
207

Concepts of C++ Programming
Lecture 6: Memory Management and Copy/Move

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25



208

Stack vs. Heap Memory

Stack Memory

▶ Used for objects with
automatic storage duration

▶ Compiler can decide when
allocation/dealloc happens

+ Fast allocation/deallocation
− No dynamic data structures
− Only small allocations (few kiB)
− Memory freed on return

Heap Memory

▶ Used for objects with
dynamic storage duration

▶ Programmer explicitly manages
allocation/deallocation

+ Very flexible
− Alloc/dealloc is expensive
− Memory fragmentation
− Error prone!

▶ Memory leaks, double free



209

Dynamic Memory Management

▶ Create and initialize object: new type initializer 79

▶ Type must be a type, can be an array; initializer optional
▶ Allocates heap storage, initializes object, returns pointer

▶ Destroy object and release memory: delete expr /delete[] expr 80

▶ Expression must be a pointer allocated by new; ignored if nullptr
▶ Invoke destructor, deallocate memory

79https://en.cppreference.com/w/cpp/language/new
80https://en.cppreference.com/w/cpp/language/delete

https://en.cppreference.com/w/cpp/language/new
https://en.cppreference.com/w/cpp/language/delete


210

new/delete Example

#include <print>
class Foo {

const int birthYear;
public:

explicit Foo(int birthYear) : birthYear(birthYear) {}
int getAge(int year) const { return year - birthYear; }

};

int main() {
Foo* foo = new Foo(2021);
std::println("age:␣{}", foo->getAge(2024));
delete foo;
return 0;

}



211

new/delete Example
Quiz: What is the output of the program?

#include <print>
#include <string_view>
class Ballot {

const bool voteGOP;
public:

Ballot(bool voteGOP) : voteGOP(voteGOP) {}
std::string_view getParty() const { return voteGOP ? "GOP" : "DNC"; }

};
int main() {

Ballot ballot = new Ballot(/*voteGOP=*/false);
std::println("Voted␣{}", ballot.getParty());
return 0;

}

A. (compile error) B. Voted DNC C. Voted GOP D. (undefined behavior)



212

new/delete Example
Quiz: What is problematic about this function?

#include <ctime>
class Ballot { /* ... */ };
Ballot* castBallot() {

std::time_t time = std::time(nullptr); // UNIX timestamp
Ballot* ballot = new Ballot(time % 2); // Informed decision
if (time % 5 == 3)

return nullptr; // ... polling station is too far away :(
return ballot;

}

A. Memory is leaked when the condition is taken.
B. Memory is leaked when the condition is not taken.
C. Memory is always leaked.
D. The function does not always return the same value.



213

Destructor81

▶ Special function called when lifetime of object ends
▶ For automatic storage dur: called at scope end in reverse definition order
▶ Destructors of class members called automatically in reverse order

▶ No return time, no arguments, name ~ClassName()

▶ Typical use: deallocate managed resources

81https://en.cppreference.com/w/cpp/language/destructor

https://en.cppreference.com/w/cpp/language/destructor


214

Destructor: Example

struct Bar { /* ... */ };
struct Foo {

Bar b1;
Bar b2;
~Foo() {

std::println("bye");
// b2.~Bar(); called
// b1.~Bar(); called

}
};
void doFoo() {

Foo f;
{ Bar b; /* b.~Bar(); called */ }
// f.~Foo(); called

}



215

Using Destructors to Deallocate Resources
class FooPtr {

Foo* ptr;
public:

FooPtr(int birthYear) : ptr(new Foo(birthYear)) {
std::println("new␣{}", static_cast<void*>(ptr));

}
~FooPtr() {

std::println("deleted␣{}", static_cast<void*>(ptr));
delete ptr;

}
Foo& operator*() const { return *ptr; }
Foo* operator->() const { return ptr; }

};
int main() {

FooPtr foo(2021);
std::println("age:␣{}", foo->getAge(2024));
return 0;

}



216

new/delete Example
Quiz: What is problematic about this code?

class FooPtr { /* ... */ };
void printAge(FooPtr foo) {

std::println("age:␣{}", foo->getAge(2024));
}
int main() {

FooPtr foo(2021);
printAge(foo);
return 0;

}

A. An instance of Foo is leaked.
B. The getAge call uses an object outside its lifetime.
C. The same instance of Foo is destroyed twice.
D. There is no problem.



217

Copy Semantics

▶ Assignment/construction typically copies object
▶ By default, copy is shallow
▶ Ok for fundamental types, problematic for user-defined types

▶ Copying may be expensive
▶ Copying may be unintended/avoidable
▶ Copying is problematic with managed resources

▶ Might cause leak, when assigned-to object already has resources
▶ Might cause double-free



218

Copy Constructor82

▶ Syntax: ClassName(const ClassName&)
▶ Invoked on initialization from an object of same type:

▶ Copy initialization: T a = b;
▶ Direct initialization: T a(b);
▶ Argument passing: f(b) for void f(T a);

class FooPtr {
// ...
FooPtr(const FooPtr& other) : ptr(new Foo(*other)) {}
//...

};

82https://en.cppreference.com/w/cpp/language/copy_constructor

https://en.cppreference.com/w/cpp/language/copy_constructor


219

Copy Assignment83

▶ Syntax 1: ClassName& operator=(const ClassName&) (preferred)
▶ Syntax 2: ClassName& operator=(ClassName) (sometime useful, see

later)
▶ Typically returns *this
▶ Invoked when assigning to an already initialized object

▶ a = b;

class FooPtr {
// ...
FooPtr& operator=(const FooPtr& other) { // PROBLEMATIC, see next slide

delete ptr;
ptr = new Foo(*other);
return *this;

}
//...

};
83https://en.cppreference.com/w/cpp/language/copy_assignment

https://en.cppreference.com/w/cpp/language/copy_assignment


220

Copy Assignment
Quiz: What is problematic about this code?

class FooPtr { /* ... */
FooPtr& operator=(const FooPtr& other) {

delete ptr; ptr = new Foo(*other);
return *this;

} /* ... */ };
int main() {

FooPtr foo(2021);
foo = foo;

}

A. Some memory is used after it has been freed.
B. The delete/new is unnecessary.
C. Self-assignment of classes is forbidden in C++.
D. There is no problem.



221

Copy Assignment (fixed)

class FooPtr {
// ...
FooPtr& operator=(const FooPtr& other) { // Fixed version

if (this == &other) // check for self-assignment
return *this;

delete ptr; // NB: could try to reuse storage
ptr = new Foo(*other);
return *this;

}
//...

};



222

Implicit Declaration of Copy Constructor/Assignment

▶ Compiler implicitly declares copy constructor/assignment if not explicitly
declared
▶ Will be public inline and perform member-wise copy in initialization order

▶ Implicit copy constructor/assignment deleted, if:
▶ Class has members that cannot be copy-constructed/assigned; or
▶ Class has a user-defined move constructor or assignment operator

▶ See reference for more details

▶ Explicit deletion: T(const T&) = delete;
▶ Explicit deletion: T& operator=(const T&) = delete;



223

Custom Copy Operations: Guidelines

▶ If implicit copy not sufficient: typically should not be copyable
▶ Exception: if class manages resources, e.g. dynamic memory

▶ Rule of three84: If one of the following is user-defined, all three have to be:
destructor, copy constructor, copy assignment
▶ Custom destructor: cleanup needs to be done on copy assignment
▶ Custom copy constructor: custom setup, needs to be done in copy assignment
▶ Custom resource management (e.g., file descriptor): implicit versions

incorrect

84https://en.cppreference.com/w/cpp/language/rule_of_three

https://en.cppreference.com/w/cpp/language/rule_of_three


224

Move Semantics

▶ Copy semantics often incur avoidable overhead
▶ Object might be immediately destroyed after copy
▶ Object might be unable to share resources for copy

▶ Move constructor/assignment “steals” resources of argument
▶ Leave argument in valid, empty state (destructor will be called nonetheless)
▶ Indicated by use of rvalue reference



225

Move Constructor85

▶ Syntax: ClassName(ClassName&&) noexcept
▶ Invoked on initialization from an temporary value of same type
⇝ Steal resources of argument, its lifetime ends at the constructor end

class FooPtr {
// ...
FooPtr(FooPtr&& other) : ptr(other.ptr) {

other.ptr = nullptr; // Must leave in valid, empty state for destructor
}
//...

};

85https://en.cppreference.com/w/cpp/language/move_constructor

https://en.cppreference.com/w/cpp/language/move_constructor


226

Move Assignment86

▶ Syntax: ClassName& operator=(ClassName&&) noexcept
▶ Invoked when assigning an rvalue to an already initialized object

▶ a = b();

class FooPtr {
// ...
FooPtr& operator=(FooPtr&& other) {

if (this == &other)
return *this;

delete ptr;
ptr = other.ptr;
other.ptr = nullptr;
return *this;

}
//...

};
86https://en.cppreference.com/w/cpp/language/move_assignment

https://en.cppreference.com/w/cpp/language/move_assignment


227

Implicit Declaration of Move Constructor/Assignment

▶ Compiler implicitly declares move constructor/assignment if:
▶ No user-declared copy/move constructors, assignment operators, and

destructors

▶ Implicit move constructor/assignment deleted, if:
▶ Class has members that cannot be move-constructed/assigned; or
▶ Class has member of reference type

▶ See reference for more details

▶ Explicit deletion possible similar to copy constructor/assignment



228

Custom Move Operations: Guidelines

▶ If class manages resources: custom move often necessary
▶ Move operations should not allocate new resources
▶ Moved-from object must remain in valid state

▶ Rule of five87:
▶ If move semantics are desired: need all five special member functions
▶ If only move semantics are desired: still need all five, define copy as deleted

▶ Implementing move operations is typically a pure optimization

87https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five

https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five


229

Converting Lvalue to Rvalue Reference

▶ Want to move object?
▶ But only have an lvalue?

▶ static_cast<Type&&>(obj)
▶ New value category: xvalue — eXpiring object whose resources can be reused
▶ Like lvalue, object has an identity
▶ Like rvalue, can be moved from (i.e., overload resolution selects rvalue-ref

variant)

▶ Syntactic sugar (preferred): std::move(obj) from <utility>



230

Copy/Move Constructor
Quiz: Which methods on FooPtr are called?
Assume that FooPtr implements all copy/move constructors/assignments.
FooPtr createFoo() { return FooPtr(2020); }
void printAge(FooPtr foo) {

std::println("age:␣{}", foo->getAge(2024));
}
int main() {

FooPtr f = createFoo();
printAge(createFoo());

}

A. constr; copy-constr; destr; constr; copy-constr; destr; destr; destr
B. constr; copy-constr; destr; constr; move-constr; destr; destr; destr
C. constr; constr; copy-constr; destr; destr; destr
D. constr; constr; destr; destr



231

Copy Elision88

▶ Compilers (must) sometimes omit copy/move constructors
if object can be directly in storage where it would be copied/moved to

▶ Examples: return values, arguments with prvalue
⇒ Zero-copy pass-by value semantics

▶ Some elisions are required by C++17, but not all
⇝ Portable programs should not rely on side-effects of constructors/destructor

88https://en.cppreference.com/w/cpp/language/copy_elision

https://en.cppreference.com/w/cpp/language/copy_elision


232

Copy-And-Swap
▶ Class defines ClassName& operator=(ClassName) for copy/move
▶ Exchange resources between argument and *this
▶ Copy constructor creates copy
▶ Let destructor clean up resources at function return

class FooPtr {
Foo* ptr;

public:
~FooPtr() { delete ptr; }
FooPtr(const FooPtr& other) : ptr(new Foo(*other)) {}
FooPtr& operator=(FooPtr other) {

std::swap(ptr, other.ptr);
return *this;

} // destructor of other cleans up formerly own resources
};



233

Resource Acquisition is Initialization (RAII)89

▶ Idea: bind lifetime of resource to lifetime of an object
▶ Resources: heap memory, files, mutex, database connection, ...

⇒ Guarantees resource availability during lifetime of object
⇒ Guarantees that resource is released at lifetime end of object

▶ Encapsulate each resource into a class solely responsible for managing it
▶ Constructor acquires resource; destructor releases resource
▶ Delete copy ops, implement custom move ops

89https://en.cppreference.com/w/cpp/language/raii

https://en.cppreference.com/w/cpp/language/raii


234

RAII Example
class FooPtr {

Foo* ptr;
public:

FooPtr(int birthYear) : ptr(new Foo(birthYear)) {}
~FooPtr() { delete ptr; }
FooPtr(const FooPtr& other) = delete;
FooPtr(FooPtr&& other) : ptr(other.ptr) { other.ptr = nullptr; }
FooPtr& operator=(const FooPtr& other) = delete;
FooPtr& operator=(FooPtr&& other) { // code style condensed for slide :|

if (this != &other) { delete ptr; ptr = other.ptr; other.ptr = nullptr; }
return *this;

}
};
int consumeFoo(FooPtr foo) {

if (condition)
return 1; // No need to free memory

// ...
return 0;

}
int main() {

FooPtr foo(2020);
return consumeFoo(std::move(foo)); // foo is empty now

}



235

RAII: Implications

▶ One of the most important and powerful idioms in C++
▶ RAII objects should have automatic(/temporary) storage duration
⇝ Compiler manages lifetime and thus resource

▶ Don’t use new/delete outside of RAII class
▶ C++ provides smart pointers for this, see later

▶ Keep RAII classes (custom copy/move/destructor) small and focused
▶ For all other classes, use default or delete

▶ Rule of zero90

90https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero


236

Ownership Semantics

▶ Enabled by RAII idiom with move semantics
▶ A resource is always “owned”, i.e., encapsulated by exactly one C++ object
▶ Ownership can be transferred by moving the object

▶ Pass RAII class by value or return to indicate transfer of ownership

▶ Very rarely, shared ownership is needed



237

std::unique_ptr91

▶ Smart pointer ownership for an arbitrary pointer/array (can be nullptr)
▶ Automatically destroys object when unique_ptr goes out of scope
▶ Can be used like a raw pointer — but only moveable, not copyable
▶ Pass std::unique_ptr by value, not by reference
▶ Prefer std::unqiue_ptr over raw pointers

#include <memory>
class Foo { /* ... */ };
int main() {

// make_unique forwards arguments to constructor
std::unique_ptr<Foo> foo = std::make_unique<Foo>(2020);
if (!foo) return 1; // contextually convertible to bool, like raw pointer
foo->printAge(2024); // ->, * work as for raw pointers
Foo* fp = foo.get(); // get raw pointer
// Foo* fp2 = foo.release(); // release ownership; must delete manually

}
91https://en.cppreference.com/w/cpp/memory/unique_ptr

https://en.cppreference.com/w/cpp/memory/unique_ptr


238

std::unique_ptr for Arrays

▶ Can also be used for heap-based arrays

std::unique_ptr<int[]> foo(unsigned size) {
std::unique_ptr<int[]> buffer = std::make_unique<int[]>(size);
for (unsigned i = 0; i < size; ++i)

buffer[i] = i;
return buffer; // transfer ownership to caller

}
int main() {

std::unique_ptr<int[]> buffer = foo(42);
// do something

}



239

std::shared_ptr92

▶ Smart pointer with shared ownership
▶ Resource released when last owner releases it
▶ Implemented through atomic reference counting
▶ Can be copied and moved
▶ Use std::make_shared for creation

▶ std::shared_ptr is expensive and should be avoided where possible

92https://en.cppreference.com/w/cpp/memory/shared_ptr

https://en.cppreference.com/w/cpp/memory/shared_ptr


240

std::shared_ptr – Example

#include <memory>
#include <vector>
struct Node {

std::vector<std::shared_ptr<Node>> children;
void addChild(std::shared_ptr<Node> child);
void removeChild(unsigned index);

};
int main() {

Node root;
root.addChild(std::make_shared<Node>());
root.addChild(std::make_shared<Node>());
root.children[0]->addChild(root.children[1]);
root.removeChild(1); // does not free memory yet
root.removeChild(0); // frees memory of both children

}



241

Usage Guidelines

Param. Type Type Copyable Type not Copyable

T Copy, small objects only Transfer ownership

T&/const T& No ownership transfer, object larger than pointer;
const if callee should not modify object;
don’t use for unique_ptr&friends

T*/const T* Like &, but nullable

T&& Ownership transfer — (use T)



242

Memory Management and Copy/Move – Summary

▶ Heap memory manually managed with new/delete
▶ Classes have destructors executed at end of lifetime
▶ Custom copy constructor and assignment required for resource management

▶ Rule of three: if you need one, you need all: destructor, copy
constructor/assignment

▶ Custom move constructor and assignment possible as optimization
▶ Rvalue references indicate moving, use std::move for moving lvalues
▶ Use small RAII classes for managing resources
▶ Use std::unique_ptr instead of manual new/delete
▶ For shared ownership use std::shared_ptr, but avoid if possible



243

Memory Management and Copy/Move – Questions

▶ What are problems of manually using new/delete?
▶ What is the difference between copy constructor and assignment?
▶ Why do assignment operators often guard against self-assignment?
▶ When are the implicitly declared constructors/assignments sufficient?
▶ What is the difference between copying and moving a value?
▶ Why pass-by-value unproblematic for returns but not for parameters?
▶ What does std::move do?
▶ What is the benefit of using dedicated resource/RAII classes?
▶ How to express ownership transfer in parameters?


	Memory Management and Copy/Move
	Heap Allocations
	Destructor
	Copy Semantics
	Move Semantics
	Idioms
	Ownership
	Usage Guidelines


