
1 Overview and Hello World

1.1 Organization

[Slide 2] Module “Concepts of C++ Programming” (CIT323000)

Goals
• Write good and modern C++ code
• Apply widely relevant C++ constructs
• Understand some advanced language concepts

Non-Goals
• Become experts in C++
• Fancy language features
• Apply involved optimizations

Prerequisites
• Fundamentals of object-oriented programming EIDI, PGdP
• Fundamentals of data structures and algorithms GAD
• Beneficial: operating systems, computer architecture GBS, ERA

This lecture assumes knowledge of imperative and object-oriented programming lan-
guages like Java (e.g., for loops, classes, visibility, inheritance, polymorphism).

[Slide 3] Lecture Organization

• Lecture: Mon 14:30 – 17:00, MW 0001
– Lecturer: Dr. Alexis Engelke engelke@in.tum.de
– Live stream and recording via RBG: https://live.rbg.tum.de/
– Tweedback for questions during lecture

• Exercises: Tue 14:15 – 15:45, Interims II HS 3
– Florian Drescher, Mateusz Gienieczko

• Material: https://db.in.tum.de/teaching/ws2425/cpp/
• Zulip-Streams: #CPP, #CPP Homeworks, #CPP Random/Memes
• Exam: written exam on your laptop, on-site, 90 minutes

– Open book, but no communication/AI tools allowed
– Same submission system as for homework

[Slide 4] Homework

• 1–2 programming tasks as homework every week

1

https://live.rbg.tum.de/
https://db.in.tum.de/teaching/ws2425/cpp/

1 Overview and Hello World

– Released on Monday, deadline next Sunday 11:59 PM
• Automatic tests and grading, points only for completely solved tasks

– Typically all1 tests provided with the assignment
• Container environment provided, no support for other setups
• Submission via git+ssh only
• Grade bonus: 0.3 for 75% of exercise points

– Applies only for the main exam, not for the retake
• Cheating in homework ⇝ 5.0U in final grade

[Slide 5] Literature

Primary
• C++ Reference Documentation. (https://en.cppreference.com/)
• Lippman, 2013. C++ Primer (5th edition). Only covers C++11.
• Stroustrup, 2013. The C++ Programming Language (4th edition). Only covers

C++11.
• Meyers, 2015. Effective Modern C++. 42 specific ways to improve your use of

C++11 and C++14..
Supplementary

• Aho, Lam, Sethi & Ullman, 2007. Compilers. Principles, Techniques & Tools (2nd
edition).

• Tanenbaum, 2006. Structured Computer Organization (5th edition).

1.2 Introduction

[Slide 6] What is C++?

• Multi-paradigm general-purpose programming language
– Imperative programming
– Object-oriented programming
– Generic programming
– Functional programming

• Key characteristics
– Compiled
– Statically typed
– Facilities for low-level programming

[Slide 7] Some C++ History

Initial development
• Bjarne Stroustrup at Bell Labs (since 1979)

1We may add extra cases to prevent hard-coding of test cases.

2

https://en.cppreference.com/

1.2 Introduction

– Originally “C with classes”, renamed in 1983 to C++
• In large parts based on C
• Inspirations from Simula67 (classes) and Algol68 (operator overloading)
• Initially developed as a C++-to-C converter (Cfront)

First ISO standardization in 1998 (C++98)
• Further amendments in following years (C++03/11/14/17/20)
• Current standard: C++23

[Slide 8] C++ Standard vs. Implementations

• C++ standard specifies requirements for C++ implementations about language
features and standard library

• “Implementation” consists of: compiler, standard library impl, OS, . . .
• Some things are specified rigidly in the standard
• Some things are implementation-defined

– Standard specifies options, implementation chooses one and documents that
– Example: size of an int

• Implementations can offer extensions2

Typically, implementations of the C++ compiler, the C++ standard library, the
underlying C standard library, and the operating system are separated. Obviously,
only few combinations are supported, but some compilers like Clang support using
different standard library implementations (e.g. with -stdlib=libc++).

• Popular C++ compilers: Clang, GCC, MSVC, EDG eccp (used as foundation
for some other commercial compilers)

• Popular C++ standard library implementations: libstdc++ (GNU), libc++
(Clang/LLVM project), MSVC STL (Microsoft)

• Popular C standard library implementations: glibc (GNU), Microsoft CRT,
(musl, does not support C++)

[Slide 9] Why Study C++?

• Performance
– Very flexible level of abstraction
– Direct mapping to hardware capabilities easily possible
– Zero-overhead rule: “What you don’t use, you don’t pay for.”

• Scales to large systems (with some discipline)
• Interoperability with other languages, esp. C
• Huge amount of legacy code needs developers/maintainers

– compilers, databases, simulations, . . .

2https://clang.llvm.org/docs/LanguageExtensions.html

3

https://clang.llvm.org/docs/LanguageExtensions.html

1 Overview and Hello World

Studying C++ does not preclude studying other languages. C++ is not the best
or right tool for every job, so you probably want to learn at least half a dozen
programming languages. (My personal picks in 2024 are: C, C++, Python, Rust,
Go, JavaScript.)

Note that there’s no such thing as a “zero-cost abstraction”. They do have cost,
typically during compilation. Some of these “zero-cost” abstractions also have some
run-time cost. For example, the mere possibility of C++ exceptions can prevent
optimizations.

[Slide 10] This Lecture

• Go bottom-up through important language constructs
– Some things (e.g. standard library) appear rather late
– Cyclic dependencies are unavoidable

• Focus: widely used constructs and important cases
– Topic selection based on relevance real-world projects
– Many special cases not discussed, lecture will be inaccurate at times
– Use the C++ reference!

1.3 Hello World!

[Slide 11] Hello World!

#include <print>
int main() {
std::println("Hello␣World!");
return 0;

}

On the command line:
$ clang++ -std=c++23 -o hello hello.cpp
$./hello
Hello World!

[Slide 12] Hello World, explained3

// Make print and println available
#include <print>

// Definition of function main().
// Program execution starts at main.
int main() {
// std:: is a namespace prefix. std is for the C++ standard library
std::println("Hello␣World!");

// End program with exit code 0. (zero = everything ok, non-zero = error)
return 0;

}

3A bit hand-wavy, but we have to start somewhere.

4

1.3 Hello World!

[Slide 13] Program Arguments

• main can take two paramters to hold command-line arguments
– int argc: number of arguments
– char** argv: the actual arguments, ∼array of strings
– First argument is the program invocation itself (e.g., ./hello2)

#include <print>
int main(int argc, char** argv) {
std::println("Hello␣{}!", argv[1]); // DON’T DO THIS
return 0;

}
$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Segmentation fault

The program crashed! A “segmentation fault” is an access to an invalid memory
address that was caught by the operating system. In this case, we accessed the second
element of an array of size 1 (argc is 1). We were luckya and got a crash! Since
there are no bounds checks, something completely different could have happened.

In this example, this might be easy to see, but we will very briefly look at two
important debugging strategies.
aOk, this example will always crash. But regardless, never rely on getting crashes on mistakes.

[Slide 14] Debugging 101

• Pass -g to Clang to enable debug info generation
• Run gdb ./hello2

$ clang++ -g -std=c++23 -o hello2 hello2.cpp
$ gdb ./hello2
(gdb) run
Program received signal SIGSEGV, Segmentation fault.
(gdb) backtrace
// ...
#16 in main (argc=0x1, argv=0x7fffffffe868) at hello2.cpp:3
(gdb) up 16
(gdb) print argc
1
(gdb) quit

To start debugging run the command gdb myprogram. This starts a command-line
interface. Here are some useful commands:

5

1 Overview and Hello World

help Show general help or help about a command.
run Start the debugged program.
break Set a breakpoint. When the breakpoint is reached, the de-

bugger stops the program and accepts new commands.
delete Remove a breakpoint.
continue Continue running the program after it stopped at a break-

point or by pressing Ctrl+C.
next Continue running the program until the next source line of

the current function.
step Continue running the program until the source line changes.
nexti Continue running the program until the next instruction of

the current function.
stepi Execute the next instrution.
print Print the value of a variable, expression or CPU register.
frame Show the currently selected stack frame, i.e. the current

stack with its local variables. Usually includes the function
name and the current source line. Can also be used to
switch to another frame.

backtrace Show all stack frames.
up Select the frame from the next higher function.
down Select the frame from the next lower function.
watch Set a watchpoint. When the memory address that is

watched is read or written, the debugger stops.
thread Show the currently selected thread in a multi-threaded pro-

gram. Can also be used to switch to another thread.
Most commands also have a short version, e.g., r for run, c for continue, bt for

backtrace, etc.
The documentation for gdb can be found here: https://sourceware.org/gdb/

current/onlinedocs/gdb/

[Slide 15] Debugging 102

• Print debugging.
#include <print>
int main(int argc, char** argv) {
std::println("argc={}", argc);
std::println("Hello␣{}!", argv[1]);
return 0;

}
$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Segmentation fault

6

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/

1.4 CMake

Print debugging is an extremely simple, but also an extremely powerful technique.
I personally use print debugging most of the time and only resort to debuggers like
GDB in complex situations.

[Slide 16] Program Arguments, attempt 2

#include <print>
int main(int argc, char** argv) {
if (argc >= 2)
std::println("Hello␣{}!", argv[1]);

else
std::println("Hi␣there!");

return 0;
}
$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Hi there!

[Slide 17] Compiler Flags

Compiler invocation: clang++ [flags] -o output inputs...

• -std=c++23 — set standard to C++23
– Always specify the version of the C++ standard!

• -g — enable debugging information
• -Wall — enable many warnings
• -Wextra — enable some more warnings

– Always compile with -Wall -Wextra! Warnings often hint at bugs.
• -O0 — no optimization, typically good for debugging
• -O1/-O2/-O3 — enable optimizations at specified level

1.4 CMake

[Slide 18] Build Systems: CMake

• Frequent use of long compiler commands is tedious and error-prone
• Manual work doesn’t scale to larger projects
• Different systems may require different flags
• CMake: build system specialized for C/C++

– Widely used by large projects and supported by many IDEs
• CMakeLists.txt specifies project, files, etc.
• Reference: https://cmake.org/cmake/help/latest/

[Slide 19] CMake Example

CMakeLists.txt:

7

https://cmake.org/cmake/help/latest/

1 Overview and Hello World

Require a specific CMake version, here 3.20 for C++23 support
cmake_minimum_required(VERSION 3.20)
Set project name, required for every project
project(hello2)
We use C++23, basically adds -std=c++23 to compiler flags
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
Compile executable hello2 from hello2.cpp
add_executable(hello2 hello2.cpp)

On the command line:
$ mkdir build; cd build # create separate build directory
$ cmake ..
$ cmake --build .
$./hello2

[Slide 20] Further CMake Commands and Variables

• add_executable(myprogram a.cpp b.cpp)
Define an executable to be built from the source files a.cpp and b.cpp

• add_compile_options(-Wall -Wextra)
Add -Wall -Wextra to compiler flags

• set(CMAKE_CXX_COMPILER clang++)
Set C++ compiler to clang++

• set(CMAKE_BUILD_TYPE Debug)
Set “build type” Debug (other values: Release, RelWithDebInfo); affects optimiza-
tion and debug info

Variables can be set on the command line invocation of CMake:
cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo

[Slide 21] Overview and Hello World – Summary

• C++ is a compiled, widely-used, multi-paradigm language
• Program execution typically starts at int main()
• Command line arguments accessible via argc/argv
• Basic debugging techniques: GDB and print debugging
• Important compiler options for warnings and optimizations
• Basic usage of CMake for building C++ projects

[Slide 22] Overview and Hello World – Questions

• What are key characteristics of the C++ language?
• Why is C++ one of the most important languages today?
• How to access program arguments?
• What are important flags for compiling C++ code with Clang?
• How to debug a compiled C++ program with GDB?
• What is a segmentation fault?
• What are advantages of using a build system like CMake?

8

2 Basic Syntax and Object Model

[Slide 24] Reminder: C++ Reference

These slides will necessarily be inaccurate or incomplete at times.
Use the reference! https://en.cppreference.com/w/cpp

[Slide 25] Comments1

• “C-style” or “multi-line” comments: /*comment */

• “C++-style” or “single-line” comments: //comment

Example:
/* This comment is unnecessarily

split over two lines */
int a = 42;

// This comment is also split
// over two lines
int b = 123;

2.1 Types

[Slide 26] Fundamental Types2

• void – empty type, has no values
– E.g., used to indicate functions that return no value

• Integer types
– Boolean type: bool (1-bit integer, true/false)
– Integer types: int, long, unsigned long, ...
– Character types: char, char16_t, . . .

• Floating-point types
– float, double, long double

[Slide 27] Integer Types

• Sign modifiers: signed (default), unsigned
• Size modifiers: short, long (≥32 bit), long long (≥64 bit)

1https://en.cppreference.com/w/cpp/comment
2https://en.cppreference.com/w/cpp/language/types

9

https://en.cppreference.com/w/cpp
https://en.cppreference.com/w/cpp/comment
https://en.cppreference.com/w/cpp/language/types

2 Basic Syntax and Object Model

• Keyword: int (optional if modifiers are present)
• Order of keywords is arbitrary

– unsigned long long = long unsigned int long

• Signed integers use two’s complement (since C++20)

By convention, sign modifiers come first, signed is omitted, and int comes last, but
is omitted if a size modifier is present.

[Slide 28] Integer Types: Minimum Width

Canonical Type Specifier Minimum Width Minimum Range

short 16 bit −215 to 215 − 1
unsigned short 0 to 216 − 1

int 16 bit −215 to 215 − 1
unsigned 0 to 216 − 1

long 32 bit −231 to 231 − 1
unsigned long 0 to 232 − 1

long long 64 bit −263 to 263 − 1
unsigned long long 0 to 264 − 1

• Exact width of integer types is not specified by the standard!

[Slide 29] Fixed-Width Integer Types3

• Use fixed-width types from when... a fixed width is required
• #include <cstdint>
• int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, uint32_t, uint64_t
• But: optional, only available if supported by implementation

• Guideline: use fixed-width types only when really required
– E.g., data structures where size is important, bitwise operations
– Otherwise, prefer regular integers

Don’t prematurely “optimize” by using small data types, e.g. in data structures.
Modern CPUs are optimized for 32/64-bit arithmetic, and some operations on smaller
data types can even be less efficient.

There are also size_t and ptrdiff_t, which are described in when introducing
pointers later.

3https://en.cppreference.com/w/cpp/types/integer

10

https://en.cppreference.com/w/cpp/types/integer

2.1 Types

[Slide 30] Integer Literals4

• Decimal (42), octal (052), hexadecimal (0x2a), binary (0b101010)

• unsigned suffix: 42u or 42U
• long suffix: 42l or 42L; long long suffix: 42ll or 42LL
• Both suffixes can be combined, e.g. 42ul, 42ull

• Separable by single quotes, e.g. 1’000’000’000ull, 0b0010’1010

Quiz: What is the type of the integer literal 0xdeadcabel?
(Assume 32-bit int, 32-bit long, as on, e.g., Windows)

A. int B. long C. unsigned long D. long long

Fun fact: 0 is technically an octal number.

[Slide 31] Character Types

• Represent character codes and integers
• signed char, unsigned char
• char — implementation-defined whether signed/unsigned!

– Use char only for actual characters, not for arithmetic
• Size: defined as 1 byte
• Size of byte: at least 8 bit5

• For UTF characters: char8_t (C++20), char16_t, char32_t

The signedness of char is platform-dependent. On x86, which always had an instruc-
tion for sign extension (movsx), char tends to be signed. Early ARM processors, in
contrast, did not have an instruction for sign extension, so loading a signed char
from memory required three instructions (load, shift left, arithmetic shift right). To
improve efficiency, it was decided to make char an unsigned data type. When porting
software from x86 to ARM, this occasionally causes problems in practice.

Note that on modern CPUs, the performance difference is very low. Unsigned data
types tend to be slightly more efficient in some cases, but this difference is often
negligible.

Although a char is one byte large, the size of one byte is not specified by the C++
standard and only required to be at least 8 bits. Platforms that use non-8-bit bytes
have become increasingly rare over the past decades, but still exist, e.g. some digital
signal processors (DSPs). (Note that these tend to have no compilers for modern
C++ versions. In practice, programs are almost never tested on platforms where
char is not 8 bits.)

4https://en.cppreference.com/w/cpp/language/integer_literal
5Might change for C++26 to exactly 8 bits; proposal: https://wg21.link/p3477r0

11

https://en.cppreference.com/w/cpp/language/integer_literal
https://wg21.link/p3477r0

2 Basic Syntax and Object Model

[Slide 32] Character Literals6

• E.g. ’a’, ’b’, ’€’
– Any character from the source character set except: ’, \, newline

• Escape sequences, e.g. ’\”, ’\\’, ’\n’, ’\u1234’

• UTF-8 prefix: u8’a’, u8’b’
• UTF-16 prefix: u’a’, u’b’
• UTF-32 prefix: U’a’, U’b’

[Slide 33] Floating-Point Types

• float – usually IEEE-754 32-bit binary format
• double – usually IEEE-754 64-bit binary format
• long double – extended precision, format varies strongly

– Some platforms use 64-bit (like double), e.g. MSVC on x86
– Some platforms use 128-bit, e.g. usually AArch64 (this is typically a softfloat

implementation ⇝ slow)
– On x86, typically 80-bit x87 binary floating-point

• Usual caveats of FP arithmetic apply: infinity, signed zero, NaN

Due to the often lower performance and strongly varying accuracy, long double is
typically only used when the target platform is known and the extra accuracy is
needed.

[Slide 34] Floating-Point Literals7

• Without exponent: 3.1415926, .5
• With exponent: 1e9, 3.2e20, .5e-6

• float suffix: 1.0f or 1.0F
• long double suffix: 42.0l or 42.0L

• Separable by single quotes, e.g. 1’000.000’001, .141’592e12

6https://en.cppreference.com/w/cpp/language/character_literal
7https://en.cppreference.com/w/cpp/language/floating_literal

12

https://en.cppreference.com/w/cpp/language/character_literal
https://en.cppreference.com/w/cpp/language/floating_literal

2.2 Operators

2.2 Operators

[Slide 35] Operator Precedence Table (1)8

Prec. Operator Description Associativity

1 :: Scope resolution left-to-right

2 a++ a-- Postfix increment/decrement left-to-right
<type>() <type>{} Functional Cast
a() a[] Function Call/Subscript
. -> Member Access

3 ++a --a Prefix increment/decrement right-to-left
+a -a !a ˜a plus/minus/logical not/bitwise not
(<type>) C-style cast
*a &a Dereference/Address-of
sizeof Size-of
new new[] Dynamic memory allocation
delete delete[] Dynamic memory deallocation

[Slide 36] Operator Precedence Table (2)

Prec. Operator Description Associativity

4 .* ->* Pointer-to-member left-to-right

5 a*b a/b a%b Multiplication/Division/Remainder left-to-right

6 a+b a-b Addition/Subtraction left-to-right

7 << >> Bitwise shift left-to-right

8 <=> Three-way comparison left-to-right

9 < <= Relational < and ≤ left-to-right
> >= Relational > and ≥

10 == != Relational = and ̸= left-to-right

8https://en.cppreference.com/w/cpp/language/operator_precedence

13

https://en.cppreference.com/w/cpp/language/operator_precedence

2 Basic Syntax and Object Model

[Slide 37] Operator Precedence Table (3)

Prec. Operator Description Associativity

11 & Bitwise AND left-to-right

12 ˆ Bitwise XOR left-to-right

13 | Bitwise OR left-to-right

14 && Logical AND left-to-right

15 || Logical OR left-to-right

16 a?b:c Ternary conditional right-to-left
throw throw operator
= Direct assignment
+= -= *= /= %= Compound assignment
<<= >>= &= ˆ= |= Compound assignment

17 , Comma left-to-right

C++ has a wide range of operators with “typical” semantics and mostly typical
precedence and associativity. Some operators like the comma operator are rarely
used. The left-hand side of an assignment can not only be a variable, but everything
that refers to the identity of an object. This will be covered in more detail when
discussing value types and references.

Note that even if parenthesis can be omitted, it is sometimes useful to use them
anyway for clarity:
// real-world examples from libdcraw
diff = ((getbits(len-shl) << 1) + 1) << shl >> 1; // ???
yuv[c] = (bitbuf >> c * 12 & 0xfff) - (c >> 1 << 11); // ???

2.3 Observable Behavior

[Slide 38] Observable Behavior

Observable behavior of C++ programs precisely defined, unless:

• implementation-defined behavior – documented by C++ implementation
• unspecified behavior – one of multiple options can happen

– E.g., evaluation order of function arguments: one permutation must happen
• program ill-formed – syntax/semantic error, compiler must diagnose
• program ill-formed, no diagnostic required – semantically invalid, hard to diagnose

– Typically not detectable during compilation, not too many cases
• undefined behavior – the standard imposes no requirements

14

2.4 Basic Syntax

[Slide 39] Undefined Behavior9 (UB)

• Some violations of language rules are undefined behavior: standard enforces no
restrictions ⇝ anything can happen

– Typically cases, where checks would be costly or impossible
⇒ A C++ program must never contain undefined behavior!
• Examples: out-of-bounds array access, signed integer overflow, shift by negative

index, shift larger than value size, . . .
– Signed integers: UB on overflow; unsigned integers: well-defined wrap

• Compiler can assume that program contains no undefined behavior10

– Allows for more optimizations, e.g. eliminate some checks

[Slide 40] Undefined Behavior – Example

Quiz: Which answer is correct?
bool f1(int x) { return x + 1 > x; }
bool f2(unsigned x) { return x + 1 > x; }

A. The return value of f1 is always false.
B. The return value of f2 is always true.
C. The return value of f1 depends on the parameter.
D. The return value of f2 depends on the parameter.
E. f2 might invoke undefined behavior.

Compilers regularly make use of the assumption that undefined behavior doesn’t
occur. Compile these functions with optimizations and look at the generated assembly
code.

2.4 Basic Syntax

[Slide 41] Variables11

• Declaration: type specifier followed by declarators (variable names)
• Declarator can optionally be followed by an initializer
• No initializer: default-initialized

– Non-local variables: zero-initialized
– Local variables: not initialized

• Access of uninitialized variable is undefined behavior

void foo() {
unsigned i = 0, j;
unsigned meaningOfLife = 42;

}

9https://en.cppreference.com/w/cpp/language/ub
10https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
11https://en.cppreference.com/w/cpp/language/declarations

15

https://en.cppreference.com/w/cpp/language/ub
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://en.cppreference.com/w/cpp/language/declarations

2 Basic Syntax and Object Model

As the type partly written in the type specifier and partly in the declarator (e.g.,
pointers, references), declaring multiple variables in a single statement is typically
considered as error-prone and therefore avoided.

[Slide 42] Variable Initializers12

• variableName(<expression>)
• variableName = <expression>
• variableName{<expression>} (error on possible information loss)

double a = 3.1415926;
double b(42);
unsigned c = a; // OK: c == 3
unsigned d(b); // OK: d == 42
unsigned e{a}; // ERROR: potential information loss
unsigned f{b}; // ERROR: potential information loss

[Slide 43] Simple Statements13

Declaration statement: Declaration followed by a semicolon
int i = 0;

Expression statement: Any expression followed by a semicolon
i + 5; // valid, but useless
foo(); // valid and possibly useful

Compound statement (blocks): Brace-enclosed sequence of statements
{ // start of block

int i = 0; // declaration statement
} // end of block, i goes out of scope
int i = 1; // declaration statement

[Slide 44] Scope14

Names in a C++ program are valid only within their scope

• The scope of a name begins at its point of declaration
• The scope of a name ends at the end of the relevant block
• Scopes may be shadowed resulting in discontiguous scopes (bad practice)

int a = 21;
int b = 0;
{
int a = 1; // scope of the first a is interrupted
int c = 2;
b = a + c + 39; // a refers to the second a, b == 42

} // scope of the second a and c ends
b = a; // a refers to the first a, b == 21
b += c; // ERROR: c is not in scope

12https://en.cppreference.com/w/cpp/language/initialization
13https://en.cppreference.com/w/cpp/language/statements
14https://en.cppreference.com/w/cpp/language/scope

16

https://en.cppreference.com/w/cpp/language/initialization
https://en.cppreference.com/w/cpp/language/statements
https://en.cppreference.com/w/cpp/language/scope

2.4 Basic Syntax

[Slide 45] If Statement15

• Conditionally execute another statement
• Condition converted to bool decides which branch is taken
• Optional initialization statement
• Optional else branch

if (value < 42)
valueLessThan42();

else
valueTooLarge();

if (unsigned n = compute(); n > 4) {
// do something

}
// The latter is equivalent to:
{
unsigned n = compute();
if (n > 4) {
// do something

}
}

The condition can also be a simple declaration, in which case the condition is whether
the assigned variable converted to bool is true. Examples:
if (unsigned n = compute()) {
// do something if n != 0

}
if (unsigned a = compute(0); unsigned b = compute(a)) {
// do something if b != 0

} else {
// can also use a and b here

}

[Slide 46] If Statement Nesting

• else is associated with the closest if that has no else

// INTENTIONALLY BUGGY!
if (condition0)
if (condition1)
// do something if (condition0 && condition1) == true

else
// do something if condition0 == false

• When in doubt, use curly braces to make scopes explicit
// Working as intended
if (condition0) {
if (condition1)
// do something if (condition0 && condition1) == true

} else {

15https://en.cppreference.com/w/cpp/language/if

17

https://en.cppreference.com/w/cpp/language/if

2 Basic Syntax and Object Model

// do something if condition0 == false
}

[Slide 47] Switch Statements16

• Conditional control flow transfer based on integral type
• Constant values for case, must be unique
• break exits switch
• Implicit fallthrough!

– Use [[fallthrough]]; when intended
• Condition can have declaration

switch (compute()) {
case 42:
// do something for 42
break;

case 20:
// do something for 20
[[fallthrough]];

case 21:
case 22:
// do something for 20/21/22
break;

default:
break;

}

[Slide 48] While and Do-While Loops

• while:17 repeatedly execute statement while condition is true
unsigned i = 42;
while (i < 42) {
// never executed

}

• do–while:18 like while, but execute body at least once
unsigned i = 42;
do {
// executed once

} while (i < 42);

• break/continue to exit loop/skip remainder of body

[Slide 49] For Loops19

for (unsigned i = 0; i < 10; ++i) {
// iterate 0, 1, 2, ..., 9

}
for (unsigned i = 0, len = getLength(); i != len; ++i) {

16https://en.cppreference.com/w/cpp/language/switch
17https://en.cppreference.com/w/cpp/language/while
18https://en.cppreference.com/w/cpp/language/do
19https://en.cppreference.com/w/cpp/language/for

18

https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/while
https://en.cppreference.com/w/cpp/language/do
https://en.cppreference.com/w/cpp/language/for

2.4 Basic Syntax

// do something; doesn’t call getLength() every iteration
}
for (unsigned i = 42; i-- > 0;) {
// iterate 41, 40, ..., 0

}
uint8_t i = 0;
for (; i < 256; ++i)
std::println("{}", i); // hmmm....

Quiz: What could be a problem of the last loop?
A. No Problem B. Syntax Error C. Endless Loop D. Undefined Behavior

Beware of integer overflows. Reminder: signed integer overflow is undefined behavior.

[Slide 50] Basic Functions20

• Associate a sequence of statements (body) with a name
• Function can have parameters and a return type (can be void)
• Non-void functions must execute return statement
• Arguments are passed by value (unlike Java for classes)

– Pass-by-reference requires explicit annotation, see later

void procedure(unsigned parameter0, double parameter1) {
// do something with parameter0 and parameter1

}
unsigned meaningOfLife() {
// complex computation, takes 7.5 million years
return 42;

}

[Slide 51] Basic Function Arguments

• Parameters can be unnamed ⇝ unusable, but still required on call
• Function can specify default arguments21 in parameter list

– After first param with default value, all must have a default value

unsigned meaningOfLife(unsigned /*unused*/) {
return 42;

}
unsigned addNumbers(int a, int b = 2, int c = 3) {
unsigned v = meaningOfLife(); // ERROR: expected argument
unsigned w = meaningOfLife(123); // OK
return a + b + c;

}
int main() {
int x = addNumbers(1); // x == 6
int y = addNumbers(1, 1); // y == 5
int z = addNumbers(1, 1, 1); // z == 3

}

20https://en.cppreference.com/w/cpp/language/function
21https://en.cppreference.com/w/cpp/language/default_arguments

19

https://en.cppreference.com/w/cpp/language/function
https://en.cppreference.com/w/cpp/language/default_arguments

2 Basic Syntax and Object Model

2.5 Namespaces

[Slide 52] Namespaces22

• Large projects contain many names ⇝ organize in logical units
• namespaces allow preventing name conflicts

namespace A {
void foo() { /* do something */ }
void bar() { foo(); /* refers to A::foo */ }
} // end namespace A
namespace B {
void foo() { /* do something */ }
} // end namespace B
int main() {
A::foo(); // qualified name lookup
B::foo(); // qualified name lookup
foo(); // ERROR: foo was not declared in this scope

}

Typically, the outermost namespace is used for the project name (e.g., llvm, clang,
umbra). The namespace std is reserved for the C++ standard library. This prevents
name collisions when using libraries.

This has a big advantage over the C convention of using prefixes in names (e.g.,
LLVM<name> or stdc_<name>): inside namespaces, typing the redundant prefix can
be avoided and namespaces can be imported with a using namespace directive (see
below).

[Slide 53] Namespace Nesting

• Namespaces can be nested
namespace A {
namespace B {
void foo() { /* do something */ }
} // end namespace B
} // end namespace A

// equivalent definition
namespace A::B {
void bar() { foo(); /* refers to A::B::foo */ }
} // end namespace A::B

int main() {
A::B::bar();

}

[Slide 54] Namespaces: using and Conventions

• Typically: add comments to closing namespace brace
• Always using fully qualified names makes code easier to read

22https://en.cppreference.com/w/cpp/language/namespace

20

https://en.cppreference.com/w/cpp/language/namespace

2.6 Memory & Object Model

• But: sometimes, source is obvious and typing cumbersome...
– using namespace X; imports everything from X
– using X::a; imports only a from X

namespace A { int x; }
namespace B { int y; int z; }
using namespace A;
using B::y;
int main() {
x = 1; // Refers to A::x
y = 2; // Refers to B::y
z = 3; // ERROR: z was not declared in this scope
B::z = 3; // OK

}

Be careful about using namespace, this might pollute your namespace and result in
unwanted naming collisions. You can also use using declarations inside a scope like
this:
namespace A { int x; }
namespace B { int y; int z; }
int main() {
using namespace A;
using B::y;

x = 1; // Refers to A::x
y = 2; // Refers to B::y
z = 3; // ERROR: z was not declared in this scope
B::z = 3; // OK

}

2.6 Memory & Object Model

[Slide 55] Memory Model

• Fundamental storage unit: byte
– There can (theoretically) be more than 8 bits in a byte

• Memory consists of one or more contiguous sequences of bytes
– Memory can have holes, e.g. due to virtual memory

• Every byte has a unique address

[Slide 56] Objects23

• Object: region of storage; properties:
– Size (see next slides)
– Alignment (see next slides)
– Storage duration (see next slides)
– Lifetime (see next slides)

23https://en.cppreference.com/w/cpp/language/object

21

https://en.cppreference.com/w/cpp/language/object

2 Basic Syntax and Object Model

– Type
– Value
– Optionally: name

• C++ programs create, destroy, refer to, access, and manipulate objects
• Examples for objects: local/global variables, parameters

– Not objects: functions, references, values

[Slide 57] Object Size and Alignment

• Size and alignment requirements are defined by the type
• sizeof operator24: query size in bytes of object/type

– sizeof(char) = sizeof(std::byte) = 1
– All other sizes implementation-defined

• alignof operator25: query minimum alignment in bytes of type
– Depending on implementation, some values must be aligned in memory
– Alignment is always a power of 2
– Address must be a multiple of the alignment

Bytes that are larger than the industry standard of 8 bits are very rare, but do exist.
Some embedded platforms, where the smallest possible memory access granularity is
32 bits, use 32-bit bytes. On such platforms, sizeof(int) can be 1.

An alignment of x means that the address of the object is a multiple of x. The
size is always a multiple of the alignment.

[Slide 58] Storage Duration26

• Every object has a storage duration

Storage Duration Begin End Note/Example

automatic Scope begin Scope end Local variables

static Program begin Program end Global variables

thread Thread start Thread end thread_local vars

dynamic new delete

• Static: allocated/initialized before main in non-guaranteed order27

• Thread: one copy of the object per thread
• Dynamic: allocation/deallocation must be done manually

24https://en.cppreference.com/w/cpp/language/sizeof
25https://en.cppreference.com/w/cpp/language/alignof
26https://en.cppreference.com/w/cpp/language/storage_duration
27https://en.cppreference.com/w/cpp/language/siof

22

https://en.cppreference.com/w/cpp/language/sizeof
https://en.cppreference.com/w/cpp/language/alignof
https://en.cppreference.com/w/cpp/language/storage_duration
https://en.cppreference.com/w/cpp/language/siof

2.6 Memory & Object Model

[Slide 59] Lifetime28

Lifetime of an object...
• starts when it is fully initialized
• ends when destructor called (classes) or storage is deallocated/reused (others)
• never exceeds the lifetime of the storage (see storage duration)

• Using an object outside its lifetime is undefined behavior
• This is a main source of memory bugs
• Compilers can only warn about very basic errors

⇒ If compiler warns, always fix your program

When the compiler warns about a possible lifetime bug, this is most likely a problem
in your code. Again: fix it. There can be very rare occasions where the warning is
a false positive, but in these cases, you should adjust your code nonetheless so that
the warning disappears.

The lifetime of a reference (see later) ends as if it were a scalar object (e.g., int).

[Slide 60] Lifetime: Example

Quiz: When does the lifetime of p end?
int g;
void matterOfLifeOrDeath(unsigned a) {
thread_local int t = 1;
unsigned c = a;
{
unsigned p = a + 1;

}
unsigned m = t - 1;

}

A. At the end of the function.
B. At the end of the innermost block.
C. At the end of the program.
D. When the underlying stack space is reuseed (e.g., for m).

[Slide 61] Lifetime: Example

Quiz: What is problematic about this function?
int fancyZero() { // fancy way to return zero
int x = x ^ x;
return x;

}

A. Ill-formed/compile error: x used before its declaration.
B. Undefined behavior: signed integer overflow.
C. Undefined behavior: x used outside its lifetime.

28https://en.cppreference.com/w/cpp/language/lifetime

23

https://en.cppreference.com/w/cpp/language/lifetime

2 Basic Syntax and Object Model

D. Undefined behavior: x used outside its storage duration.

[Slide 62] Basic Syntax and Object Model – Summary

• Fundamental types: void, integral, floating-point
• Exact width, representation, etc. not specified by standard
• Undefined behavior means anything can happen
• Undefined behavior must therefore never happen
• Basic syntax similar to other C-like languages, with additions
• Use namespaces to avoid naming collisions
• C++ programs resolve around working with objects
• Objects’ lifetime is often implicit, leading to subtle bugs

[Slide 63] Basic Syntax and Object Model – Questions

• What is the required minimum size of an unsigned int?
• Why is arithmetic on char problematic?
• Why is long double rarely used?
• What can happen when undefined behavior is encountered?
• How can compilers use undefined behavior for optimizations?
• Which variable initializer prevents loss of accuracy?
• What is the storage duration of an object?
• What is the relation between storage duration and lifetime?

24

3 Declarations/Definitions, Preprocessor,
Linker

[Slide 65] On “Internet”

Search engines/AI are not your friend when it comes to C++!
Use high-quality sources. Use the C++ reference. Read the script of this lecture.

3.1 Preprocessor

[Slide 66] Compiler: Overview (1)

hello.cpp hellohello.ii
Preprocessor Compiler

clang++ -E -o hello.ii hello.cpp
clang++ -o hello hello.ii

• Preprocessor transforms source code before actual compilation
• clang++ -E – stop after preprocessing

[Slide 67] Preprocessor1

• Applies textual transformation before compilation
– E.g., to conditionally exclude certain code paths from compilation
– Preprocessor has no knowledge about “real” C++ language semantics

• Handles preprocessor directives: lines that begin with #
• Outputs program without directives

Use carefully, avoid if possible!

[Slide 68] Preprocessor: #include2

• #include "path/to/file" – copy content from file at current position
• Literal textual inclusion (“copy-paste”)

1https://en.cppreference.com/w/cpp/preprocessor
2https://en.cppreference.com/w/cpp/preprocessor/include

25

https://en.cppreference.com/w/cpp/preprocessor
https://en.cppreference.com/w/cpp/preprocessor/include

3 Declarations/Definitions, Preprocessor, Linker

//--- magicNumber.inc
42

//--- magicNumber.cpp
int magic =
#include "magicNumber.inc"
;

• After preprocessing

// clang++ -E magicNumber.cpp
int magic =
42
;

[Slide 69] Preprocessor: Include Path

• #include "file"

– Search order: current directory, include path, system path
– Convention: use for files in current project

• #include <file> – search include path, then system path
– Search order: include path, system path
– Convention: use for libraries and system includes

• Compiler flag: -I<directory> – add directory to include path
• CMake: target_include_directories(target PUBLIC src/)
• Typical: add root of project source to include path

⇒ All files can be included by “absolute path”

[Slide 70] Preprocessor: #define3

• #define SOMENAME – define a macro with the given name
• Can have an optional textual replacement
• #undef – undefined previously defined macro

#define EMPTY
#define return never
#define ANSWER 42
#define FUNC_DECL int getAnswer()
#undef return
FUNC_DECL { EMPTY return ANSWER; EMPTY }
// Preprocessed to:
// int getAnswer() { return 42; }

Don’t use the preprocessor like this, this is primarily for illustration.4

[Slide 71] Preprocessor: #define – Example

Quiz: What does the function f return?

3https://en.cppreference.com/w/cpp/preprocessor/replace
4NB: Re-defining keywords is undefined behavior if the standard library is included.

26

https://en.cppreference.com/w/cpp/preprocessor/replace

3.1 Preprocessor

#define ONE 1
#define TWO (ONE + ONE)
#define FOUR TWO+TWO
#define SIXTEEN FOUR*FOUR
int f() { return (SIXTEEN + FOUR) * TWO + TWO; }

A. (compile error) B. 2 C. 26 D. 42
Don’t use the preprocessor like this, this is primarily for illustration.

When placing expressions of any kind in a macro, it is highly recommendable to wrap
them with parenthesis.

[Slide 72] Preprocessor: Pre-defined Macros

• Some macros are pre-defined by the compiler
• Few are standardized, others vary between compilers
• Typically begin with double-underscore

Examples:

• __cplusplus – used C++ standard, e.g. 202302L
• __FILE__ – name of the current file
• __x86_64__ – defined if compiling for x86-64
• Compiler flag -D<macroname>=<expansion> – define a macro with the (optional)

expansion

Typically, many macros are pre-defined to describe the environment. You can use
clang++ -dM -E -x c++ - </dev/null to list all pre-defined macros and their ex-
pansions. (You can use clang++ -- help to understand the supplied command line
flags.)

[Slide 73] Preprocessor: Conditions5 (1)

• #if <expr>/#elif <expr>/#ifdef <macro>/#ifndef <macro>/#else/#endif – con-
ditionally compile part of code

– Use cases: architecture-dependent code, code only for debug builds
• Expressions can use defined(MACRO) to test whether a macro is defined
• Preprocessor expressions only operate on macros!

#if defined(__x86_64__)
// x86-64-specific code goes here
#elif defined(__aarch64__)
// aarch64-specific code goes here
#else
// architecture-independent code goes here
#endif

5https://en.cppreference.com/w/cpp/preprocessor/conditional

27

https://en.cppreference.com/w/cpp/preprocessor/conditional

3 Declarations/Definitions, Preprocessor, Linker

[Slide 74] Preprocessor: Conditions (2)

• #error – cause compilation to fail with given message
#if defined(__x86_64__) || defined(__aarch64__)
// x86-64 and aarch64 code goes here
#else
#error Unsupported architecture!
#endif

#if 0 // #if 0 can be used for comments, can be nested (unlike /* */)
void commentedOut() {}
#if 0
void moreCommentedCode() {}
#endif
#endif

[Slide 75] Preprocessor: Conditions (3)

Quiz: What does the function f return?
int j = 5;
#if j * j == 25
int f() { return j * j; }
#else
int f() { return 20; }
#endif

A. (compile error) B. depends on j C. 20 D. 25
Don’t use the preprocessor like this, this is primarily for illustration.

[Slide 76] Preprocessor: Function-Like Macros

• Macros can have arguments, so they look like functions
• Again, purely textual replacement, no semantics

– Wrap all parameters in parentheses to avoid precedence issues
#define MIN(a,b) ((a)<(b)?(a):(b))

int min3(int a, int b, int c) {
// Preprocessed to:
// return ((((a)<(b)?(a):(b)))<(c)?(((a)<(b)?(a):(b))):(c));
return MIN(MIN(a, b), c);

}
Don’t use the preprocessor like this, this is primarily for illustration.

[Slide 77] Preprocessor: Function-Like Macros (Quiz)

Quiz: Why is this macro problematic?
#define MIN(a,b) ((a) < (b) ? (a) : (b))

A. One parameter is evaluated multiple times.
B. The unnecessary parenthesis make the code difficult to read.
C. The macro doesn’t compute the minimum on unsigned integers.

28

3.2 Assertions

• Don’t do this — we’ll cover modern replacements later

[Slide 78] Preprocessor: Recommendations

Avoid if possible!
• Many pitfalls, code harder to read/analyze/debug
• Many use-cases have modern, safer C++ replacements (see later)

• No rule without exceptions...
• Some older code bases use preprocessor heavily

– Primary reason we cover it so extensively here

• Use constexpr global variables instead of #define BAR 1
• Use type-generic functions for function-like macros
• Use if constexpr () instead of #if/#endif

There are, of course, exceptions to these guidelines. But generally, avoid the use
of the preprocessor and only use it for header guards and header includes.

3.2 Assertions

[Slide 79] Runtime Checks for Debugging: assert

• assert(expr) – abort program if assertion is false
• Use to check invariants
• When NDEBUG is defined, assert generates no code
• CMake automatically defines NDEBUG in release builds

#include <cassert>
double div(double a, int b) {
assert(b != 0 && "divisor␣must␣be␣non-zero");
return a / b;

}

The idiom assert(condition && "explanation") is widely used to add a more
helpful message or reasoning to the assertion. This works, because "strings" always
get converted to a non-zero value (simplified, will be explained later together with
pointers).

[Slide 80] assert – Implementation

• assert(expr) is a preprocessor macro
⇒ Expression gets removed from source code when NDEBUG is defined!

//--- /usr/include/assert.h (glibc) (excerpt) (code simplified for slide)

/* void assert (int expression);

If NDEBUG is defined, do nothing.

29

3 Declarations/Definitions, Preprocessor, Linker

If not, and EXPRESSION is zero, print an error message and abort. */
#ifdef NDEBUG
define assert(expr) ((void)(0))
#else
define assert(expr) ((expr) ? (void)(0) : __assert_fail(#expr, /*...*/))
#endif

#expr is stringifies the parameter expr, which is the string printed to the console
when the assertion fails.

3.3 Declaration & Definitions

[Slide 81] Multiple Source Files

• C++ source files know nothing about each other
– Other than #include, which is just copy-paste

How do they know what functions other files define?

⇝ Explicit declarations

[Slide 82] Declarations6

• Declarations introduce names
• Names must be declared before they can be referenced
• Variables: int x;
• Functions: void fn();
• Namespace: namespace A { }
• Using: using A::x;
• Class: class C;
• . . .

[Slide 83] Definition7

• A declared name can be used, but: most uses require8 a definition
– Reading/writing value or taking address of an object
– Calling or taking address of function

• Most declarations are also definitions, with some exceptions
– Function declaration without body
– Variable declarations with extern and no initializer

6https://en.cppreference.com/w/cpp/language/declarations
7https://en.cppreference.com/w/cpp/language/definition
8Formally called odr-use

30

https://en.cppreference.com/w/cpp/language/declarations
https://en.cppreference.com/w/cpp/language/definition

3.3 Declaration & Definitions

[Slide 84] Function Declarations: Example

• Forward declaration necessary for cyclic dependencies
void bar(int n); // declaration, no definition

void foo(int n) { // declare + define foo
std::println("foo");
if (n > 0)
bar(n - 1); // OK, bar declared above

}

void bar(int n) { // re-declare + define bar
std::println("bar");
if (n > 0)
foo(n - 1); // OK, foo declared above

}

Without the forward declaration of bar, compilation will fail, because bar is not
declared at the function call inside foo.

It is generally advisable to avoid cyclic dependencies.

[Slide 85] Variable Declarations: Example

extern int global; // declaration
int otherGlobal; // declarartion + definition, zero-initialized

int readGlobal() {
return global;

}

int global = 5; // re-declaration + definition

• The first declaration is rather useless, could move definition there

[Slide 86] cv-Qualifier: const and volatile9

• Part of the type, can appear in variable declarations
• const – object cannot be modified
• volatile – object access has a side-effect

– E.g., direct hardware access, communication with signal handlers
void function() {
int a = 4;
const int b = a;
a = 0; // OK
b = 10; // ERROR: assignment of read-only variable
volatile int v = 5; // will not be optimized out

}

9https://en.cppreference.com/w/cpp/language/cv

31

https://en.cppreference.com/w/cpp/language/cv

3 Declarations/Definitions, Preprocessor, Linker

Do not use volatile unless you know that it is strictly require. Do not use volatile
for synchronization across multiple threads!

3.4 Linker

[Slide 87] Compiler: Overview (2) – Multiple Files

hello.cpp hellohello.o
Compiler Linker

world.cpp world.o

clang++ -c -o hello.o hello.cpp
clang++ -c -o world.o world.cpp
clang++ -o hello hello.o world.o

• Compiler generates object file with machine code
– One compile invocation compiles one translation unit
– May contain references to not-yet-defined functions/globals

• Linker combines object files into executable
– Resolve all undefined references

The compiler invocation clang++ -o hello hello.cpp world.cpp internally runs
all steps, but discards the intermediate results. This is impractical, because if
hello.cpp changes but world.cpp did not, both need be recompiled.

Separating the compiler invocations (clang++ -c -o hello.o hello.cpp; clang++
-c -o world.o world.cpp; clang++ -o hello hello.o world.o) allows selectively
rebuilding the parts of the program that changed, significantly reducing the times of
incremental builds. The compiler option -c instructs the compiler to stop after the
compilation and emit an object file (instead of linking an executable).

[Slide 88] Multiple Files

//--- foo.cpp
int globalVar = 7;
int foo() { return 6; }

//--- main.cpp
#include <print>
extern int globalVar;
int foo();
int main() {
std::println("{}", globalVar * foo());
return 0;

}

32

3.5 One Definition Rule

$ clang++ -std=c++23 -c -o foo.o foo.cpp
$ clang++ -std=c++23 -c -o main.o main.cpp
$ clang++ -o main main.o foo.o
$./main
42

Declaration and definitions can be in different files. The compiler needs a declaration
to know that a function/variable will exist, but does not require a definition. The
definition must be supplied at link time.

[Slide 89] Multiple Files: Undefined References

//--- foo.cpp
int bar();
int foo() { return 2 * bar(); }

//--- main.cpp
extern int undefinedGlobal;
int main() {
return undefinedGlobal;

}
$ clang++ -std=c++23 -c -o foo.o foo.cpp
$ clang++ -std=c++23 -c -o main.o main.cpp
$ clang++ -o main main.o foo.o
/usr/bin/ld: main.o: in function ‘main’:
main.cpp:(.text+0x8): undefined reference to ‘undefinedGlobal’
/usr/bin/ld: foo.o: in function ‘foo()’:
foo.cpp:(.text+0x8): undefined reference to ‘bar()’
clang++: error: linker command failed with exit code 1 (use -v to see invocation)

If a global variable or function is referenced, but not defined in any of the object files
(or libraries, including the standard library), the linker will detect this and fail. The
compiler cannot detect this, as it has no knowledge about other object files or used
libraries.

3.5 One Definition Rule

[Slide 90] One Definition Rule (ODR)10

• At most one definition of a name allowed within one translation unit
• Exactly one definition of every used function or variable must appear within the

entire program
• (for more cases, exceptions, subtleties: see reference documentation)

NB: Some ODR violations make programs “ill-formed, no diagnostic required” — only the
linker can diagnose such violations

10https://en.cppreference.com/w/cpp/language/definition#One_Definition_Rule

33

https://en.cppreference.com/w/cpp/language/definition#One_Definition_Rule

3 Declarations/Definitions, Preprocessor, Linker

[Slide 91] One Definition Rule: Examples (Multiple Definitions)

int i = 0; // OK: declaration + definition
int i = 1; // ERROR: redefinition
//--- a.cpp
int foo() { return 1; }

//--- b.cpp
int foo() { return 2; }
clang++ -std=c++23 -c -o a.o a.cpp
clang++ -std=c++23 -c -o b.o b.cpp
clang++ a.o b.o
/usr/bin/ld: foo.o: in function ‘foo()’:
b.cpp:(.text+0x0): multiple definition of ‘foo()’; a.o:a.cpp:(.text+0x0): first defined

here

3.6 Header and Implementation Files

[Slide 92] Header and Implementation Files

• Duplicating declarations into every file technically possible
• But: not maintainable, error-prone

Idea: split into implementation (.cpp) and header (.h) file:
• Header file: just declarations that should be usable in other files

– Conceptually: “API” of logical unit
– Also should include documentation

• Implementation file: definitions for names declared in header
– Conceptually: “implementation” of the API

Use preprocessor to copy-paste declaration

[Slide 93] Header and Implementation Files: Example

//--- sayhello.h
#include <cstdint>
/// Print "Hello!" to standard output.
void sayHello(std::uint64_t number);

//--- sayhello.cpp
#include "sayhello.h"
#include <cstdint>
#include <print>
void sayHello(std::uint64_t number) { std::println("Hello␣{}!", number); }

//--- main.cpp
#include "sayhello.h"
int main() { sayHello(1); return 0; }

[Slide 94] Header Guards

• Header files include other headers they require

34

3.6 Header and Implementation Files

– E.g., for defined data types (see later)
• Transitive includes: same header might be included multiple times!
• But: can cause problems due to redefinitions
⇝ Wrap entire header with #ifdef and unique identifier

//--- sayhello.h
#ifndef CPPLECTURE_HELLO_H
#define CPPLECTURE_HELLO_H

/// Print "Hello!" to standard output.
void sayHello();

#endif // CPPLECTURE_HELLO_H

• Non-standard alternative

//--- sayhello.h
#pragma once

/// Print "Hello!" to standard output.
void sayHello();

The first time sayhello.h is included, the macro CPPLECTURE_HELLO_H is not defined
and therefore the remainder of the file will be considered. In particular, the macro
will be defined. In a possible later second inclusion, the macro will be defined and
the content of the file will be ignored.

It is crucial that every header has a unique name for the header guard macro. By
convention, the name of the path and file is used. This is particularly important
when copying files.
#pragma once is an alternative for the same goal. However, as there is no portable

way to actually determine whether two files are the same (consider symbolic links,
hard links, etc.), it is not standardized and therefore avoided by many projects.

[Slide 95] Header Files and #include

• Include (exactly) used header files at the beginning
– In both, header and implementation file
– Be careful about transitive includes

• Typically grouped by: (Example)

1. Accompanying header file

2. Project includes

3. Library includes

4. System includes

• Only include header files
• Never include implementation files!

35

3 Declarations/Definitions, Preprocessor, Linker

[Slide 96] Typical Project Layout

+-- CMakeLists.txt
+-- src/

+-- Module.cpp
+-- Module.hpp
+-- Printer.cpp
+-- Printer.hpp
+-- log/

+-- Log.cpp
+-- Log.hpp
+-- LogEntry.cpp
+-- LogEntry.hpp

+-- main.cpp

• Source files and header files next to each other
• Entry points (main()) often separate

– Typically small files ⇝ easier testing
• CMakeLists defines

– add_executable with all sources (*.cpp)
– target_include_directories(... src)

• Alternative layouts exist

Some typical variants from this layout:
• Headers are stored in a separate include directory next to src.

This is typically seen with libraries, where the public headers, which get in-
stalled and exposed to library users, are in include while private headers are
in src.

• Programs with main reside in a separate directory (e.g., tools). The main
source files are compiled as a static library and executables link against the
static library.
This is typically used when multiple programs get compiled. This way, the
main source files get compiled only once and are testable, because they don’t
provide a program entry point.

• One CMakeLists.txt per directory, which adds the source files of the directory
to some variable instead of having a single top-level file that lists all files.
This is typically used by large projects where a single file list might not be
maintainable.

[Slide 97] Tracking Changes in Source Code

//--- a.hpp
extern int globalA;
//--- a.cpp
#include "a.hpp"
int globalA = 10;
//--- square.hpp
#include "a.hpp"
int square(int n = globalA);

36

3.7 Linkage

//--- square.cpp
#include "square.hpp"
void square(int n) {
return n * n;

}
//--- main.cpp
#include "square.hpp"
// ...

Quiz: a.hpp changed. Which files to re-compile?
A. a.hpp
B. a.cpp
C. a.cpp, square.cpp
D. a.cpp, square.cpp, main.cpp
E. a.hpp, a.cpp, square.cpp, main.cpp

[Slide 98] Tracking Changes in Source Code

• Incremental compilation: only recompile files that actually changed
– Substantially reduces build time during development

• Detecting files that need recompilation is non-trivial
– Transitive dependencies of header files

• Build systems like CMake use compiler to output list of used includes
– If any of the files changed, the source file needs recompilation

It is also possible to achieve accurate tracking of updated header files with plain
Makefiles, but it is non-trivial (it involved instructing the compiler to write de-
pendencies to separate files and including these files in the Makefile). Thus, it is
strongly recommendable to use a proper build system for C++ projects, which track
dependencies. Examples are CMake, Meson, scons, and waf, and several others exist
as well.

3.7 Linkage

[Slide 99] Linkage

• Linkage of declaration: visibility across different translation units
• No linkage: name only usable in their scope

– E.g., local variables
• Internal linkage: can only be referenced from same translation unit

– Global functions/variables with static
– const-qualified global variables without extern
– Declarations in namespace without name (“anonymous namespace”)

• External linkage: can be referenced from other translation units
– Global functions/variables (unless static)

37

3 Declarations/Definitions, Preprocessor, Linker

[Slide 100] Declaration Specifiers

• Variable/function declarations allow for additional specifier
• Controls storage duration and linkage

Specifier Global Func/Variable Local Variable

none static + external automatic + none
static static + internal static + none
extern static + external static + external
thread_local thread + ext/int thread + none

• And there’s inline (it deserves it’s own slide)

[Slide 101] Declaration Specifiers – Example

//--- a.cpp
static int foo = 1;
int bar = 2;
static int add(int x, int y) { return x + y; }
int countMe() {
static int counter = 0; // static storage duration, no linkage
return counter++;

}

//--- b.cpp
static int foo = 1; // OK
int bar; // ERROR: ODR violation

// OK: a.cpp’s and b.cpp’s add have internal linkage
static int add(int x, int y) { return x + y; }

You can use static on local variables. This can be useful for constant data that
should only be visible inside the current function. Mutable variables with static
storage duration are problematic in practice when multiple threads call the function
in parallel.

As a general advice, avoid mutable global variables (or local static variables) for
this reason.

[Slide 102] Internal Linkage: Anonymous Namespaces

• Option A: Use static (only works for variables and functions)
static int foo = 1; // internal linkage
static int bar() { // internal linkage

return foo;
}

• Option B: Use anonymous namespaces (preferred)
namespace {
int foo = 1; // internal linkage
int bar() { // internal linkage

38

3.7 Linkage

return foo;
}
} // end anonymous namespace

In C++, prefer anonymous namespaces over static to change the linkage of global
declarations.

[Slide 103] inline Specifier11

• inline – permit multiple definitions in different translation units
– No direct relation to the inlining optimization!

//--- sum.h
#ifndef SUM_H
#define SUM_H

inline int sum(int a, int b) {
return a + b;

}

#endif // SUM_H
//--- a.cpp
#include "sum.h"
// Now has definition of sum
// ...

//--- b.cpp
#include "sum.h"
// Now has definition of sum
// ...

• Linker keeps only one definition

Inline definitions are useful when the presence of the definition can improve optimiza-
tion, e.g. give the compiler the opportunity to do inlining, which would be impossible
if the definition was in a different translation unit.

As a downside, the function gets compiled in every translation unit that includes
the definition, increasing compilation times and the size of the intermediate object
files.

Especially for inline definitions it is important to use header guards to prevent
multiple definitions in the same translation unit.

[Slide 104] Declarations/Definitions, Preprocessor, Linker – Summary

• Preprocessor transforms source code before actual compilation
– Use (almost) exclusively for header guards and header includes

• Use assert() for invariants, but be aware that it is a macro
11https://en.cppreference.com/w/cpp/language/inline

39

https://en.cppreference.com/w/cpp/language/inline

3 Declarations/Definitions, Preprocessor, Linker

• Declarations introduce names, but not necessarily define them
• Exactly one definition of used func/var required in program
• For multiple files, separate header and implementation files
• There must be exactly one definition of every used name
• Exceptions: internal linkage and inline functions

[Slide 105] Declarations/Definitions, Preprocessor, Linker – Questions

• Why is the use of function-like macros problematic?
• What are state modifications inside assert() problematic?
• What is the difference between a declaration and a definition?
• How to declare functions and global variables?
• Why is the header guard important?
• Why is including C++ implementation files (.cpp) a bad idea?
• What does the static specifier do on local variables?
• What is the effect of an unnamed namespace?

40

4 References, Arrays, Pointers

[Slide 107] Value Categories (Simplified)

lvalue

• Can appear on left side of assign-
ment

• Locates an object
• Has an address
• Examples:

– Variable names: var
– Assignment exprs: a = b

rvalue

• Can only appear on right side of
assignment

• Might not have address
• lvalue can be converted implicitly

to rvalue
• Examples:

– Literals: 42
– Most exprs: a + b, a < b

This is a simplified version of the value categories, mostly coherent with very old
C++ standards prior to C++11. We will cover the all possible types of values when
discussing move semantics in a later lecture.

Not all lvalues can actually be assigned to, for example, const-qualified variables
cannot be modified.

4.1 References

[Slide 108] Reference Declarations (1)1

• Declare an alias to an existing object or function
• Lvalue reference: type& declarator
• Definitions must be initialized to refer to a valid object/function
• Declarations don’t need initializer, e.g. parameters
• Peculiarities:

– References are immutable, i.e. can’t change which object is aliased
– References are not objects
⇒ No references to references

[Slide 109] Lvalue References: Example (Alias)

unsigned i = 10;
unsigned j = 20;
unsigned& r = i; // r is now an alias for i

1https://en.cppreference.com/w/cpp/language/reference

41

https://en.cppreference.com/w/cpp/language/reference

4 References, Arrays, Pointers

r = 15; // modifies i to 15
r = j; // modifies i to 20

i = 42;
j = r; // modifies j to 42

[Slide 110] Lvalue References: Example (Pass By Reference)

• References are used to implement pass-by-reference semantics
#include <print>
void computeAnswer(int& result) {
result = 42;

}

int main() {
int theAnswer = -1;
computeAnswer(theAnswer); // theAnswer is now 42

}

[Slide 111] Lvalue References: Example (Returning Reference)

• Function calls returning lvalue references are lvalues
int global1 = 0;
int global2 = 0;

int& getGlobal(int num) {
if (num == 1)
return global1;

return global2;
}

int main() {
getGlobal(1) = 10; // global1 is now 10
getGlobal(2)--; // global2 is now -1

}

A typical application of this is not to return references to globals but to return
references to class members.

[Slide 112] References and cv-Qualifiers

• References themselves cannot be cv-qualified
• But the referenced type can be

– Reference can be initialized by less cv-qualified type e.g. const int& can be
initialized from int&

#include <print>

void printAnswer(const int& answer) {
std::println("{}", answer);

}

42

4.1 References

int main() {
int theAnswer = 42;
printAnswer(theAnswer); // cannot modify theAnswer

}

For primitive types, passing by constant reference is rather pointless. It is important,
however, when passing more complex objects, which could be non-trivial or expensive
to copy.

[Slide 113] Pass-By-Reference

Quiz: What is the output of the program?
#include <print>
void foo(const int& a, int& b, const int& c) {
b += a;
b += c;

}

int main() {
int x = 1;
foo(x, x, x);
std::println("{}", x);

}

A. (undefined behavior) B. 1 C. 2 D. 3 E. 4

[Slide 114] Dangling References2

• Lifetime of object can end while references still exist
⇝ dangling reference, when used: undefined behavior

int& foo() {
int i = 123;
return i; // DANGER: returns dangling reference

}
int bar() {
int& res = foo();
return res; // object used outside its lifetime => UB

}

[Slide 115] Rvalue References

• Extend the lifetime of temporary objects
– NB: const lvalue references can also extend lifetime of temporaries

• Rvalue reference: type&& declarator
• Cannot bind directly to lvalues

int i = 10;
int&& j = i; // ERROR: cannot bind lvalue
int&& r = 42; // OK

2https://en.cppreference.com/w/cpp/language/reference#Dangling_references

43

https://en.cppreference.com/w/cpp/language/reference#Dangling_references

4 References, Arrays, Pointers

int&& k = i + i; // OK, k == 20
k += 22; // OK, k == 42

const int& l = i * i; // OK, l == 100
l += 10; // ERROR: cannot modify constant reference

Typically, the lifetime of temporary objects (if they exist), ends at the end of the full
expression. Rvalue references extend the lifetime of such temporaries until they go
out of scope.

[Slide 116] Passing Rvalues

Quiz: What is the output of the program?
#include <print>
int foo(const int& a, const int& b, int&& c) {
c += b;
return c + a;

}

int main() {
int x = 1;
int r = foo(x, x, x);
std::println("{}", r);

}

A. (compile error) B. 1 C. 2 D. 3 E. 4

[Slide 117] Passing Rvalues

Quiz: What is the output of the program?
#include <print>
int foo(const int& a, const int& b, int&& c) {
c += b;
return c + a;

}

int main() {
int x = 1;
int r = foo(x, x * 2, x + 10);
std::println("{}", r);

}

A. (compile error) B. (undefined behavior) C. 13 D. 14 E. 26

[Slide 118] Reference Declaration Syntax

• & and && syntactically belong to the declarator!
int i = 10;
int& a = i, k = 2; // a is int&, k is int

⇒ Only declare one identifier at a time!
• int& j = 1; and int &j = 1; are valid, follow code style

44

4.2 Arrays

[Slide 119] Rvalue References: Overload Resolution

void foo(int& x);
void foo(const int& x);
void foo(int&& x);

int& bar();
int baz();

int main() {
int i = 42;
const int j = 84;

foo(i); // calls foo(int&)
foo(j); // calls foo(const int&)
foo(123); // calls foo(int&&)

foo(bar()) // calls foo(int&)
foo(baz()) // calls foo(int&&)

}

We did not introduce overloads so far in this lecture. A function of one name can
have multiple overloads with different parameter counts types. Overload resolution is
the process of determining which function gets called. As this also considers implicit
conversions, it is a rather complex procedure, which we will cover later (at least to
some extent).

It is typically not advisable to implement different semantics for const vs. non-
const references. Overloads that take rvalue references will later be used for move
semantics (as the parameter must be an rvalue, it is “lost” after the function call
anyway).

4.2 Arrays

[Slide 120] Arrays3

• Syntax (C-style arrays): type declarator[expression];
• expression must be an integer constant at compile-time
• Elements can be accessed with [] with index 0 · · · < N
• Arrays cannot be assigned or returned

unsigned short arr[10];
for (unsigned i = 0; i < 10; ++i)
arr[i] = i * i;

unsigned a[10];
unsigned b[10];
a = b; // ERROR: cannot assign arrays

3https://en.cppreference.com/w/cpp/language/array

45

https://en.cppreference.com/w/cpp/language/array

4 References, Arrays, Pointers

As for references, the array-size is part of the declarator and doesn’t belong to the
type specifier.

[Slide 121] Array Initialization

• Without an initializer, elements are default-initialized
– Remember: for local variables, this means uninitialized

• Zero-initializer:
unsigned short arr[10] = {}; // 10 zeroes

• List-initializer:
unsigned short arr[] = {1, 2, 3, 4, 5, 6}; // 6 elements

[Slide 122] Array Memory Layout

Elements of an array are allocated contiguously in memory

• Given unsigned short a[10]; containing the integers 1 through 10
• Assuming a 2-byte unsigned short type
• Assuming little-endian byte ordering

Address
02 04 0600

00 00 00 00 00 00 00 00 00 0001 05040302 080706 0a09
08 100e0c0a 12

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Arrays are just dumb chunks of memory

• Out-of-bounds accesses are not detected
• May lead to rather weird bugs, not necessarily crashes
• Exist mainly due to compatibility requirements with C

[Slide 123] sizeof Array

• Like for other types: sizeof return array size in bytes
• Divide by size of an element to determine array length

unsigned short a[10];

for (unsigned i = 0; i < sizeof(a) / sizeof(a[0]); ++i)
a[i] = i * i;

(Don’t do this in C++)

This way of determining the size of an array is inherited from C, but inherently error-
prone. In C++, don’t do this. Instead, use std::array (see later), which provides a
size() method.

46

4.2 Arrays

[Slide 124] Multi-Dimensional Arrays

• Array elements can be arrays themselves

unsigned md[3][2]; // array with 3 elements of (array of 2 unsigned int)
for (unsigned i = 0; i < 3; ++i)
for (unsigned j = 0; j < 2; ++j)
md[i][j] = 3 * i + j;

unsigned b[][2] = { // only the outermost dimension can be omitted
{0, 1},
{2, 3},
{4, 5},

};

• Elements still allocated contiguously in memory

For multi-dimensional arrays, the size of the innermost dimension comes last.

[Slide 125] size_t4

• Designated types for indexed and sizes: std::size_t (<cstddef>)
• Unsigned integer type large enough to represent all possible array sizes and indices

on the target architecture
• Used throughout the standard library for indices/sizes
• Generally use size_t for indexes and array sizes

– For small arrays, unsigned might be sufficient
– Do not use int

[Slide 126] std::array5

C-style arrays should be avoided whenever possible
• Use the std::array type defined in the <array> standard header instead
• Similar semantics as a C-style array
• Optional bounds-checking and other useful features
• template type with two parameters (element type and count)

#include <array>
int main() {
std::array<unsigned short, 10> a;
for (size_t i = 0; i < a.size(); ++i)
a[i] = i + 1; // no bounds checking

}

[Slide 127] std::array

• ... can be returned (unlike C-style arrays)

4https://en.cppreference.com/w/cpp/types/size_t
5https://en.cppreference.com/w/cpp/container/array

47

https://en.cppreference.com/w/cpp/types/size_t
https://en.cppreference.com/w/cpp/container/array

4 References, Arrays, Pointers

std::array<int, 10> squares() {
std::array<int, 10> res = {}; // zero-initialize all elements
for (size_t i = 0; i < a.size(); ++i)
res[i] = i * i;

return res;
}

• ... can be passed as parameter (unlike C-style arrays)

// NB: src is copied by value, might be expensive!
// Prefer const std::array<int, 10>& src instead. (btw, don’t write this code)
void copy(std::array<int, 10>& dst, std::array<int, 10> src) {
assert(dst.size() == src.size() && "size␣mismatch!");
for (size_t i = 0; i < dst.size(); ++i)
dst[i] = src[i];

}

Be very careful about passing arrays by value! Generally, don’t do this unless there’s
a good reason. Small arrays (e.g., two integers) are typically fine, larger arrays can
incur a substantial performance penalty.

Don’t write a copy function like this; instead, rely on standard library function
(e.g., std::memcpy, std::copy), which tend to be more optimized.

[Slide 128] For-Range Loop

• Syntax: for (range-declaration : range-expression) loop-statement
• Execute loop body for every element in range expression

std::array<int, 3> a = {1, 2, 3};
for (int& elem : a)
elem *= 2;

// a is now {2, 4, 6}

for (const int& elem : a)
std::println("{}", elem);

[Slide 129] Special Case: String Literals

• String literals are immutable null-terminated character arrays
• Type of literal with N characters is const char[N+1]
• Artifact of C compatibility
• Generally avoid, use std::string_view or std::string instead
• Occasionally needed for interfacing with C APIs

[Slide 130] String Literals

Quiz: What does the function f return?
size_t f() { return sizeof("Hello!"); }

A. (compile error) B. impl.-defined C. 5 D. 6 E. 7

48

4.3 Pointers

4.3 Pointers

[Slide 131] Pointers6

• Syntax: type* cv declarator

– As for references/arrays/functions, the * is part of the declarator
• No pointers to references, cv qualifies the pointer itself
• Points to an object, stores address of first object byte in memory
• Pointers are objects (unlike references)
• Like reference, pointers can dangle

int* a; // pointer to (mutable) int
const int* a; // pointer to const int
int* const a; // const pointer to (mutable) int
const int* const a; // const pointer to const int

int** e; // pointer to pointer to int

[Slide 132] Address-Of Operator7

• Operator &: obtain pointer to object
• Opeand must be an lvalue expression, cv-qualification is retained

int a = 10;
int* ap = &a;
const int c = 20;
const int* cp = &c;
int* cp2 = &c; // ERROR: cannot convert const int* to int*

int& r = a; // Reference to a
int* rp = &r; // Pointer to a

[Slide 133] Indirection Operator8

• Operator *: obtain lvalue reference to pointed-to object
• Operand must be a pointer, cv-qualification is retained
• Also referred to as pointer dereference

int a = 10;
int* ap = &a;
int& ar = *ap;
ar = 20; // a is now 20
*ap = 4; // a is now 4

6https://en.cppreference.com/w/cpp/language/pointer
7https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_
operator

8https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_
operator

49

https://en.cppreference.com/w/cpp/language/pointer
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_operator
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_operator
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_operator
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_operator

4 References, Arrays, Pointers

[Slide 134] What is Happening? (1)

int main() {

}

0x00001234
0x00001230

00 01 02 03
unknown

return address

Stack Memory

[Slide 135] What is Happening? (2)

int main() {
int a = 10;

}

0x00001234
0x00001230

00 01 02 03

0a 00 00 00

unknown
return address

a = 100x0000122c

Stack Memory

[Slide 136] What is Happening? (3)

int main() {
int a = 10;
int b = 123;

}

0x00001234
0x00001230
0x0000122c
0x00001228

00 01 02 03

7b 00 00 00
0a 00 00 00

unknown
return address

a = 10

b = 123

Stack Memory

50

4.3 Pointers

[Slide 137] What is Happening? (4)

int main() {
int a = 10;
int b = 123;
int* c = &a;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
0a 00 00 00

unknown
return address

a = 10

b = 123

c = 0x122c

Stack Memory

[Slide 138] What is Happening? (5)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
2a 00 00 00

unknown
return address

a = 42

b = 123

c = 0x122c

Stack Memory

[Slide 139] What is Happening? (6)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
2a 00 00 00

24 12 00 000x00001220

unknown
return address

a = 42

b = 123

c = 0x122c

d = 0x1224

Stack Memory

51

4 References, Arrays, Pointers

[Slide 140] What is Happening? (7)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 123

c = 0x122c

d = 0x1224

Stack Memory

[Slide 141] What is Happening? (8)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

28 12 00 00
7b 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 123

c = 0x1228

d = 0x1224

Stack Memory

[Slide 142] What is Happening? (9)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;
**d = 24;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

28 12 00 00
18 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 24

c = 0x1228

d = 0x1224

Stack Memory

52

4.3 Pointers

[Slide 143] What is Happening? (10)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;
**d = 24;

return 0;
}

0x00001234
00 01 02 03

unknown

Stack Memory

[Slide 144] Pointers to References?

Quiz: Why are pointers to references impossible?
A. References are not objects and thus have no address.
B. Would be redundant to pointers to pointers.
C. Taking the address of the referenced object is not possible.

[Slide 145] Null Pointers9

• Pointer can point to object, or nowhere (null pointer)
• Null pointer has special value nullptr
• Null pointers of same type are considered as equal
• Dereferencing null pointers is undefined behavior

int safe_deref(const int* x) { // just as an example
if (x == nullptr)
return 0;

return *x;
}

[Slide 146] Null Pointers

Quiz: Which answer is NOT correct?
int safe_deref2(const int* x) {
int v = *x;
if (x == nullptr)
return 0;

return v;
}

A. The compiler can simply remove the null check.
B. The program might crash when nullptr is passed.
C. The program might return zero.
D. The null check prevents an invalid pointer dereference.

9https://en.cppreference.com/w/cpp/language/pointer#Null_pointers

53

https://en.cppreference.com/w/cpp/language/pointer#Null_pointers

4 References, Arrays, Pointers

Undefined behavior might lead to seemingly surprising behavior in optimizing com-
pilers.

[Slide 147] Subscript Operator10

• Treat pointer as pointer to first element of an array
• Follow the same semantics as the array subscript

std::array<int, 3> arr = {12, 34, 45};
const int* ptr = &arr[0]; // pointer to first element, no dereference

for (unsigned i = 0; i < 3; i++)
std::println("{}", ptr[i]);

• C-style arrays often implicitly decay to pointers to the first element

int arr[] = {12, 34, 45};
const int* ptr = arr; // pointer to first element

[Slide 148] Pointer Arithmetic: Addition11

• ptr + idx/ptr - idx: move pointer idx elements to left/right
– Moves underlying address by idx * sizeof(*ptr)

• ptr[idx] equals *(ptr + idx); &ptr[idx] equals7 ptr + idx

std::array<int, 3> arr = {12, 34, 45};
const int* ptr = &arr[1]; // pointer to second element

// prints: 12 45
std::println("{}␣{}", *(ptr - 1), *(ptr + 1));

[Slide 149] Pointer Arithmetic: Past-The-End Pointers

• Only valid pointers are allowed to be dereferenced
• Pointers shall point to valid objects or be nullptr
• Exception: pointer past the end of the last element is allowed
⇝ Constructing out-of-bounds pointers is undefined behavior

std::array<int, 3> arr = {12, 34, 45};
const int* begin = &arr[0]; // OK, points to first element
const int* end = &arr[arr.size()]; // OK, past-the-end pointer

for (const int* p = begin; p != end; ++p) // OK
std::println("{}", p);

int v = *end; // NOT OK: dereferencing past-the-end pointer
int* oobPtr = begin + 4; // NOT OK: pointer out of bounds

10https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_subscript_
operator

11https://en.cppreference.com/w/cpp/language/operator_arithmetic#Additive_operators

54

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_subscript_operator
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_subscript_operator
https://en.cppreference.com/w/cpp/language/operator_arithmetic#Additive_operators

4.3 Pointers

[Slide 150] Pointer Arithmetic: Subtraction

• Assuming two pointers ptr1 and ptr2 point into the same array
• ptr1 - ptr2 is the number of elements between the pointers

#include <cstddef>
int main() {
int array[3] = {123, 456, 789};
const int* ptr1 = &array[0];
const int* ptr2 = &array[3]; // past-the-end pointer

std::ptrdiff_t diff1 = ptr2 - ptr1; // 3
std::ptrdiff_t diff2 = ptr1 - ptr2; // -3

}

[Slide 151] String Literals Quiz

Quiz: What is the output of the program?
#include <print>
int main() {
std::println("{}", "Hello!" + 3);

}

A. (compile error) B. (undefined behavior) C. "Hello!3" D. "lo!" E. (an address)

[Slide 152] Void Pointer12

• Pointer to void is allowed
• Pointers can be implicitly converted to void pointer (retaining cv-quals)
• To use void pointer, it must be casted to a different type

• Used to pass object of unknown type
• Often used in C interfaces (e.g., malloc)
• Tentatively avoid in C++

[Slide 153] static_cast13

• static_cast<new type>(expression)
• Cast expression to “related” type, must be at least as cv-qual’ed

– E.g., cast from void pointer to pointer of different type
– Many more cases, see reference

int i = 42;
void* vp = &i; // OK, no cast required
int* ip = static_cast<int*>(vp); // OK
long* lp = static_cast<long*>(ip); // ERROR
long* lp = static_cast<long*>(vp); // Undefined behavior!

double d = static_cast<double>(i);

12https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_void
13https://en.cppreference.com/w/cpp/language/static_cast

55

https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_void
https://en.cppreference.com/w/cpp/language/static_cast

4 References, Arrays, Pointers

[Slide 154] reinterpret_cast14

• reinterpret_cast<new type>(expression)
• Cast expression to “unrelated” type, reinterpreting bit pattern
• Very limited set of allowed conversions

– E.g., converting pointer to object to pointer to char or std::byte
• Invalid conversions usually lead to undefined behavior
• Only use when strictly required! Also avoid C-style casts

[Slide 155] Strict Aliasing Rule

• Object access with an expression of a different type is undefined behavior
⇒ Accessing an int through a float* is not allowed (pointer aliasing)
⇒ Compilers assume that pointers of different types have different values
• (There are few exceptions)

float f = 42.0f;
// Undefined behavior!
int i = *reinterpret_cast<int*>(&f);

[Slide 156] Pointers are Actually Complex

• Pointers generally consist of the address of the pointed-to object
• But: pointers have more semantic information (provenance15)

– Pointers have “information” about the underlying object
– Used for compiler optimization

• Some hardware platforms have unusual addressing schemes
– E.g., CHERI with 128-bit capabilities, basically pointer with bounds and per-

missions

[Slide 157] Pointers vs. References

Reference Pointer

Usable for passing-by-reference? Yes Yes
Guaranteed non-null? Yes No
Is an object itself? No Yes
Can change which object is referred to? No Yes
Supports pointer arithmetic? No Yes

Recommendation (we will revisit this later):
• Prefer references for pass-by-references
• Use pointer for: optional references (nullptr), pointer changes object, pointer

arithmetic required, storing references in an array
14https://en.cppreference.com/w/cpp/language/reinterpret_cast
15https://www.ralfj.de/blog/2020/12/14/provenance.html

56

https://en.cppreference.com/w/cpp/language/reinterpret_cast
https://www.ralfj.de/blog/2020/12/14/provenance.html

4.3 Pointers

[Slide 158] References, Arrays, Pointers – Summary

• Value classes lvalues (locations) and rvalues
• References are aliases to other objects
• Rvalue references extend lifetime of temporary objects
• Arrays contiguously store multiple elements of same type
• String literals are a special case of an array
• Pointers are objects that point to other objects, or nullptr
• Pointers support arithmetic
• Pointer casts are possible, but are often invalid

[Slide 159] References, Arrays, Pointers – Questions

• Why are arrays of references impossible?
• How can the object referenced by a reference be changed?
• How to pass an object by-reference in C++?
• What is the difference between lvalue and rvalue references?
• What is different between const-lvalue and rvalue references?
• What is the relation between arrays and pointers?
• Which operations on pointers are undefined behavior?
• When is using pointer advisable over using a reference?

57

5 Classes and Conversions

[Slide 161] static_assert1

• static_assert(bool expr, string) – assert at compile-time
• Expression must be a compile-time constant
• Can have an optional failure message

Example:
static_assert(sizeof(int) == 4, "program␣only␣works␣on␣4-byte␣integers");

5.1 Classes

[Slide 162] Classes

class Name1 {
// member specifications...

};
struct Name2 {

// member specifications...
};

• Name can be any valid identifier
• Members can be:

– Variables (data members)
– Functions (member functions)
– Types (nested types)

• Note the trailing semicolon

[Slide 163] Data Members2

• Declarations of (non-extern) variables
• Size of declared variable must be known (see later)
• Variable name must be unique within class
• Variables can have default value

class Name {
int foo = 10;
int& iref;
float* ptr;
const char x;

};

1https://en.cppreference.com/w/cpp/language/static_assert
2https://en.cppreference.com/w/cpp/language/data_members

59

https://en.cppreference.com/w/cpp/language/static_assert
https://en.cppreference.com/w/cpp/language/data_members

5 Classes and Conversions

[Slide 164] Data Layout

• Class is essentially just a sequence of its data members
• Members are stored in memory in declaration order
• Alignment of members is respected ⇝ padding between objects
• Alignment of class is largest alignment of data members

class C {
int i; // sizeof = 4; alignof = 4; offset = 0
// (4 padding bytes)
int* p; // sizeof = 8; alignof = 8; offset = 8
char c; // sizeof = 1; alignof = 1; offset = 16
// (1 padding byte)
short s; // sizeof = 2; alignof = 2; offset = 18
// (4 padding bytes -- sizeof must be multiple of alignof)

}; // sizeof(C) = 24; alignof(C) == 8

Modifying members of a class generally breaks the Application Binary Interface (ABI)
— the interface of compiled programs. This is particularly relevant for shared li-
braries, where often some effort is required to prevent accidental breakage. Some
libraries deliberately include unused space that they can repurpose without changing
the interface visible to other translation units.

Maintaining ABI stability is extremely difficult in practice and requires a high
degree of programmer discipline. This is part of the reason why “modern” libraries
or languages prefer static linking.

[Slide 165] Data Layout

Quiz: What is the size of Line?
class Point {

int x;
int y;
unsigned char color;

};
class Line {

Point a;
Point b;
unsigned char lineWidth;

};

A. (compile error) B. 19 C. 24 D. 28 E. 32

[Slide 166] Bit Fields3

• Can specify bit-size for integer members
• Adjacent bit fields packed together
• Access is fairly expensive, but might reduce memory usage
⇝ Use only when strongly beneficial

3https://en.cppreference.com/w/cpp/language/bit_field

60

https://en.cppreference.com/w/cpp/language/bit_field

5.1 Classes

class Bitfields {
unsigned short flagA : 1;
unsigned short flagB : 1;
unsigned short tinyVar : 11;

};
static_assert(sizeof(Bitfields) == 2);
static_assert(alignof(Bitfields) == 2);

Using bit fields is generally not recommendable. Accessing bit fields requires gener-
ation of bitwise operations to extract or insert the value, which is fairly expensive.

However, when the size of the data type is particularly important, combining flags
or variables with very limited ranges into bit fields can improve memory usage (and
thereby performance).

[Slide 167] Data Layout

Quiz: What is the size of this class?
class Value { // (excerpt from llvm/include/llvm/IR/Value.h)
const unsigned char SubclassID;
unsigned char HasValueHandle : 1;
unsigned char SubclassOptionalData : 7;
unsigned short SubclassData;
unsigned NumUserOperands : 27;
unsigned IsUsedByMD : 1;
unsigned HasName : 1;
unsigned HasMetadata : 1;
unsigned HasHungOffUses : 1;
unsigned HasDescriptor : 1;
Type *VTy;
Use *UseList;

}; // NB: sizeof(void*) == 8; sizeof(unsigned) == 4

A. (compile error) B. 24 C. 32 D. 40 E. 45

[Slide 168] Data Layout: Consequences

• Order of members has impact on class size
⇒ When class size is important, reduce padding
⇒ Recommendation: place all data members together at beginning/end

– Potential padding etc. is easily findable
• All users of the class need to know the declaration

⇒ Class declarations often put in header files
⇒ Adding/modifying members requires changes data layout ⇒ recompilation

– Especially important when distributing libraries – all users must rebuild

[Slide 169] Member Functions

• Declaration of methods just like regular function declarations
• Inline definitions are implicitly inline
• Out-of-line definitions are preferable for non-trivial methods

61

5 Classes and Conversions

//--- foo.h
#pragma once
class Foo {

int foo();
int bar(int x) { // inline definition

return x + 1;
}

};
//--- foo.cpp
int Foo::foo() { // out-of-line definition

return 10;
}

Inline definitions are typically preferable, when the function is very small and giving
the compiler the possibility of inlining the function gives a substantial performance
benefit. For example, inlining a simple get-function for a data member is typically
preferable. For more complex logic, out-of-line definitions in .cpp-files are generally
preferable (why?).

[Slide 170] Inline vs. Out-Of-Line Definitions

Quiz: Which answer is NOT correct?
A. Out-of-line definitions tend to allow for more optimizations.
B. Out-of-line definitions tend to reduce compile time.
C. Inline definitions tend to allow for more optimizations.
D. Inline definitions in headers are possibly compiled several times.

• Similar considerations as for inline functions apply

[Slide 171] Member Access

struct Vec {
unsigned x;
unsigned y;

};
Vec v;
Vec* vp = ...;

// member access:
int l1dist_a = v.x + v.y;
// ptr->member is a shorthand for (*ptr).member
int l1dist_b = vp->x + vp->y;

[Slide 172] this

• Member functions have implicit parameter this; type is Class*
• In member functions, members can be accessed without this (preferred)

struct Vec {
unsigned x;
unsigned y;

62

5.1 Classes

unsigned l1dist() {
return this->x /* explicit access */ + y /* implicit access*/;

}
};
Vec v;
Vec* vp = ...;
int l1dist_a = v.l1dist();
int l1dist_b = vp->l1dist();

[Slide 173] const-Qualified Member Functions

• Member functions can be const-qualified
• this is a const Class*

⇒ Data members are immutable
struct Vec {

unsigned x;
unsigned y;
unsigned getX() const { return x; }
unsigned getY() const { return y; }
unsigned l1dist() const;

};
unsigned Vec::l1dist() const {

return x + y; // this is a const Vec*
}

When a member function does not modify the object, it is highly recommended to
const-qualify it.

[Slide 174] Constness and Member Functions

• For non-const lvalues non-const overloads are preferred over const ones
• For const lvalues only const-qualified functions are selected

struct Foo {
int getA() { return 1; }
int getA() const { return 2; }
int getB() const { return getA(); }
int getC() { return 3; }

};
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value

foo.getA() 1
foo.getB() 2
foo.getC() 3
cfoo.getA() 2
cfoo.getB() 2
cfoo.getC() error

63

5 Classes and Conversions

[Slide 175] Constness of Member Variables

• Constness propagates through pointer lvalue access
• const data members are always constant

– Can only be set once during construction (see later)
• mutable member variables are always non-const (use carefully!)

struct Foo {
int i;
const int c;
mutable int m;

}
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value Category

foo.i non-const lvalue
foo.c const lvalue
foo.m non-const lvalue
cfoo.i const lvalue
cfoo.c const lvalue
cfoo.m non-const lvalue

[Slide 176] Static Members4

• Static data members: members not bound to class instances
• Only one instance in the program, like global variables
• Static member functions: no implicit this parameter
• Static members can be accessed with :: operator

//--- foo.h
struct Foo {

static int var; // declaration
static void statfn(); // declaration

};
//--- foo.cpp
int Foo::var = 10; // definition
void Foo::statfn() { /* ... */ } // definition

Note that static data members must have an out-of-line definition and, as global
variables, must be defined exactly once in the entire program.

5.2 Constructors

[Slide 177] Constructors

• ... are special functions that are called when an object is initialized
4https://en.cppreference.com/w/cpp/language/static

64

https://en.cppreference.com/w/cpp/language/static

5.2 Constructors

• ... have no return type, no const-qualifier, and name is class name
• ... can have arguments, constructor without arguments is default constructor
• ... are sometimes implicitly defined by the compiler

struct Foo {
Foo() {

// default constructor
}

};
struct Foo {

int a;
Bar b;
// Default constructor is
// implicitly defined, does
// nothing with a, calls
// default constructor of b

};

[Slide 178] Initializer List

• Specify how member variables are initialized before constructor body
• Other constructors can be called in the initializer list
• Members initialized in the order of their definition
• const member variables can only be initialized in the initializer list

struct Foo {
int a = 123; float b; const char c;
// default constructor initializes a (to 123), b, and c
Foo() : b(2.5), c(7) {}
// initializes a and b to the given values
Foo(int a, float b, char c) : a(a), b(b), c(c) {}
Foo(float f) : Foo() {

// First the default constructor is called, then the body
// of this constructor is executed
b *= f;

}
};

[Slide 179] Initializing Objects5

• Constructor executed on initialization
• Arguments given in the initialization are passed to the constructor
• C++ has several types of initialization that are very similar but unfortunately have

subtle differences:
– default initialization (Foo f;)
– value initialization (Foo f{}; and Foo())
– direct initialization (Foo f(1, 2, 3);)
– list initialization (Foo f{1, 2, 3};)
– copy initialization (Foo f = g;)

• Simplified syntax: class-type identifier (arguments); or class-type identifier {arguments };
5https://en.cppreference.com/w/cpp/language/initialization

65

https://en.cppreference.com/w/cpp/language/initialization

5 Classes and Conversions

[Slide 180] Constructors (1)

Quiz: What is the output of the following program?
#include <print>
struct Foo {

int answer;
Foo() : answer(42) {}

};
int main() {

Foo f();
std::println("{}", f.answer);
return 0;

}

A. (compile error) B. 0 C. 42 D. (undefined behavior)

[Slide 181] Constructors (2)

Quiz: What is the return value of foo?
struct C {

int i;
C() = default;

};
int foo() {

const C c;
return c.i;

}

A. (compile error) B. an arbitrary integer C. 0 D. (undefined behavior)

[Slide 182] Constructors (3)

Quiz: What is problematic about this program?
#include <print>
struct Foo {

const int& answer;
Foo() {}
Foo(const int& answer)

: answer(answer) {}
};
int main() {

int answer = 42;
Foo f(answer);
std::println("{}", f.answer);
return 0;

}

A. Compile error: Two constructors are not allowed.
B. Compile error: answer not always initialized.
C. Compile error: f is a function declaration.
D. Undefined behavior: f.answer is a dangling reference.
E. There is no problem: the program always prints 42.

66

5.2 Constructors

[Slide 183] Constructors (4)

Quiz: What is problematic about this program?
#include <print>
struct Foo {

const int& answer;
Foo(const int& answer)

: answer(answer) {}
};
int main() {

int answer = 42;
Foo f = answer;
std::println("{}", f.answer);
return 0;

}

A. Compile error: Cannot assign integer to type Foo.
B. Compile error: Cannot convert integer to Foo.
C. Undefined behavior
D. There is no problem: the program always prints 42.

[Slide 184] Converting and Explicit Constructors6

• Constructors with one argument used for explicit and implicit conversions
• Use explicit to disallow implicit conversion
• Generally, use explicit unless there’s a good reason not to

struct Foo {
Foo(int i);

};
void print_foo(Foo f);
// Implicit conversion,
// calls Foo::Foo(int)
print_foo(123);
// Explicit conversion,
// calls Foo::Foo(int)
static_cast<Foo>(123);
struct Bar {

explicit Bar(int i);
};
void print_bar(Bar f);
// Implicit conversion,
// compiler error!
print_bar(123);
// Explicit conversion,
// calls Bar::Bar(int)
static_cast<Bar>(123);

6https://en.cppreference.com/w/cpp/language/converting_constructor

67

https://en.cppreference.com/w/cpp/language/converting_constructor

5 Classes and Conversions

5.3 Member Access Control

[Slide 185] Member Access Control

• Every member has public, protected or private access
• Default for class: private; for struct: public

– Recommendation: always explicitly specify access control
• public = accessible by everyone, private only by class itself

class Foo {
int a; // a is private

public: // All following declarations are public
int b;
int getA() const { return a; }

protected: // All following declarations are protected
int c;

public: // All following declarations are public
static int getX() { return 123; }

};

[Slide 186] Friend Declarations7

• Class body can contain friend declarations
• Friend: has access to private/protected members
• friend function-declaration; (for friend function)
• friend class-specifier; (for friend class)

class A {
int a; // private
friend class B;
friend void foo(A&);

};
class B {

void bar(A& a) {
a.a = 42; // OK

}
};
class C {

void foo(A& a) {
a.a = 42; // ERROR

}
};
void foo(A& a) {

a.a = 42; // OK
}

[Slide 187] Nested Types

• For nested types classes behave just like a namespace
• Nested types are accessed with ::
• Nested types are friends of their parent

7https://en.cppreference.com/w/cpp/language/friend

68

https://en.cppreference.com/w/cpp/language/friend

5.4 Forward Declarations

struct A {
struct B {

int getI(const A& a) {
return a.i; // OK, B is friend of A

}
};

private:
int i;

};
A::B b; // reference nested type B of class A

5.4 Forward Declarations

[Slide 188] Forward Declarations

• Classes can be forward declared: class Name;
• Type is incomplete until defined later
• Incomplete type can be used, e.g., for pointer/reference

//--- foo.h
class A;
class ClassFromExpensiveHeader;
class B {

ClassFromExpensiveHeader* member;
void foo(A& a);

};
class A {

void foo(B& b);
};
//--- foo.cpp
#include "ExpensiveHeader.hpp"
// ...

There are two benefits of forward-declaring classes: Inclusion of some headers can be
avoided, leading to faster build times, and mutual references between classes become
possible.

Thus, forward declarations are sometimes used in header files, when the actual
class definition is not required.

[Slide 189] Incomplete Types8

• No operations that require size/layout of type are possible
– No pointer arithmetic
– No access to members, member functions, etc.
– No definition/call of function with incomplete return/argument type

• Sometimes, this information is not needed:
– E.g., pointer/reference declarations can refer to incomplete types
– E.g., member functions with incomplete parameter types

8https://en.cppreference.com/w/cpp/language/types#Incomplete_type

69

https://en.cppreference.com/w/cpp/language/types#Incomplete_type

5 Classes and Conversions

5.5 Operator Overloading

[Slide 190] Operator Overloading9

• Classes can overload built-in operators like +, ==, etc.
• Many overloaded operators can also be written as non-member functions
• Overloaded operators are selected with the regular overload resolution
• Overloaded operators are not required to have meaningful semantics
• Almost all operators can be overloaded, exceptions are: ::, ., .*, ?:
• This includes “unusual” operators like: = (assignment), () (call), * (dereference),
& (address-of), , (comma)

[Slide 191] Arithmetic Operators10

lhs op rhs ∼ lhs.operator op (rhs) or operator op (lhs, rhs)

• Overloaded versions of || and && lose their special behaviors
• Should be const and take const references
• Usually return a value and not a reference

struct Int {
int i;
Int operator+(const Int& other) const { return Int{i + other.i}; }
Int operator-() const { return Int{-i}; };

};
Int operator*(const Int& a, const Int& b) { return Int{a.i * b.i}; }
Int a{123}; Int b{456};
a + b; /* is equivalent to */ a.operator+(b);
a * b; /* is equivalent to */ operator*(a, b);
-a; /* is equivalent to */ a.operator-();

[Slide 192] Comparison Operators11

All binary comparison operators (<, <=, >, >=, ==, !=, <=>) can be overloaded.
• Should be const and take const references
• Return bool, except for <=> (see next slide)
• If only operator<=> is implemented, <, <=, >, and >= work as well
• operator== must be implemented separately (then != works, too)

struct Int {
int i;
std::strong_ordering operator<=>(const Int& a) const {

return i <=> a.i;
}
bool operator==(const Int& a) const { return i == a.i; }

};
Int a{123}; Int b{456};
a < b; /* is equivalent to */ (a.operator<=>(b)) < 0;
a == b; /* is equivalent to */ a.operator==(b);

9https://en.cppreference.com/w/cpp/language/operators
10https://en.cppreference.com/w/cpp/language/operator_arithmetic
11https://en.cppreference.com/w/cpp/language/operator_comparison

70

https://en.cppreference.com/w/cpp/language/operators
https://en.cppreference.com/w/cpp/language/operator_arithmetic
https://en.cppreference.com/w/cpp/language/operator_comparison

5.5 Operator Overloading

[Slide 193] Three-Way12

operator<=> should return one of the following types from <compare>: std::partial_ordering,
std::weak_ordering, std::strong_ordering.

• When comparing two values a and b with ord = (a <=> b), then ord has one of
the three types and can be compared to 0:

• ord == 0 ⇔ a == b
• ord < 0 ⇔ a < b
• ord > 0 ⇔ a > b
• strong_ordering convertible to weak_ordering and partial_ordering
• weak_ordering convertible to partial_ordering

[Slide 194] Three-Way Comparison (2)

• partial_ordering can be unordered, i.e. neither a <= b nor a >= b
– std::partial_ordering::less, ::equivalent, ::greater, ::unordered
– Example: floating-point numbers, NaN is unordered

• std::weak_ordering or std::strong_ordering for total order
– ::less, ::equivalent, ::greater
– strong_ordering: equal values must be completely indistinguishable
– Example for strong ordering: integers
– Example for weak ordering: points in 2d-space ordered by distance from origin

[Slide 195] Increment and Decrement13

Pre- and post-inc/dec are distinguished by an (unused) int argument
• C& operator++(); C& operator--(); pre-increment or -decrement, modify ob-

ject, return *this
• C operator++(int); C operator--(int); post-increment or -decrement, copy

self, modify self, return unmodified copy
struct Int {

int i;
Int& operator++() { ++i; return *this; }
Int operator--(int) { Int copy{*this}; --i; return copy; }

};
Int a{123};
++a; // a.i is now 124
a++; // ERROR: post-increment is not overloaded
Int b = a--; // b.i is 124, a.i is 123
--b; // ERROR: pre-decrement is not overloaded

[Slide 196] Subscript Operator14

Classes behaving like containers/pointers usually override the subscript []

12https://en.cppreference.com/w/cpp/utility/compare/partial_ordering
13https://en.cppreference.com/w/cpp/language/operator_incdec
14https://en.cppreference.com/w/cpp/language/operator_member_access

71

https://en.cppreference.com/w/cpp/utility/compare/partial_ordering
https://en.cppreference.com/w/cpp/language/operator_incdec
https://en.cppreference.com/w/cpp/language/operator_member_access

5 Classes and Conversions

• a[b] is equivalent to a.operator[](b)
• Type of b can be anything, for array-like containers it is usually size_t

struct Foo { /* ... */ };
struct FooContainer {

Foo* fooArray;
Foo& operator[](size_t n) { return fooArray[n]; }
const Foo& operator[](size_t n) const { return fooArray[n]; }

};

[Slide 197] Dereference Operators15

Classes behaving like pointers usually override the operators * and ->

• operator*() usually returns a reference
• operator->() should return a pointer or an object that itself has an overloaded ->

operator
struct Foo { /* ... */ };
struct FooPtr {

Foo* ptr;
Foo& operator*() { return *ptr; }
const Foo& operator*() const { return *ptr; }
Foo* operator->() { return ptr; }
const Foo* operator->() const { return ptr; }

};

[Slide 198] Assignment Operators16

• Operator = is often used for copying/moving (see next week)
• All assignment operators usually return *this

struct Int {
int i;
Foo& operator+=(const Foo& other) { i += other.i; return *this; }

};
Foo a{123};
a = Foo{456}; // a.i is now 456
a += Foo{1}; // a.i is now 457

[Slide 199] Conversion Operators17

• Conversion can be done using converting constructors (seen before)
• or conversion operators: operator type ()

• The explicit keyword can be used to prevent implicit conversions
• Explicit conversions are done with static_cast

struct Int {
int i;
operator int() const {

15https://en.cppreference.com/w/cpp/language/operator_member_access
16https://en.cppreference.com/w/cpp/language/operator_assignment
17https://en.cppreference.com/w/cpp/language/cast_operator

72

https://en.cppreference.com/w/cpp/language/operator_member_access
https://en.cppreference.com/w/cpp/language/operator_assignment
https://en.cppreference.com/w/cpp/language/cast_operator

5.5 Operator Overloading

return i;
}

};
Int a{123};
int x = a; // OK, x is 123
struct Float {

float f;
explicit operator float() const {

return f;
}

};
Float b{1.0};
float y = b; // ERROR, implicit conversion
float y = static_cast<float>(b); // OK

[Slide 200] operator bool

• operator bool: converts to bool
• Used to enable use of object in if, while, etc.

– if, while etc. perform an explicit conversion

struct Ptr {
void *p;
explicit operator bool() const {

return p; // pointers have an implicit conversion to bool
}

};
Ptr p{nullptr};
if (p) {} // OK: explicit conversion
bool hasPtr = p; // ERROR: implicit conversion

[Slide 201] Argument-Dependent Lookup18

• Overloaded operators are usually defined in the same namespace as the type of one
of their arguments

• Regular unqualified lookup would not allow the following example to compile
• To fix this, unqualified names of functions are also looked up in the namespaces of

all arguments
• This is called Argument Dependent Lookup (ADL)

namespace A { class X {}; X operator+(const X&, const X&); }
int main() {

A::X x, y;
A::operator+(x, y); // OK
x + y; // How to specify namespace here?

// -> OK: ADL finds A::operator+()
operator+(x, y); // OK for the same reason

}

18https://en.cppreference.com/w/cpp/language/adl

73

https://en.cppreference.com/w/cpp/language/adl

5 Classes and Conversions

5.6 Enums

[Slide 202] Enums19

• Typically used like integral types with a restricted range of values
• Also used to assign descriptive names instead of “magic” integer values
• Syntax: enum-key name { enum-list };
• enum-key can be enum, enum class, or enum struct
• Without explicit value, first element gets zero, other increment from previous

enum Color {
Red, // Red == 0
Blue, // Blue == 1
Green, // Green == 2
White = 10,
Black, // Black == 11
Transparent = White // Transparent == 10

};

[Slide 203] Using Enum Values

• Names from the enum list can be accessed with the scope resolution operator
• Enums can be converted to integers and vice versa with static_cast
• enum without class/struct: C-style enums

– Names also introduced in the enclosing namespace
– Can be converted implicitly int

• enum class and enum struct are equivalent
• Recommendation: Use enum class unless you have a reason not to

Color::Red; // Access with scope resolution operator
Blue; // Access from enclosing namespace
int i = Color::Green; // i == 2, implicit conversion
int j = static_cast<int>(Color::White); // j == 10
Color c = static_cast<Color>(11); // c == Color::Black

5.7 Type Aliases

[Slide 204] Type Aliases20

• Type names nested deeply in namespaces/classes can become very long
⇝ Type alias: using |name | = |type |;
• name is the name of the alias, type must be an existing type
• (C compatibility: equivalent to typedef, but prefer using)

namespace A::B::C { struct D { struct E {}; }; }
using E = A::B::C::D::E;
E e; // e has type A::B::C::D::E
struct MyContainer {

19https://en.cppreference.com/w/cpp/language/enum
20https://en.cppreference.com/w/cpp/language/type_alias

74

https://en.cppreference.com/w/cpp/language/enum
https://en.cppreference.com/w/cpp/language/type_alias

5.7 Type Aliases

using value_type = int;
};
MyContainer::value_type i = 123; // i is an int

Type aliases in classes are already somewhat useful know, as they allow to change
the concrete type at only one location, e.g., the integer type used for storing indices
in a container.

Later with templated classes, nested type aliases become much more important,
as they allow for a unified interface to access, for example, the element type of a list
without further knowledge on the list type itself.

[Slide 205] Classes and Conversions – Summary

• Classes are a sequence of their data members
• Classes can have member functions with implicit this pointer
• Member functions can be const-qualified
• Constructors are called for initializing objects
• Constructors and operators provide implicit/explicit conversions
• Class members can have different access control
• Access control can be circumvented by friend declarations
• Almost all operators can be overloaded with custom semantics
• Enums are, optionally scoped, integer types with descriptive value names

[Slide 206] Classes and Conversions – Questions

• What is the difference between class and struct?
• When is padding required between fields?
• How can the size of a struct be reduced?
• What is the type of this? Is it always the same?
• Why do methods returning references typically have a non-const-qualified and a

const-qualified overload? Which overload is taken in which cases?
• Why do references members have to be initialized in initializer lists?
• Why could massive operator overloading be problematic in large projects?
• How to access the raw integer value of enum class enumerators?

75

6 Memory Management and Copy/Move

6.1 Heap Allocations

[Slide 208] Stack vs. Heap Memory

Stack Memory

• Used for objects with
automatic storage duration

• Compiler can decide when alloca-
tion/dealloc happens

+ Fast allocation/deallocation
− No dynamic data structures
− Only small allocations (few kiB)
− Memory freed on return

Heap Memory

• Used for objects with
dynamic storage duration

• Programmer explicitly manages
allocation/deallocation

+ Very flexible
− Alloc/dealloc is expensive
− Memory fragmentation
− Error prone!

– Memory leaks, double free

[Slide 209] Dynamic Memory Management

• Create and initialize object: new type initializer 1

– Type must be a type, can be an array; initializer optional
– Allocates heap storage, initializes object, returns pointer

• Destroy object and release memory: delete expr /delete[] expr 2

– Expression must be a pointer allocated by new; ignored if nullptr
– Invoke destructor, deallocate memory

There are a few things to consider when using new/delete:
• new/delete form must match, an array allocated with new type[] must be

destroyed through delete[]. Furthermore, it is not allowed (or even advisable)
to mix C’s malloc with delete or new with C’s free.
(If were to use malloc, you would need to construct an object via placement
new before using it, e.g. new (mallocBuffer) Type(); and then manually
call the destructor before free, e.g. ptr->T̃ype();. Not doing so is undefined
behavior (object used outside its lifetime). This is strongly discouraged unless
strictly required.)

• Not destroying an allocated object is permitted (“memory leak”), but can be

1https://en.cppreference.com/w/cpp/language/new
2https://en.cppreference.com/w/cpp/language/delete

77

https://en.cppreference.com/w/cpp/language/new
https://en.cppreference.com/w/cpp/language/delete

6 Memory Management and Copy/Move

very problematic. It is easy to miss a missing delete.
• Destroying an object multiple times is not just undefined behavior, but also a

way to introduce security vulnerabilities.
Thus, it is strongly recommended to not use new/delete and instead use smart
pointers with ownership semantics to prevent (and/or reduce the risk of) many of
these problems.

[Slide 210] new/delete Example

#include <print>
class Foo {

const int birthYear;
public:

explicit Foo(int birthYear) : birthYear(birthYear) {}
int getAge(int year) const { return year - birthYear; }

};

int main() {
Foo* foo = new Foo(2021);
std::println("age:␣{}", foo->getAge(2024));
delete foo;
return 0;

}

[Slide 211] new/delete Example

Quiz: What is the output of the program?
#include <print>
#include <string_view>
class Ballot {

const bool voteGOP;
public:

Ballot(bool voteGOP) : voteGOP(voteGOP) {}
std::string_view getParty() const { return voteGOP ? "GOP" : "DNC"; }

};
int main() {

Ballot ballot = new Ballot(/*voteGOP=*/false);
std::println("Voted␣{}", ballot.getParty());
return 0;

}

A. (compile error) B. Voted DNC C. Voted GOP D. (undefined behavior)

[Slide 212] new/delete Example

Quiz: What is problematic about this function?
#include <ctime>
class Ballot { /* ... */ };
Ballot* castBallot() {

std::time_t time = std::time(nullptr); // UNIX timestamp
Ballot* ballot = new Ballot(time % 2); // Informed decision
if (time % 5 == 3)

return nullptr; // ... polling station is too far away :(

78

6.2 Destructor

return ballot;
}

A. Memory is leaked when the condition is taken.
B. Memory is leaked when the condition is not taken.
C. Memory is always leaked.
D. The function does not always return the same value.

6.2 Destructor

[Slide 213] Destructor3

• Special function called when lifetime of object ends
– For automatic storage dur: called at scope end in reverse definition order
– Destructors of class members called automatically in reverse order

• No return time, no arguments, name ~ClassName()

• Typical use: deallocate managed resources

[Slide 214] Destructor: Example

struct Bar { /* ... */ };
struct Foo {

Bar b1;
Bar b2;
~Foo() {

std::println("bye");
// b2.~Bar(); called
// b1.~Bar(); called

}
};
void doFoo() {

Foo f;
{ Bar b; /* b.~Bar(); called */ }
// f.~Foo(); called

}

[Slide 215] Using Destructors to Deallocate Resources

class FooPtr {
Foo* ptr;

public:
FooPtr(int birthYear) : ptr(new Foo(birthYear)) {

std::println("new␣{}", static_cast<void*>(ptr));
}
~FooPtr() {

std::println("deleted␣{}", static_cast<void*>(ptr));
delete ptr;

}
Foo& operator*() const { return *ptr; }

3https://en.cppreference.com/w/cpp/language/destructor

79

https://en.cppreference.com/w/cpp/language/destructor

6 Memory Management and Copy/Move

Foo* operator->() const { return ptr; }
};
int main() {

FooPtr foo(2021);
std::println("age:␣{}", foo->getAge(2024));
return 0;

}

The FooPtr wrapper automatically destroys the heap-allocated object when it goes
out of scope.

[Slide 216] new/delete Example

Quiz: What is problematic about this code?
class FooPtr { /* ... */ };
void printAge(FooPtr foo) {

std::println("age:␣{}", foo->getAge(2024));
}
int main() {

FooPtr foo(2021);
printAge(foo);
return 0;

}

A. An instance of Foo is leaked.
B. The getAge call uses an object outside its lifetime.
C. The same instance of Foo is destroyed twice.
D. There is no problem.

6.3 Copy Semantics

[Slide 217] Copy Semantics

• Assignment/construction typically copies object
• By default, copy is shallow
• Ok for fundamental types, problematic for user-defined types
• Copying may be expensive
• Copying may be unintended/avoidable
• Copying is problematic with managed resources

– Might cause leak, when assigned-to object already has resources
– Might cause double-free

[Slide 218] Copy Constructor4

• Syntax: ClassName(const ClassName&)
• Invoked on initialization from an object of same type:

– Copy initialization: T a = b;
4https://en.cppreference.com/w/cpp/language/copy_constructor

80

https://en.cppreference.com/w/cpp/language/copy_constructor

6.3 Copy Semantics

– Direct initialization: T a(b);
– Argument passing: f(b) for void f(T a);

class FooPtr {
// ...
FooPtr(const FooPtr& other) : ptr(new Foo(*other)) {}
//...

};

[Slide 219] Copy Assignment5

• Syntax 1: ClassName& operator=(const ClassName&) (preferred)
• Syntax 2: ClassName& operator=(ClassName) (sometime useful, see later)
• Typically returns *this
• Invoked when assigning to an already initialized object

– a = b;

class FooPtr {
// ...
FooPtr& operator=(const FooPtr& other) { // PROBLEMATIC, see next slide

delete ptr;
ptr = new Foo(*other);
return *this;

}
//...

};

[Slide 220] Copy Assignment

Quiz: What is problematic about this code?
class FooPtr { /* ... */

FooPtr& operator=(const FooPtr& other) {
delete ptr; ptr = new Foo(*other);
return *this;

} /* ... */ };
int main() {

FooPtr foo(2021);
foo = foo;

}

A. Some memory is used after it has been freed.
B. The delete/new is unnecessary.
C. Self-assignment of classes is forbidden in C++.
D. There is no problem.

[Slide 221] Copy Assignment (fixed)

class FooPtr {
// ...
FooPtr& operator=(const FooPtr& other) { // Fixed version

5https://en.cppreference.com/w/cpp/language/copy_assignment

81

https://en.cppreference.com/w/cpp/language/copy_assignment

6 Memory Management and Copy/Move

if (this == &other) // check for self-assignment
return *this;

delete ptr; // NB: could try to reuse storage
ptr = new Foo(*other);
return *this;

}
//...

};

[Slide 222] Implicit Declaration of Copy Constructor/Assignment

• Compiler implicitly declares copy constructor/assignment if not explicitly declared
– Will be public inline and perform member-wise copy in initialization order

• Implicit copy constructor/assignment deleted, if:
– Class has members that cannot be copy-constructed/assigned; or
– Class has a user-defined move constructor or assignment operator

• See reference for more details
• Explicit deletion: T(const T&) = delete;
• Explicit deletion: T& operator=(const T&) = delete;

[Slide 223] Custom Copy Operations: Guidelines

• If implicit copy not sufficient: typically should not be copyable
• Exception: if class manages resources, e.g. dynamic memory
• Rule of three6: If one of the following is user-defined, all three have to be: de-

structor, copy constructor, copy assignment
– Custom destructor: cleanup needs to be done on copy assignment
– Custom copy constructor: custom setup, needs to be done in copy assignment
– Custom resource management (e.g., file descriptor): implicit versions incorrect

6.4 Move Semantics

[Slide 224] Move Semantics

• Copy semantics often incur avoidable overhead
• Object might be immediately destroyed after copy
• Object might be unable to share resources for copy
• Move constructor/assignment “steals” resources of argument
• Leave argument in valid, empty state (destructor will be called nonetheless)
• Indicated by use of rvalue reference

6https://en.cppreference.com/w/cpp/language/rule_of_three

82

https://en.cppreference.com/w/cpp/language/rule_of_three

6.4 Move Semantics

The intution is: rvalue references indicate references to temporaries that expire when
the reference goes out of scope, i.e., for function parameters the value’s lifetime ends
at the end of the function anyway — thus, just take the resources before they are
destroyed.

[Slide 225] Move Constructor7

• Syntax: ClassName(ClassName&&) noexcept
• Invoked on initialization from an temporary value of same type
⇝ Steal resources of argument, its lifetime ends at the constructor end

class FooPtr {
// ...
FooPtr(FooPtr&& other) : ptr(other.ptr) {

other.ptr = nullptr; // Must leave in valid, empty state for destructor
}
//...

};

[Slide 226] Move Assignment8

• Syntax: ClassName& operator=(ClassName&&) noexcept
• Invoked when assigning an rvalue to an already initialized object

– a = b();

class FooPtr {
// ...
FooPtr& operator=(FooPtr&& other) {

if (this == &other)
return *this;

delete ptr;
ptr = other.ptr;
other.ptr = nullptr;
return *this;

}
//...

};

[Slide 227] Implicit Declaration of Move Constructor/Assignment

• Compiler implicitly declares move constructor/assignment if:
– No user-declared copy/move constructors, assignment operators, and destruc-

tors
• Implicit move constructor/assignment deleted, if:

– Class has members that cannot be move-constructed/assigned; or
– Class has member of reference type

• See reference for more details
7https://en.cppreference.com/w/cpp/language/move_constructor
8https://en.cppreference.com/w/cpp/language/move_assignment

83

https://en.cppreference.com/w/cpp/language/move_constructor
https://en.cppreference.com/w/cpp/language/move_assignment

6 Memory Management and Copy/Move

• Explicit deletion possible similar to copy constructor/assignment

[Slide 228] Custom Move Operations: Guidelines

• If class manages resources: custom move often necessary
• Move operations should not allocate new resources
• Moved-from object must remain in valid state
• Rule of five9:

– If move semantics are desired: need all five special member functions
– If only move semantics are desired: still need all five, define copy as deleted

• Implementing move operations is typically a pure optimization

[Slide 229] Converting Lvalue to Rvalue Reference

• Want to move object?
• But only have an lvalue?
• static_cast<Type&&>(obj)

– New value category: xvalue — eXpiring object whose resources can be reused
– Like lvalue, object has an identity
– Like rvalue, can be moved from (i.e., overload resolution selects rvalue-ref vari-

ant)
• Syntactic sugar (preferred): std::move(obj) from <utility>

[Slide 230] Copy/Move Constructor

Quiz: Which methods on FooPtr are called?
Assume that FooPtr implements all copy/move constructors/assignments.
FooPtr createFoo() { return FooPtr(2020); }
void printAge(FooPtr foo) {

std::println("age:␣{}", foo->getAge(2024));
}
int main() {

FooPtr f = createFoo();
printAge(createFoo());

}

A. constr; copy-constr; destr; constr; copy-constr; destr; destr; destr

B. constr; copy-constr; destr; constr; move-constr; destr; destr; destr

C. constr; constr; copy-constr; destr; destr; destr

D. constr; constr; destr; destr

9https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five

84

https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five

6.5 Idioms

[Slide 231] Copy Elision10

• Compilers (must) sometimes omit copy/move constructors if object can be directly
in storage where it would be copied/moved to

• Examples: return values, arguments with prvalue
⇒ Zero-copy pass-by value semantics
• Some elisions are required by C++17, but not all
⇝ Portable programs should not rely on side-effects of constructors/destructor

6.5 Idioms

[Slide 232] Copy-And-Swap

• Class defines ClassName& operator=(ClassName) for copy/move
• Exchange resources between argument and *this
• Copy constructor creates copy
• Let destructor clean up resources at function return

class FooPtr {
Foo* ptr;

public:
~FooPtr() { delete ptr; }
FooPtr(const FooPtr& other) : ptr(new Foo(*other)) {}
FooPtr& operator=(FooPtr other) {

std::swap(ptr, other.ptr);
return *this;

} // destructor of other cleans up formerly own resources
};

Note that using this idiom might temporarily use more resources than strictly re-
quired: On a copy assignment, a new copy is made unconditionally and existing
resources (e.g., memory) are not reused.

[Slide 233] Resource Acquisition is Initialization (RAII)11

• Idea: bind lifetime of resource to lifetime of an object
– Resources: heap memory, files, mutex, database connection, ...

⇒ Guarantees resource availability during lifetime of object
⇒ Guarantees that resource is released at lifetime end of object
• Encapsulate each resource into a class solely responsible for managing it
• Constructor acquires resource; destructor releases resource
• Delete copy ops, implement custom move ops

[Slide 234] RAII Example

10https://en.cppreference.com/w/cpp/language/copy_elision
11https://en.cppreference.com/w/cpp/language/raii

85

https://en.cppreference.com/w/cpp/language/copy_elision
https://en.cppreference.com/w/cpp/language/raii

6 Memory Management and Copy/Move

class FooPtr {
Foo* ptr;

public:
FooPtr(int birthYear) : ptr(new Foo(birthYear)) {}
~FooPtr() { delete ptr; }
FooPtr(const FooPtr& other) = delete;
FooPtr(FooPtr&& other) : ptr(other.ptr) { other.ptr = nullptr; }
FooPtr& operator=(const FooPtr& other) = delete;
FooPtr& operator=(FooPtr&& other) { // code style condensed for slide :|

if (this != &other) { delete ptr; ptr = other.ptr; other.ptr = nullptr; }
return *this;

}
};
int consumeFoo(FooPtr foo) {

if (condition)
return 1; // No need to free memory

// ...
return 0;

}
int main() {

FooPtr foo(2020);
return consumeFoo(std::move(foo)); // foo is empty now

}

[Slide 235] RAII: Implications

• One of the most important and powerful idioms in C++
• RAII objects should have automatic(/temporary) storage duration
⇝ Compiler manages lifetime and thus resource

• Don’t use new/delete outside of RAII class
– C++ provides smart pointers for this, see later

• Keep RAII classes (custom copy/move/destructor) small and focused
• For all other classes, use default or delete

– Rule of zero12

6.6 Ownership

[Slide 236] Ownership Semantics

• Enabled by RAII idiom with move semantics
• A resource is always “owned”, i.e., encapsulated by exactly one C++ object
• Ownership can be transferred by moving the object

– Pass RAII class by value or return to indicate transfer of ownership
• Very rarely, shared ownership is needed

[Slide 237] std::unique_ptr13

• Smart pointer ownership for an arbitrary pointer/array (can be nullptr)

12https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
13https://en.cppreference.com/w/cpp/memory/unique_ptr

86

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
https://en.cppreference.com/w/cpp/memory/unique_ptr

6.6 Ownership

• Automatically destroys object when unique_ptr goes out of scope
• Can be used like a raw pointer — but only moveable, not copyable
• Pass std::unique_ptr by value, not by reference
• Prefer std::unqiue_ptr over raw pointers

#include <memory>
class Foo { /* ... */ };
int main() {

// make_unique forwards arguments to constructor
std::unique_ptr<Foo> foo = std::make_unique<Foo>(2020);
if (!foo) return 1; // contextually convertible to bool, like raw pointer
foo->printAge(2024); // ->, * work as for raw pointers
Foo* fp = foo.get(); // get raw pointer
// Foo* fp2 = foo.release(); // release ownership; must delete manually

}

[Slide 238] std::unique_ptr for Arrays

• Can also be used for heap-based arrays
std::unique_ptr<int[]> foo(unsigned size) {

std::unique_ptr<int[]> buffer = std::make_unique<int[]>(size);
for (unsigned i = 0; i < size; ++i)

buffer[i] = i;
return buffer; // transfer ownership to caller

}
int main() {

std::unique_ptr<int[]> buffer = foo(42);
// do something

}

[Slide 239] std::shared_ptr14

• Smart pointer with shared ownership
• Resource released when last owner releases it
• Implemented through atomic reference counting
• Can be copied and moved
• Use std::make_shared for creation

• std::shared_ptr is expensive and should be avoided where possible

[Slide 240] std::shared_ptr – Example

#include <memory>
#include <vector>
struct Node {

std::vector<std::shared_ptr<Node>> children;
void addChild(std::shared_ptr<Node> child);
void removeChild(unsigned index);

};
int main() {

14https://en.cppreference.com/w/cpp/memory/shared_ptr

87

https://en.cppreference.com/w/cpp/memory/shared_ptr

6 Memory Management and Copy/Move

Node root;
root.addChild(std::make_shared<Node>());
root.addChild(std::make_shared<Node>());
root.children[0]->addChild(root.children[1]);
root.removeChild(1); // does not free memory yet
root.removeChild(0); // frees memory of both children

}

This is not a really good example: alternatively, there could be a struct Graph which
owns all the nodes; and the nodes then use raw pointers to reference each other. This
alternative design would be more efficient and therefore often preferable.

6.7 Usage Guidelines

[Slide 241] Usage Guidelines

Param. Type Type Copyable Type not Copyable

T Copy, small objects only Transfer ownership

T&/const T& No ownership transfer, object larger than pointer;
const if callee should not modify object;
don’t use for unique_ptr&friends

T*/const T* Like &, but nullable

T&& Ownership transfer — (use T)

[Slide 242] Memory Management and Copy/Move – Summary

• Heap memory manually managed with new/delete
• Classes have destructors executed at end of lifetime
• Custom copy constructor and assignment required for resource management

– Rule of three: if you need one, you need all: destructor, copy constructor/as-
signment

• Custom move constructor and assignment possible as optimization
• Rvalue references indicate moving, use std::move for moving lvalues
• Use small RAII classes for managing resources
• Use std::unique_ptr instead of manual new/delete
• For shared ownership use std::shared_ptr, but avoid if possible

[Slide 243] Memory Management and Copy/Move – Questions

• What are problems of manually using new/delete?
• What is the difference between copy constructor and assignment?
• Why do assignment operators often guard against self-assignment?
• When are the implicitly declared constructors/assignments sufficient?
• What is the difference between copying and moving a value?

88

6.7 Usage Guidelines

• Why pass-by-value unproblematic for returns but not for parameters?
• What does std::move do?
• What is the benefit of using dedicated resource/RAII classes?
• How to express ownership transfer in parameters?

89

	Overview and Hello World
	Organization
	Introduction
	Hello World!
	CMake

	Basic Syntax and Object Model
	Types
	Operators
	Observable Behavior
	Basic Syntax
	Namespaces
	Memory & Object Model

	Declarations/Definitions, Preprocessor, Linker
	Preprocessor
	Assertions
	Declaration & Definitions
	Linker
	One Definition Rule
	Header and Implementation Files
	Linkage

	References, Arrays, Pointers
	References
	Arrays
	Pointers

	Classes and Conversions
	Classes
	Constructors
	Member Access Control
	Forward Declarations
	Operator Overloading
	Enums
	Type Aliases

	Memory Management and Copy/Move
	Heap Allocations
	Destructor
	Copy Semantics
	Move Semantics
	Idioms
	Ownership
	Usage Guidelines

