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First problem

First deadline — 29.10.2025, 12:00 PM.

Always try to get non-zero points :)
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Optimisation problems TUTI

Make a number of decisions creating a strategy that produces an optimal
(minimal, maximal, ...) result.

Can often be solved with dynamic programming.
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Optimisation problems TUTI

Make a number of decisions creating a strategy that produces an optimal
(minimal, maximal, ...) result.

Can often be solved with dynamic programming.
For DP to be applicable the problem has to have optimal substructure.

To solve a big problem we can use optimal solutions of smaller problems solved
independently.
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Dynamic programming TUTI

Generic format: we are filling a DP table.
The size of the table is the number of states.

Overall running time is number of states times the cost of computing one state.
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Dynamic programming — examples TUTI

Discrete knapsack.

LCS-likes (e.g. editing distance)

Optimal ordering of matrices to multiply.

Join ordering.

Counting combinations.

Tasks of the form “path from top-left to bottom-right optimising some value”.
Shortest paths in graphs with negative weights.

Longest path in a DAG.
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NOT optimal substructure UM

Shortest paths in a graph have optimal substructure.

For the shortest path v +» u pick a middle vertex w and consider v ~» w ~» w.

Picking the shortest path v ~» w and w ~» u works.
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NOT optimal substructure UM

Shortest paths in a graph have optimal substructure.

For the shortest path v ~» u pick a middle vertex w and consider v «» w ~» w.
Picking the shortest path v ~» w and w ~» u works.

For longest simple paths this substructure does not exist.

The longest paths v ~» w and w ~» u might share vertices which cannot be
picked again, so they’re not independent.

This problem is actually NP-complete.
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Case study: Aliens (101 2016) TUTI

Our satellite has just discovered an alien civilization on a remote planet. We
have already obtained a low-resolution photo of a square area of the planet. The
photo shows many signs of intelligent life. Our experts have identified points of
interest in the photo. The points are numbered from 0 to n — 1. We now want to
take high-resolution photos that contain all of those points.
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Case study: Aliens (101 2016) TUTI

Internally, the satellite has divided the area of the low-resolution photo into an
m by m grid of unit square cells. Both rows and columns of the grid are
consecutively numbered from 0 to m — 1 (from the top and left, respectively).
We use (s,t) to denote the cell in row s and column ¢t. The point number i is
located in the cell (7;, ¢;). Each cell may contain an arbitrary number of these

points.
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Case study: Aliens (101 2016) TUTI

Our satellite is on a stable orbit that passes directly over the main diagonal of

the grid. The main diagonal is the line segment that connects the top left and

the bottom right corner of the grid. The satellite can take a high-resolution

photo of any area that satisfies the following constraints:

. the shape of the area is a square,

 two opposite corners of the square both lie on the main diagonal of the grid,

« each cell of the grid is either completely inside or completely outside the
photographed area.

The satellite is able to take at most k high-resolution photos.
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Case study: Aliens (101 2016) TUTI

Once the satellite is done taking photos, it will transmit the high-resolution

photo of each photographed cell to our home base (regardless of whether that

cell contains some points of interest). The data for each photographed cell will

only be transmitted once, even if the cell was photographed several times. Thus,

we have to choose at most k square areas that will be photographed, assuring

that:

« each cell containing at least one point of interest is photographed at least
once, and

 the number of cells that are photographed at least once is minimized.

Your task is to find the smallest possible total number of photographed cells.
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Case study: Aliens (101 2016) TUTI

Example:

A~ A B B~ O O
o U1 O b~ W
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Aliens — limits

1

IN
»
IN

n

1

IN

n < 100 000

1<m< 1000000
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Aliens — limits

1

IN
W
IN

n

1 <n < 100000

IN

1<m< 1000000

Simpler subtasks:

e n<500,m <1000

e n<4000,m < 1000000

« n<50000,k <100,m < 1000000
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Aliens - simplify

What if n = k?
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Aliens - simplify

What if n = k?

It’s always worth it to take a smaller photo for each point.
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Aliens - simplify

What lf Vi.l’i = Ci?
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Aliens - simplify

What if ‘v’,-.r,- — Ci?
Optimally, each photo is taken at some 7.

If a photo covers r; and r; then also all r; <, <7;.
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Aliens - simplify

What if ‘v’i.ri = Ci?
Optimally, each photo is taken at some 7.
If a photo covers r; and r; then also all r; <, <7;.

Cover n points on the line using k segments, such that sum of squares of
segment lengths is minimal.
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Aliens - DP TUT

V ie LonT: &0y

DP; ; == minimum cost to cover first i points with at most j photos

DPO,j - O
2
DP;; =(r1—rnp+1)

ij — miniDPx,j—l + (rl 1 — Ty T 1)

Answer in DP,, .

O(nk) states, calculating one costs @(n), total @(nzk).
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Aliens - DP TUT

Now drop the r; = ¢; simplification.
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Aliens - DP

Now drop the r; = ¢; simplification.

A photo from (x, x) to (y,y) (x < y) covers a point (r;, ;) iff the segment
|min(r;, ¢;), max(r;, ¢;)] is fully contained in [x, y].

So now we are covering segments instead of points.
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Aliens - DP

. o
First, convert (r;, ¢;) to segment g = min(r;, c,-),;(;' = max(r;, ¢;). Sort by s;
ascending and then ¢; descending.

Remove segments fully contained in other ones. Then:
DP; ; :== minimum cost to cover first i points with at most j photos
DPO,j =0
Lo 9
DPij; =1 =%+ 1)

DP;; = min DP, ;_ + (ri_1 — L + 1)2 — (max(0,r,_; — L. + 1))2
’ 1<x<i ’

Still 6(n°k).
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Knuth’s optimization UM

Work by Knuth in 1971, improved by Yao (a.k.a. the Knuth-Yao Speedup).’

Given a recurrence relation (overi < n,j < m):

i=¢ i+ min( fir_1 + fri
fl,] I,j i<k§j(fl’k 1 fk,])

and assuming the optimal splitting point k; ; satisfies:

ki,j—l < ki,j < ki+1,j for i S]

we can speed up computation by a linear factor (@(nzm) to @(nz)).

"You can find the proof of all this in Yao’s Efficient Dynamic Programming Using Quadrangle
Inequalities, STOC’80.
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https://dl.acm.org/doi/pdf/10.1145/800141.804691
https://dl.acm.org/doi/pdf/10.1145/800141.804691
https://dl.acm.org/doi/pdf/10.1145/800141.804691
https://dl.acm.org/doi/pdf/10.1145/800141.804691

Knuth’s optimization

i=¢ i+ min( fir_1 + fxi
fl,] 1, i<k§j(fl’k 1 fk,])

Previous may be hard to prove. But, if the cost function c is monotone and

satisfies the quadrangle inequality:
Ci’,j’ S Ci,j

Cij+Crjr S CpjtCy fori<i’" <j<j’

then it implies the splitting point property.
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Knuth’s optimization UM

i=¢ i+ min( fir_1 + fxi
fl,] 1, i<k£j(fl’k 1 fk,])

To calculate k; ;,

values between k; ;_; to k;1q ;. of
We need to change the loop directions\/for that.

instead of testing values fromi + 1 to j we only need to look at

It can be proven that this results in at most ©(n) minimisation operations for
each 0 = j —i, giving @(nz) complexity.
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Knuth’s optimization — note UM

i=¢ i+ min( fir_1 + fxi
fl,] 1, i<k§j(fl’k 1 fk,])

This is a general optimisation.

It of course also works for max, or for slightly different bounds (e.g. max<x<;),
etc.

The point is to understand the technique, not memorise an equation.
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Aliens - Knuth’s optimization UM

ntialijogion ok DPLY Q IPL S
We have code like:

for 1 in [1,n]
for j in [2,k]
DP[i]Ej] = DPL1]1[j-1]
for X in [1, 1)
let local = DP[xJ[j-1]1 +
(S[i-1].r = S[xJ.1 + 1)*2 - max(@, S[x-1].r = S[x].1 + 1)"2
DPLil1[j] = min(DPLil[j]1, local)
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Aliens - Knuth’s optimization UM

Wit Fatn o BP b o S
Switching loop order and adding an additional table:

for j in [2,k]
for 1 in [n,1]
DPLi][j] = DPLi][j-1]
opt[il[j] =i
for X'in [opt[il[j-11, optli+11[j1)
let local = DP[xJ[j-1]1 +
(S[i-1].r = S[xJ.1 + 1)*2 - max(@, S[x-1].r - S[x].1 + 1)*2
if local <= DP[i][j]
DPLi][j] = local
opt[il[j] = k
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Divide and Conquer

Divide and Conquer is a general algorithm construction technique.
Split into smaller subproblems, merge solutions.

Prime example — merge-sort.
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Divide and Conquer DP optimisation UM

For recurrences over i < n,j < m where we optimise something similar to

o= min fi_q1 + ¢
fij nggjfz 1kt Cik

and we have the previously established property:
kij < kij+1

we can apply divide-and-conquer to improve complexity from @(nzm) to

O(nmlogn).
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Divide and Conquer DP optimisation UM

Since k; ; for fixed i increases as j increases we know, after computing some k; ;,
that for j* < j k; i» is bound by k; ;.

First calculate k; ». Using that bound find k; » (< k; ») and k; 3 (= k; 1), etc.
>2 >4 >2 >4 >2

Creates a recursion tree of logn levels, the same value of k can occur only twice

at the same level.

We get O(nmlogn), which might be better than Knuth’s speedup if m is small.
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Aliens — Divide and Conquer UM

Applying to our task is straightforward.

Easiest to implement recursively:

fn solve(j, i_lo, i_hi, x_lo, x_hi)
if 1_lo > 1i_hi return
let i_mid = (i_hi1 + i_lo) / 2
// find DP[i_mid, jl, optli_mid, j] like before
solve(j, i_lo, i_mid - 1, x_lo, optli_mid, jl)
solve(j, i_mid + 1, i_hi, opt[i_mid, j], x_hi)
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Convex Hull Trick TUTI

Consider a problem where we have a set of linear functions g;x + b; and want to
answer queries — which function is minimal (or maximal) at given x7?

E.g. minimising cost or maximising yield of an investment.

Naively, you have to look through all functions for each x.
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Convex Hull Trick TUTI

Sort the functions descending by a; (for maximum, ascending).
Sort the queries ascending.

Key observation is that if at some point f; is better than f;,i > j, then it will
always be better.
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Convex Hull Trick




Convex Hull Trick TUTI

Keep a stack of functions.
When adding a function remove all from the stack that are dominated.

When querying, check the two top functions. If the top one is no longer the
best, remove it.

Both operations are ©(1) amortised.
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Aliens — Convex Hull Trick UM

We can rewrite the DP equation:

DP” = min Dij—l + (ri—l — lx + 1)2 — (maX(O, Fe—1 — lx + 1))2
’ 1<x<i ’

= min DPy ;g + e —2( — Dy + (b — 1)° — (max(0, 1y — L + 1))’
SXLI

= (C; + min A,r,_1 + By ;
I 1<x<i x'i—1 X,J
Thus, we have linear functions with coefficients A, By ;, evaluated at r;_;.

As i increases, A, decreases and r;_; increases.
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Aliens — Convex Hull Trick

Go over j first.

At each i first add the function A;x + B; ; to the set and then query for
minimum at r;_1.

Total running time O(nk).
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Aliens — Convex Hull Trick UM

e 7 29 v 5 ¢ P € F

A "NV SO < W v
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Parameter search TUTI

This optimisation is also known as lambda optimisation, or... the trick from
Aliens.

This is a trick that reduces the number of dimensions in a DP as long as the DP
functions is convex.
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Parameter search - convexivity UM

A function is convex if connecting two points on its graph doesn’t lead outside

of the graph.

In case of our DP problems over (i, j), this is equivalent to saying;:
fij— Jij+1 2 fije1 — fijs2
Intuitively, further increasing the use of resource j gives diminishing returns.

In the case of Aliens, taking the j-th photo decreases the result by more than
taking the j + 1-st photo.
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Parameter search — convexivity

The idea is to transform our function from:

= min fi_q1r +¢
fij nggjfz 1k + Cik

Into:
fij=fijtA
and an optimisation problem:

N K
g = min fi; = min (f,k + /b’@

0<k<n 0<k<n

Intuitively, A is a penalty for taking more of the j resource.
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Parameter search - convexivity UM
i K
.= min f;; = min ( f;p + A¥
57 o<ken ik ogkgn(fl’k %)

The trick here is that g; is usually much easier to compute, as it has only one
dimension.

Crucially, f is also convex.

Let the function kg(A) return the optimal splitting point k above for given A.

Since f is convex, this is the minimum k such that ]Z;’l,k — fn,kﬂ is negative.

The k(1) is unimodal, and thus we can ternary search A and find such A, that
k

g(/lopt) satisfies the resource constraint in the task.
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Parameter search - result TUTI

. IC
g = min fix = min (ﬁk + /1}'9

0<k<n 0<k<n

We have two points now: k; = kg(Aopt) and ky = kg(/lopt + 1). To find f, k, the
answer to the task, we need to interpolate f, ; on this interval.

This can be done since all differences (fn,kz — fn,k2—|—1)> (fn,k2+1 _
fn,k2_|_2), cooy (fn’kl—l, fn’kl) are equal.
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Aliens — parameter search

For Aliens, the penalty A is given to each additional photo:

~

X
.= min f, = min (f;, + Af
8i 0<x<n fl,x 0<x gn(fl’x X)

g = min g, +(r_; — L + 1)* — max(0,r,_; — L. + 1)° + Ax
0<x<n

This can be computed using the convex hull trick in O(n).

Adding ternary search and sorting the segments from the start gives us
O(nlogm + nlogn).
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Aliens — parameter search . . .., LTI
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Aliens — parameter search . . .., LTI

g = min ]Ei,x = min (flx + A%)

0<x<n 0<x<n 9-asch ovgy el A
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