
160

Concepts of C++ Programming
Lecture 5: Classes and Conversions

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25

161

static_assert59

▶ static_assert(bool expr, string) – assert at compile-time
▶ Expression must be a compile-time constant
▶ Can have an optional failure message

Example:
static_assert(sizeof(int) == 4, "program␣only␣works␣on␣4-byte␣integers");

59https://en.cppreference.com/w/cpp/language/static_assert

https://en.cppreference.com/w/cpp/language/static_assert

162

Classes

class Name1 {
// member specifications...

};
struct Name2 {

// member specifications...
};

▶ Name can be any valid identifier
▶ Members can be:

▶ Variables (data members)
▶ Functions (member functions)
▶ Types (nested types)

▶ Note the trailing semicolon

163

Data Members60

▶ Declarations of (non-extern) variables
▶ Size of declared variable must be known (see later)
▶ Variable name must be unique within class
▶ Variables can have default value

class Name {
int foo = 10;
int& iref;
float* ptr;
const char x;

};

60https://en.cppreference.com/w/cpp/language/data_members

https://en.cppreference.com/w/cpp/language/data_members

164

Data Layout
▶ Class is essentially just a sequence of its data members

▶ Members are stored in memory in declaration order
▶ Alignment of members is respected ⇝ padding between objects
▶ Alignment of class is largest alignment of data members

class C {
int i; // sizeof = 4; alignof = 4; offset = 0
// (4 padding bytes)
int* p; // sizeof = 8; alignof = 8; offset = 8
char c; // sizeof = 1; alignof = 1; offset = 16
// (2 padding bytes)
short s; // sizeof = 2; alignof = 2; offset = 18
// (4 padding bytes -- sizeof must be multiple of alignof)

}; // sizeof(C) = 24; alignof(C) == 8

165

Data Layout

Quiz: What is the size of Line?

class Point {
int x;
int y;
unsigned char color;

};
class Line {

Point a;
Point b;
unsigned char lineWidth;

};

A. (compile error) B. 19 C. 24 D. 28 E. 32

166

Bit Fields61

▶ Can specify bit-size for integer members
▶ Adjacent bit fields packed together
▶ Access is fairly expensive, but might reduce memory usage
⇝ Use only when strongly beneficial

class Bitfields {
unsigned short flagA : 1;
unsigned short flagB : 1;
unsigned short tinyVar : 11;

};
static_assert(sizeof(Bitfields) == 2);
static_assert(alignof(Bitfields) == 2);

61https://en.cppreference.com/w/cpp/language/bit_field

https://en.cppreference.com/w/cpp/language/bit_field

167

Data Layout
Quiz: What is the size of this class?

class Value { // (excerpt from llvm/include/llvm/IR/Value.h)
const unsigned char SubclassID;
unsigned char HasValueHandle : 1;
unsigned char SubclassOptionalData : 7;
unsigned short SubclassData;
unsigned NumUserOperands : 27;
unsigned IsUsedByMD : 1;
unsigned HasName : 1;
unsigned HasMetadata : 1;
unsigned HasHungOffUses : 1;
unsigned HasDescriptor : 1;
Type *VTy;
Use *UseList;

}; // NB: sizeof(void*) == 8; sizeof(unsigned) == 4

A. (compile error) B. 24 C. 32 D. 40 E. 45

168

Data Layout: Consequences

▶ Order of members has impact on class size
⇒ When class size is important, reduce padding
⇒ Recommendation: place all data members together at beginning/end

▶ Potential padding etc. is easily findable

▶ All users of the class need to know the declaration
⇒ Class declarations often put in header files
⇒ Adding/modifying members requires changes data layout ⇒ recompilation

▶ Especially important when distributing libraries – all users must rebuild

169

Member Functions
▶ Declaration of methods just like regular function declarations
▶ Inline definitions are implicitly inline
▶ Out-of-line definitions are preferable for non-trivial methods

//--- foo.h
#pragma once
class Foo {

int foo();
int bar(int x) { // inline definition

return x + 1;
}

};
//--- foo.cpp
int Foo::foo() { // out-of-line definition

return 10;
}

170

Inline vs. Out-Of-Line Definitions

Quiz: Which answer is NOT correct?

A. Out-of-line definitions tend to allow for more optimizations.
B. Out-of-line definitions tend to reduce compile time.
C. Inline definitions tend to allow for more optimizations.
D. Inline definitions in headers are possibly compiled several times.

▶ Similar considerations as for inline functions apply

171

Member Access

struct Vec {
unsigned x;
unsigned y;

};
Vec v;
Vec* vp = ...;

// member access:
int l1dist_a = v.x + v.y;
// ptr->member is a shorthand for (*ptr).member
int l1dist_b = vp->x + vp->y;

172

this

▶ Member functions have implicit parameter this; type is Class*
▶ In member functions, members can be accessed without this (preferred)

struct Vec {
unsigned x;
unsigned y;

unsigned l1dist() {
return this->x /* explicit access */ + y /* implicit access*/;

}
};
Vec v;
Vec* vp = ...;
int l1dist_a = v.l1dist();
int l1dist_b = vp->l1dist();

173

const-Qualified Member Functions

▶ Member functions can be const-qualified
▶ this is a const Class*
⇒ Data members are immutable

struct Vec {
unsigned x;
unsigned y;
unsigned getX() const { return x; }
unsigned getY() const { return y; }
unsigned l1dist() const;

};
unsigned Vec::l1dist() const {

return x + y; // this is a const Vec*
}

174

Constness and Member Functions

▶ For non-const lvalues non-const overloads are preferred over const ones
▶ For const lvalues only const-qualified functions are selected

struct Foo {
int getA() { return 1; }
int getA() const { return 2; }
int getB() const { return getA(); }
int getC() { return 3; }

};
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value

foo.getA() 1
foo.getB() 2
foo.getC() 3
cfoo.getA() 2
cfoo.getB() 2
cfoo.getC() error

175

Constness of Member Variables

▶ Constness propagates through pointer lvalue access
▶ const data members are always constant

▶ Can only be set once during construction (see later)
▶ mutable member variables are always non-const (use carefully!)

struct Foo {
int i;
const int c;
mutable int m;

}
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value Category

foo.i non-const lvalue
foo.c const lvalue
foo.m non-const lvalue
cfoo.i const lvalue
cfoo.c const lvalue
cfoo.m non-const lvalue

176

Static Members62

▶ Static data members: members not bound to class instances
▶ Only one instance in the program, like global variables
▶ Static member functions: no implicit this parameter
▶ Static members can be accessed with :: operator

//--- foo.h
struct Foo {

static int var; // declaration
static void statfn(); // declaration

};
//--- foo.cpp
int Foo::var = 10; // definition
void Foo::statfn() { /* ... */ } // definition

62https://en.cppreference.com/w/cpp/language/static

https://en.cppreference.com/w/cpp/language/static

177

Constructors

▶ ... are special functions that are called when an object is initialized
▶ ... have no return type, no const-qualifier, and name is class name
▶ ... can have arguments, constructor without arguments is default constructor
▶ ... are sometimes implicitly defined by the compiler

struct Foo {
Foo() {

// default constructor
}

};

struct Foo {
int a;
Bar b;
// Default constructor is
// implicitly defined, does
// nothing with a, calls
// default constructor of b

};

178

Initializer List
▶ Specify how member variables are initialized before constructor body
▶ Other constructors can be called in the initializer list
▶ Members initialized in the order of their definition
▶ const member variables can only be initialized in the initializer list

struct Foo {
int a = 123; float b; const char c;
// default constructor initializes a (to 123), b, and c
Foo() : b(2.5), c(7) {}
// initializes a and b to the given values
Foo(int a, float b, char c) : a(a), b(b), c(c) {}
Foo(float f) : Foo() {

// First the default constructor is called, then the body
// of this constructor is executed
b *= f;

}
};

179

Initializing Objects63

▶ Constructor executed on initialization
▶ Arguments given in the initialization are passed to the constructor
▶ C++ has several types of initialization that are very similar but

unfortunately have subtle differences:
▶ default initialization (Foo f;)
▶ value initialization (Foo f{}; and Foo())
▶ direct initialization (Foo f(1, 2, 3);)
▶ list initialization (Foo f{1, 2, 3};)
▶ copy initialization (Foo f = g;)

▶ Simplified syntax: class-type identifier(arguments); or
class-type identifier{arguments};

63https://en.cppreference.com/w/cpp/language/initialization

https://en.cppreference.com/w/cpp/language/initialization

180

Constructors (1)

Quiz: What is the output of the following program?

#include <print>
struct Foo {

int answer;
Foo() : answer(42) {}

};
int main() {

Foo f();
std::println("{}", f.answer);
return 0;

}

A. (compile error) B. 0 C. 42 D. (undefined behavior)

181

Constructors (2)

Quiz: What is the return value of foo?

struct C {
int i;
C() = default;

};
int foo() {

const C c;
return c.i;

}

A. (compile error) B. an arbitrary integer C. 0 D. (undefined behavior)

182

Constructors (3)
Quiz: What is problematic about this program?

#include <print>
struct Foo {

const int& answer;
Foo() {}
Foo(const int& answer)

: answer(answer) {}
};

int main() {
int answer = 42;
Foo f(answer);
std::println("{}", f.answer);
return 0;

}

A. Compile error: Two constructors are not allowed.
B. Compile error: answer not always initialized.
C. Compile error: f is a function declaration.
D. Undefined behavior: f.answer is a dangling reference.
E. There is no problem: the program always prints 42.

183

Constructors (4)

Quiz: What is problematic about this program?

#include <print>
struct Foo {

const int& answer;
Foo(const int& answer)

: answer(answer) {}
};

int main() {
int answer = 42;
Foo f = answer;
std::println("{}", f.answer);
return 0;

}

A. Compile error: Cannot assign integer to type Foo.
B. Compile error: Cannot convert integer to Foo.
C. Undefined behavior
D. There is no problem: the program always prints 42.

184

Converting and Explicit Constructors64

▶ Constructors with one argument used for explicit and implicit conversions
▶ Use explicit to disallow implicit conversion
▶ Generally, use explicit unless there’s a good reason not to

struct Foo {
Foo(int i);

};
void print_foo(Foo f);
// Implicit conversion,
// calls Foo::Foo(int)
print_foo(123);
// Explicit conversion,
// calls Foo::Foo(int)
static_cast<Foo>(123);

struct Bar {
explicit Bar(int i);

};
void print_bar(Bar f);
// Implicit conversion,
// compiler error!
print_bar(123);
// Explicit conversion,
// calls Bar::Bar(int)
static_cast<Bar>(123);

64https://en.cppreference.com/w/cpp/language/converting_constructor

https://en.cppreference.com/w/cpp/language/converting_constructor

185

Member Access Control

▶ Every member has public, protected or private access
▶ Default for class: private; for struct: public

▶ Recommendation: always explicitly specify access control
▶ public = accessible by everyone, private only by class itself

class Foo {
int a; // a is private

public: // All following declarations are public
int b;
int getA() const { return a; }

protected: // All following declarations are protected
int c;

public: // All following declarations are public
static int getX() { return 123; }

};

186

Friend Declarations65

▶ Class body can contain friend declarations
▶ Friend: has access to private/protected members

▶ friend function-declaration; (for friend function)
▶ friend class-specifier; (for friend class)

class A {
int a; // private
friend class B;
friend void foo(A&);

};
class B {

void bar(A& a) {
a.a = 42; // OK

}
};

class C {
void foo(A& a) {

a.a = 42; // ERROR
}

};
void foo(A& a) {

a.a = 42; // OK
}

65https://en.cppreference.com/w/cpp/language/friend

https://en.cppreference.com/w/cpp/language/friend

187

Nested Types

▶ For nested types classes behave just like a namespace
▶ Nested types are accessed with ::
▶ Nested types are friends of their parent

struct A {
struct B {

int getI(const A& a) {
return a.i; // OK, B is friend of A

}
};

private:
int i;

};
A::B b; // reference nested type B of class A

188

Forward Declarations
▶ Classes can be forward declared: class Name;
▶ Type is incomplete until defined later
▶ Incomplete type can be used, e.g., for pointer/reference

//--- foo.h
class A;
class ClassFromExpensiveHeader;
class B {

ClassFromExpensiveHeader* member;
void foo(A& a);

};
class A {

void foo(B& b);
};
//--- foo.cpp
#include "ExpensiveHeader.hpp"
// ...

189

Incomplete Types66

▶ No operations that require size/layout of type are possible
▶ No pointer arithmetic
▶ No access to members, member functions, etc.
▶ No definition/call of function with incomplete return/argument type

▶ Sometimes, this information is not needed:
▶ E.g., pointer/reference declarations can refer to incomplete types
▶ E.g., member functions with incomplete parameter types

66https://en.cppreference.com/w/cpp/language/types#Incomplete_type

https://en.cppreference.com/w/cpp/language/types#Incomplete_type

190

Operator Overloading67

▶ Classes can overload built-in operators like +, ==, etc.
▶ Many overloaded operators can also be written as non-member functions
▶ Overloaded operators are selected with the regular overload resolution
▶ Overloaded operators are not required to have meaningful semantics

▶ Almost all operators can be overloaded, exceptions are: ::, ., .*, ?:
▶ This includes “unusual” operators like:

= (assignment), () (call), * (dereference), & (address-of), , (comma)

67https://en.cppreference.com/w/cpp/language/operators

https://en.cppreference.com/w/cpp/language/operators

191

Arithmetic Operators68

lhs op rhs ∼ lhs.operator op(rhs) or operator op(lhs, rhs)
▶ Overloaded versions of || and && lose their special behaviors
▶ Should be const and take const references
▶ Usually return a value and not a reference

struct Int {
int i;
Int operator+(const Int& other) const { return Int{i + other.i}; }
Int operator-() const { return Int{-i}; };

};
Int operator*(const Int& a, const Int& b) { return Int{a.i * b.i}; }
Int a{123}; Int b{456};
a + b; /* is equivalent to */ a.operator+(b);
a * b; /* is equivalent to */ operator*(a, b);
-a; /* is equivalent to */ a.operator-();

68https://en.cppreference.com/w/cpp/language/operator_arithmetic

https://en.cppreference.com/w/cpp/language/operator_arithmetic

192

Comparison Operators69

All binary comparison operators (<, <=, >, >=, ==, !=, <=>) can be overloaded.
▶ Should be const and take const references
▶ Return bool, except for <=> (see next slide)
▶ If only operator<=> is implemented, <, <=, >, and >= work as well
▶ operator== must be implemented separately (then != works, too)

struct Int {
int i;
std::strong_ordering operator<=>(const Int& a) const {

return i <=> a.i;
}
bool operator==(const Int& a) const { return i == a.i; }

};
Int a{123}; Int b{456};
a < b; /* is equivalent to */ (a.operator<=>(b)) < 0;
a == b; /* is equivalent to */ a.operator==(b);

69https://en.cppreference.com/w/cpp/language/operator_comparison

https://en.cppreference.com/w/cpp/language/operator_comparison

193

Three-Way70

operator<=> should return one of the following types from <compare>:
std::partial_ordering, std::weak_ordering, std::strong_ordering.

▶ When comparing two values a and b with ord = (a <=> b), then ord has
one of the three types and can be compared to 0:

▶ ord == 0 ⇔ a == b
▶ ord < 0 ⇔ a < b
▶ ord > 0 ⇔ a > b
▶ strong_ordering convertible to weak_ordering and partial_ordering
▶ weak_ordering convertible to partial_ordering

70https://en.cppreference.com/w/cpp/utility/compare/partial_ordering

https://en.cppreference.com/w/cpp/utility/compare/partial_ordering

194

Three-Way Comparison (2)

▶ partial_ordering can be unordered, i.e. neither a <= b nor a >= b
▶ std::partial_ordering::less, ::equivalent, ::greater, ::unordered
▶ Example: floating-point numbers, NaN is unordered

▶ std::weak_ordering or std::strong_ordering for total order
▶ ::less, ::equivalent, ::greater
▶ strong_ordering: equal values must be completely indistinguishable
▶ Example for strong ordering: integers
▶ Example for weak ordering: points in 2d-space ordered by distance from origin

195

Increment and Decrement71

Pre- and post-inc/dec are distinguished by an (unused) int argument
▶ C& operator++(); C& operator--();

pre-increment or -decrement, modify object, return *this
▶ C operator++(int); C operator--(int);

post-increment or -decrement, copy self, modify self, return unmodified copy

struct Int {
int i;
Int& operator++() { ++i; return *this; }
Int operator--(int) { Int copy{*this}; --i; return copy; }

};
Int a{123};
++a; // a.i is now 124
a++; // ERROR: post-increment is not overloaded
Int b = a--; // b.i is 124, a.i is 123
--b; // ERROR: pre-decrement is not overloaded

71https://en.cppreference.com/w/cpp/language/operator_incdec

https://en.cppreference.com/w/cpp/language/operator_incdec

196

Subscript Operator72

Classes behaving like containers/pointers usually override the subscript []
▶ a[b] is equivalent to a.operator[](b)
▶ Type of b can be anything, for array-like containers it is usually size_t

struct Foo { /* ... */ };
struct FooContainer {

Foo* fooArray;
Foo& operator[](size_t n) { return fooArray[n]; }
const Foo& operator[](size_t n) const { return fooArray[n]; }

};

72https://en.cppreference.com/w/cpp/language/operator_member_access

https://en.cppreference.com/w/cpp/language/operator_member_access

197

Dereference Operators73

Classes behaving like pointers usually override the operators * and ->
▶ operator*() usually returns a reference
▶ operator->() should return a pointer or an object that itself has an

overloaded -> operator

struct Foo { /* ... */ };
struct FooPtr {

Foo* ptr;
Foo& operator*() { return *ptr; }
const Foo& operator*() const { return *ptr; }
Foo* operator->() { return ptr; }
const Foo* operator->() const { return ptr; }

};

73https://en.cppreference.com/w/cpp/language/operator_member_access

https://en.cppreference.com/w/cpp/language/operator_member_access

198

Assignment Operators74

▶ Operator = is often used for copying/moving (see next week)
▶ All assignment operators usually return *this

struct Int {
int i;
Foo& operator+=(const Foo& other) { i += other.i; return *this; }

};
Foo a{123};
a = Foo{456}; // a.i is now 456
a += Foo{1}; // a.i is now 457

74https://en.cppreference.com/w/cpp/language/operator_assignment

https://en.cppreference.com/w/cpp/language/operator_assignment

199

Conversion Operators75

▶ Conversion can be done using converting constructors (seen before)
▶ or conversion operators: operator type ()

▶ The explicit keyword can be used to prevent implicit conversions
▶ Explicit conversions are done with static_cast

struct Int {
int i;
operator int() const {

return i;
}

};
Int a{123};
int x = a; // OK, x is 123

struct Float {
float f;
explicit operator float() const {

return f;
}

};
Float b{1.0};
float y = b; // ERROR, implicit conversion
float y = static_cast<float>(b); // OK

75https://en.cppreference.com/w/cpp/language/cast_operator

https://en.cppreference.com/w/cpp/language/cast_operator

200

operator bool

▶ operator bool: converts to bool
▶ Used to enable use of object in if, while, etc.

▶ if, while etc. perform an explicit conversion

struct Ptr {
void *p;
explicit operator bool() const {

return p; // pointers have an implicit conversion to bool
}

};
Ptr p{nullptr};
if (p) {} // OK: explicit conversion
bool hasPtr = p; // ERROR: implicit conversion

201

Argument-Dependent Lookup76

▶ Overloaded operators are usually defined in the same namespace as the type
of one of their arguments

▶ Regular unqualified lookup would not allow the following example to compile
▶ To fix this, unqualified names of functions are also looked up in the

namespaces of all arguments
▶ This is called Argument Dependent Lookup (ADL)

namespace A { class X {}; X operator+(const X&, const X&); }
int main() {

A::X x, y;
A::operator+(x, y); // OK
x + y; // How to specify namespace here?

// -> OK: ADL finds A::operator+()
operator+(x, y); // OK for the same reason

}

76https://en.cppreference.com/w/cpp/language/adl

https://en.cppreference.com/w/cpp/language/adl

202

Enums77

▶ Typically used like integral types with a restricted range of values
▶ Also used to assign descriptive names instead of “magic” integer values
▶ Syntax: enum-key name { enum-list };
▶ enum-key can be enum, enum class, or enum struct
▶ Without explicit value, first element gets zero, other increment from previous

enum Color {
Red, // Red == 0
Blue, // Blue == 1
Green, // Green == 2
White = 10,
Black, // Black == 11
Transparent = White // Transparent == 10

};

77https://en.cppreference.com/w/cpp/language/enum

https://en.cppreference.com/w/cpp/language/enum

203

Using Enum Values
▶ Names from the enum list can be accessed with the scope resolution

operator
▶ Enums can be converted to integers and vice versa with static_cast
▶ enum without class/struct: C-style enums

▶ Names also introduced in the enclosing namespace
▶ Can be converted implicitly int

▶ enum class and enum struct are equivalent
▶ Recommendation: Use enum class unless you have a reason not to

Color::Red; // Access with scope resolution operator
Blue; // Access from enclosing namespace
int i = Color::Green; // i == 2, implicit conversion
int j = static_cast<int>(Color::White); // j == 10
Color c = static_cast<Color>(11); // c == Color::Black

204

Type Aliases78

▶ Type names nested deeply in namespaces/classes can become very long
⇝ Type alias: using |name| = |type|;
▶ name is the name of the alias, type must be an existing type
▶ (C compatibility: equivalent to typedef, but prefer using)

namespace A::B::C { struct D { struct E {}; }; }
using E = A::B::C::D::E;
E e; // e has type A::B::C::D::E
struct MyContainer {

using value_type = int;
};
MyContainer::value_type i = 123; // i is an int

78https://en.cppreference.com/w/cpp/language/type_alias

https://en.cppreference.com/w/cpp/language/type_alias

205

Classes and Conversions – Summary

▶ Classes are a sequence of their data members
▶ Classes can have member functions with implicit this pointer
▶ Member functions can be const-qualified
▶ Constructors are called for initializing objects
▶ Constructors and operators provide implicit/explicit conversions
▶ Class members can have different access control
▶ Access control can be circumvented by friend declarations
▶ Almost all operators can be overloaded with custom semantics
▶ Enums are, optionally scoped, integer types with descriptive value names

206

Classes and Conversions – Questions

▶ What is the difference between class and struct?
▶ When is padding required between fields?
▶ How can the size of a struct be reduced?
▶ What is the type of this? Is it always the same?
▶ Why do methods returning references typically have a non-const-qualified

and a const-qualified overload? Which overload is taken in which cases?
▶ Why do references members have to be initialized in initializer lists?
▶ Why could massive operator overloading be problematic in large projects?
▶ How to access the raw integer value of enum class enumerators?

	Classes and Conversions
	Classes
	Constructors
	Member Access Control
	Forward Declarations
	Operator Overloading
	Enums
	Type Aliases

