are still intact.

 Allows better customization

Why partition data?

29



 Horizontal partition (sharding):

 Each partition is a separate data store, but all partitions have the same schema

 Each partition is known as a shard and holds a specific subset of the data

 e.g., all the orders for a specific set of customers

 Vertical partitioning:

 Each partition holds a subset of the fields for items in the data store

 e.g., frequently accessed fields, may be placed in one vertical partition and 

less frequently accessed fields in another.

 Functional partitioning:

 Data is aggregated according to how it is used by each bounded context in the system

 e.g., An e-commerce might store invoice data in one partition and product inventory data in another

Designing partitions

30



 Example horizontal partitioning or sharding

Horizontal partitioning (sharding)

31

Product inventory data is divided into 

shards based on the product key. 

Each shard holds the data for a cont.

range of shard keys (A-G and H-Z)

Spread the load over more nodes, to 

reduce contention and response time.



 The most important factor is the choice of sharding key.

 Q: What’s should we optimize for with the sharding key?

 Goal is 

 Not necessarily to have the shards the same size, but

 to spread the data and query load evenly across the nodes.

 Q: What if the partitioning is not fair?

 If the partitioning is unfair, some partitions will have more data or queries, we call it skewed.

 A partition with disproportionally high load is called a hot spot.

Horizontal partitioning (sharding)

32



Horizontal Partitioning strategies

33

 by Key Range

 Assign a continuous range of keys to each partition.

 The range of keys are not necessarily evenly spaced, 

because your data may not be evenly distributed.

BigTable, Hbase, RethinkDB, and MongoDB before v2.4

 Advantage:

 Within each partition we can keep the keys in sorted order 

 range scans are fast and easy

 Can fetch several related records in one query

 Disadvantage:

 Certain access patterns can lead to hot spots



Horizontal Partitioning strategies II

34

 by Hash of Key

 hash a key to determine the partition

 a partition for a range of hashes

 if a key’s hash value belongs to a 

partition’s range then the key is placed

in that partition.

 Advantage:

 No problem with skew and hot spots (overstatement, we may still have issues, but they are rare)

 Disadvantage:

 No longer easy to do efficient range queries.

 e.g., range queries on the primary key are not supported by Riak, Couchbase or Voldemort.



 Rebalancing is 

often necessary

 Strategies of rebalancing:

 Q: How not to do it? 

 Hash mod N.

 If the number of nodes N changes, most of the keys will need to be moved from one node to another.

Rebalancing partitions

35



 Rebalancing is often necessary

 Strategies of rebalancing:

 Q: Can you think of a better way?

 Fix the number of partitions P so that P >> N

 If a node is removed/added to the cluster, 

only a few (entire) partitions need to be moved.

 The number of partitions remains the same, and the assignment of keys to partitions is not changed.

 Q: What happens when a partition’s size exceeds the limit?

 split it into two (like in a B-tree).

 Dynamic partitioning

 Applicable with range and hash partitioning

 Q: How do you ensure proportional load across the nodes?

 Have a fixed number of partitions per node. 

Rebalancing partitions

36



 Open question: when a client wants to make a request, how does it know which node to ask?

 As partitions are rebalanced, the assignment of partitions to nodes changes

 Someone needs to have the top-level overview.

 Many systems rely on a coordination service such as Zookeeper to keep track of cluster meta data. 

 Others use alternatives like gossip protocol among the nodes to disseminate cluster state changes.

Request routing

37

 Three main options:

 The node layer

 The routing tier (or third party)

 The clients

 It is a challenging problem as all

participants need to agree 

requires reaching a consensus.



 The routing tier can subscribe to this information from the ZooKeeper service

Example using ZooKeeper to keep track

38



 Goal to reduce the I/O and performance costs when fetching items that are frequently accessed.

Vertical partitioning

39

 Different properties of an item are stored in 

different partitions.

 One partition holds data that is accessed more 

frequently: product name, description and price

 Another holds inventory data: the stock count 

and the last ordered date.

 Application regularly gets the product name, desc. 

and price when displaying the product details.

 Stock count and last ordered data are commonly 

used together and are more frequently modified.



 Q: Can you think of any other advantages?

 Other advantages:

 Relatively slow moving data can be separated from the more dynamic data

 Slow moving data is a good candidate for an application to cache in memory

 Sensitive data can be stored in a separate partition with additional security control.

 Ideally suited for column-oriented data stores.

Vertical partitioning cont.

40



 When possible to identify a bounded context, 

functional partitioning is a way to improve 

isolation and data access performance.

 Another common use is to separate read-write data 

from read-only data

 This strategy can help reduce data access 

contention across different parts of the system

Functional partitioning

41



 Q: How would you approach partitioning for scalability?

 Analyze the application to understand the data access patterns:

 Result set returned by each query

 The frequency of access

 The inherent latency

 The server-side compute processing requirements.

 Determine the current and future scalability targets, such as data size and workload

 Distribute the data across the partitions to meet the scalability target, choose the right shard key.

 Make sure each node has enough resources to handle the requirements in terms of storage space, 

processing power or network bandwidth.

 Monitor to verify that the data is distributed well and that the partitions can handle the load

 Actual usage does not always match what an analysis predicts

 It may be required to rebalance the partitions

Partitioning for scalability

42



 Q: How would you approach it to improve query performance?

 Query performance can be boosted by using smaller data sets and by running parallel queries.

 Each partition should contain a small proportion of the entire data set.

 Follow these steps to improve the overall query performance of your system/application.

 Examine the application requirements and performance.

 Identify the critical queries that must always perform quickly.

 Monitor the system to detect any queries that perform slowly.

 Find which queries are performed most frequently.

 Partition the data that causes slow performance.

 Consider running queries in parallel across partitions to improve response time.

Partitioning for query performance

43



 Q: How would you use partitioning to improve availability?

 Avoid having the entire dataset does not constitute a single point of failure.

 Consider the following factors that affect availability:

 Identify critical data

 Consider storing critical data in highly available partitions with an appropriate back-up plan

 Establish separate management and monitoring procedures for the different datasets

 Place data that has the same level of criticality in the same partition

 Decide how to manage individual partitions

 If a partition fails, it can be recovered independently

 Partition data by geographical area allows scheduled maintenance at off-peak hours

 Replicate critical data across partitions.

 This strategy can improve availability and performance, but 

can also introduce consistency issues related to replication lag.

Partitioning for better availability

44



 How to partition a secondary index

 Document-partitioned index (local indexes), where the secondary index are stored in the same 

partition as the primary key and value.

 Only a single partition needs to be updated on write, but a read requires scatter/gather across all.

 Term-partitioned index (global indexes), where the secondary indexes are partitioned separately, 

using the indexed values.

 When a document is written, several partitions of the secondary index need to be updated; 

however a read can be served from a single partition.

 Creating materialized views that summarize data to support fast query operations.

 Useful in a partitioned data store if the partitions that contain the data being summarized 

are distributed across multiple sites.

 Parallel Query Execution in presence of partitions

 Distributed Transactions (later in class)

We did not cover…

45



 Partitioning is necessary when data and load volume exceeds a single machine’s capacity.

 The goal is to spread the data and query load evenly across multiple machines, avoiding hotspots.

 Need to be careful when choosing the partitioning scheme so that it is appropriate to the data and 

workload properties, and rebalance it when nodes are added/removed.

 Three main types of partitioning: 

 horizontal, 

 vertical and 

 functional.

 Two main approaches for horizontal partitioning: key range and hash-based.

 Various techniques for rebalancing and routing.

Summary

46



The material covered in this class is mainly based on:

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and 

Maintainable Systems” by Martin Kleppmann (Chapters 5 and 6) (link)

Some information and images were based on material from:

 Microsoft’s Azure Application Architecture Guide 

 Best practices for horizontal, vertical and functional data partitioning (link)

 Data partitioning strategies in various Azure services (link)

 Sharding pattern (link)

References

47

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding

