
503

Concepts of C++ Programming
Lecture 14: Larger Projects

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25

504

Parallelism in C++

▶ Writing correct parallel code is hard
▶ Writing efficient parallel code is extremely hard

▶ Writing efficient parallel C++ requires understanding of hardware
▶ Especially: atomic operations and memory ordering

⇝ Be especially careful when writing parallel code

505

Libraries and Executables

Executables
▶ Compiled code that can be

executed on a certain OS
▶ Can depend on other libraries
▶ Can be executed directly
▶ Code cannot be reused elsewhere

Libraries
▶ Compiled code that can be reused

in libraries or executables
▶ Can depend on other libraries
▶ Cannot be executed on their own
▶ Can be static/shared library

506

Separating Libraries and Executables

▶ Usually advisable to separate executables from core functionality
▶ Executables: front-end for library functionality

▶ Keeps interaction logic separate (e.g., I/O, parsing) from core functionality
▶ Library functionality can be reused in other programs

▶ E.g., unit tests, other executable, etc.

⇒ Put libraries in separate directories with separate CMakeLists.txt
▶ Use CMake’s add_subdirectory; also eases future modularization

507

Libraries: Include Directories

▶ Usually, library include path should contain prefix
▶ E.g., for library foo: #include "foo/..."
▶ Requires suitable directory layout

mylib/
+-- CMakeLists.txt
+-- include/

+-- mylib/
+-- Module.hpp
+-- Printer.hpp

+-- src/
+-- Module.cpp
+-- Printer.cpp

508

Static Libraries

▶ Static library: archive of object files
▶ Dependencies resolved at link-time
▶ Typical extensions: .a (Windows: .lib)

▶ During linking, static libraries are copied into executable
▶ At runtime, no dependency on the library exists

+ No indirections, no compatibility issues
− Larger file size due to copying, need recompile if lib changes

509

Shared Libraries

▶ Shared library: collection of linked object files
▶ Dependencies resolved at program startup
▶ Typical extensions: .so (Windows: .dll)

▶ During loading, system needs to search for libraries
▶ At runtime, library is loaded into memory just once

▶ All programs that use the library share the same code

+ Smaller size, lower memory consumption, can exchange compatible versions
− Slower due to additional runtime indirection, compatibility is hard

510

Shared Libraries: ABI Compatibility

▶ Application Binary Interface: interface between two compiled programs
▶ Includes structure layouts, argument/return types, enum values, . . .
▶ C++: vtable layout, mangled names, . . .
▶ Also be careful when using the preprocessor

▶ Unintended ABI breaks can happen easily in C++

▶ Substitution of shared library requires compatible ABI
▶ ABI-incompatible versions often have different so-names
▶ Otherwise: might lead to subtle problems

511

Header-Only Libraries

▶ Some libraries only consist of header files
▶ Example: only templated types

▶ Some people put everything in header files regardless
▶ Primarily to simplify downstream adoption (no build system to integrate)

+ Possibly easier to integrate
− Like static libraries; and longer compilation times

512

Libraries in CMake

add_library(my_libA STATIC
src/A.cpp
src/B.cpp

)

add_library(my_libB SHARED

src/C.cpp
src/D.cpp

)# ---
add_library(my_libC INTERFACE) # no source files

513

Libraries in CMake

▶ Include directory of libraries/executables needs to be set
target_include_directories(target PUBLIC|PRIVATE dirs...)
▶ Public: add to include path for the target and all its dependents
▶ Private: add to include path just for the target

▶ Specify dependencies between target:
target_link_libraries(target PUBLIC|PRIVATE libs...)
▶ Adds dependencies: takes care of include paths and linker flags
▶ Public: add dependency to the target and all its dependents
▶ Private: add dependency just to the target

514

Third-Party Libraries

▶ Often, reinventing the wheel is not a good idea
▶ Reusing existing third-party libraries can save substantial effort
▶ However: be aware of the general downsides of dependencies

▶ If possible: don’t bundle dependencies
▶ Many libraries can be installed through a package manager
▶ Use CMake’s find_package(<PackageName> [version] [REQUIRED])
▶ If no Find*.cmake is provided: find_library(<VAR> name [path1 path2

...])
▶ Alternatively: submodules with CMake add_subdirectory

515

Interfacing with C
▶ C headers often surrounded by extern "C" {...}
▶ Changes language linkage to C for external declarations (= no name

mangling)

//--- my-c-lib.h

#ifdef __cplusplus
extern "C" {
#endif

// Usual C header content

#ifdef __cplusplus
}
#endif

▶ If C header doesn’t include wrappers: wrap #include

516

Other Build Systems

▶ Meson (e.g., GNOME, QEMU)
▶ Automake/Autoconf (e.g., GCC)
▶ SCons
▶ Bazel (e.g., Google)
▶ GN (e.g., Chromium)

517

Unified Builds

▶ Unified build: concatenate multiple source files into one compilation unit

+ Faster build times: less redundant parsing of headers
+ Enables more optimizations between .cpp files
− Longer incremental build times
− Possible correctness issues on naming collisions

518

Other Build Options

▶ Link-Time Optimization (LTO): Cross-CU Optimizations
▶ Object files don’t contain machine code, but internal compiler representation
▶ Only at link time, everything gets compiled

▶ Profile-Guided Optimization (PGO):
▶ First build with instrumentation to track taken branches etc.
▶ Run application on typical load, collect profile
▶ Second build that uses the profile for further optimizations
▶ Can lead to substantial speedups in practice

519

Build Tools for Developers

▶ Pre-Compiled Headers (PCH): precompile headers to improve build times
▶ CMake: target_precompile_headers

▶ C++20 Modules159

▶ Module consists of multiple translation units, can import modules, can export
declarations

▶ Alternative to header files in certain situations
▶ Faster compilation: exported definitions are compiled into binary format
▶ Implementation still not ready, thus rarely used up to this point

159https://en.cppreference.com/w/cpp/language/modules

https://en.cppreference.com/w/cpp/language/modules

520

Where to go from here?

▶ Advanced Concepts of Programming Languages
▶ Covers memory model and C++ class implementation in detail

▶ Compiler Construction 1
▶ Covers implementation of compiler front-ends

▶ Code Generation
▶ Covers implementation of compiler back-ends

522

Thanks to...

▶ Michael Freitag, Moritz Sichert, and Maximilian Rieger
for the lab course slides “Systems Programming in C++”

▶ Tobias Lasser for his adaption of the slides
▶ The various authors of cppreference

▶ Florian Drescher and Mateusz Gienieczko for the exercises

... and of course to YOU
for participating in this course!

	Larger Projects
	Libraries
	Interfacing with C
	Miscellaneous

