
School of Computation, Information and Technology
Technical University of Munich

AACPP WiSe
2025/26
Class 1: Dynamic Programming

Mateusz Gienieczko

School of Computation, Information and Technology
Technical University of Munich

2025.10.14

AACPP WiSe 2025/26 Mateusz Gienieczko

First problem

First deadline – 29.10.2025, 12:00 PM.

Always try to get non-zero points :)

AACPP WiSe 2025/26 Mateusz Gienieczko

Optimisation problems

Make a number of decisions creating a strategy that produces an optimal
(minimal, maximal, …) result.

Can often be solved with dynamic programming.

AACPP WiSe 2025/26 Mateusz Gienieczko

Optimisation problems

Make a number of decisions creating a strategy that produces an optimal
(minimal, maximal, …) result.

Can often be solved with dynamic programming.

For DP to be applicable the problem has to have optimal substructure.

To solve a big problem we can use optimal solutions of smaller problems solved
independently.

AACPP WiSe 2025/26 Mateusz Gienieczko

Dynamic programming

Generic format: we are filling a DP table.

The size of the table is the number of states.

Overall running time is number of states times the cost of computing one state.

AACPP WiSe 2025/26 Mateusz Gienieczko

Dynamic programming – examples

Discrete knapsack.

LCS-likes (e.g. editing distance)

Optimal ordering of matrices to multiply.

Join ordering.

Counting combinations.

Tasks of the form “path from top-left to bottom-right optimising some value”.

Shortest paths in graphs with negative weights.

Longest path in a DAG.
AACPP WiSe 2025/26 Mateusz Gienieczko

NOT optimal substructure

Shortest paths in a graph have optimal substructure.

For the shortest path 𝑣 ⇝ 𝑢 pick a middle vertex 𝑤 and consider 𝑣 ⇝ 𝑤 ⇝ 𝑢.

Picking the shortest path 𝑣 ⇝ 𝑤 and 𝑤 ⇝ 𝑢 works.

AACPP WiSe 2025/26 Mateusz Gienieczko

NOT optimal substructure

Shortest paths in a graph have optimal substructure.

For the shortest path 𝑣 ⇝ 𝑢 pick a middle vertex 𝑤 and consider 𝑣 ⇝ 𝑤 ⇝ 𝑢.

Picking the shortest path 𝑣 ⇝ 𝑤 and 𝑤 ⇝ 𝑢 works.

For longest simple paths this substructure does not exist.

The longest paths 𝑣 ⇝ 𝑤 and 𝑤 ⇝ 𝑢 might share vertices which cannot be
picked again, so they’re not independent.

This problem is actually NP-complete.

AACPP WiSe 2025/26 Mateusz Gienieczko

Case study: Aliens (IOI 2016)

Our satellite has just discovered an alien civilization on a remote planet. We
have already obtained a low-resolution photo of a square area of the planet. The
photo shows many signs of intelligent life. Our experts have identified points of
interest in the photo. The points are numbered from 0 to 𝑛 − 1. We now want to
take high-resolution photos that contain all of those points.

AACPP WiSe 2025/26 Mateusz Gienieczko

Case study: Aliens (IOI 2016)

Internally, the satellite has divided the area of the low-resolution photo into an𝑚 by 𝑚 grid of unit square cells. Both rows and columns of the grid are
consecutively numbered from 0 to 𝑚 − 1 (from the top and left, respectively).
We use (𝑠, 𝑡) to denote the cell in row 𝑠 and column 𝑡 . The point number 𝑖 is
located in the cell (𝑟𝑖, 𝑐𝑖). Each cell may contain an arbitrary number of these
points.

AACPP WiSe 2025/26 Mateusz Gienieczko

Case study: Aliens (IOI 2016)

Our satellite is on a stable orbit that passes directly over the main diagonal of
the grid. The main diagonal is the line segment that connects the top left and
the bottom right corner of the grid. The satellite can take a high-resolution
photo of any area that satisfies the following constraints:
• the shape of the area is a square,
• two opposite corners of the square both lie on the main diagonal of the grid,
• each cell of the grid is either completely inside or completely outside the

photographed area.

The satellite is able to take at most 𝑘 high-resolution photos.

AACPP WiSe 2025/26 Mateusz Gienieczko

Case study: Aliens (IOI 2016)

Once the satellite is done taking photos, it will transmit the high-resolution
photo of each photographed cell to our home base (regardless of whether that
cell contains some points of interest). The data for each photographed cell will
only be transmitted once, even if the cell was photographed several times. Thus,
we have to choose at most 𝑘 square areas that will be photographed, assuring
that:
• each cell containing at least one point of interest is photographed at least

once, and
• the number of cells that are photographed at least once is minimized.

Your task is to find the smallest possible total number of photographed cells.
AACPP WiSe 2025/26 Mateusz Gienieczko

Case study: Aliens (IOI 2016)

Example:

5 7 2
0 3
4 4
4 6
4 5
4 6

25

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens – limits

1 ≤ 𝑘 ≤ 𝑛1 ≤ 𝑛 ≤ 100 0001 ≤ 𝑚 ≤ 1 000 000

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens – limits

1 ≤ 𝑘 ≤ 𝑛1 ≤ 𝑛 ≤ 100 0001 ≤ 𝑚 ≤ 1 000 000
Simpler subtasks:
• 𝑛 ≤ 500, 𝑚 ≤ 1 000
• 𝑛 ≤ 4 000, 𝑚 ≤ 1 000 000
• 𝑛 ≤ 50 000, 𝑘 ≤ 100, 𝑚 ≤ 1 000 000
AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens - simplify

What if 𝑛 = 𝑘?

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens - simplify

What if 𝑛 = 𝑘?

It’s always worth it to take a smaller photo for each point.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens - simplify

What if ∀𝑖.𝑟𝑖 = 𝑐𝑖?

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens - simplify

What if ∀𝑖.𝑟𝑖 = 𝑐𝑖?
Optimally, each photo is taken at some 𝑟𝑖.
If a photo covers 𝑟𝑖 and 𝑟𝑗 then also all 𝑟𝑖 ≤ 𝑟𝑥 ≤ 𝑟𝑗 .

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens - simplify

What if ∀𝑖.𝑟𝑖 = 𝑐𝑖?
Optimally, each photo is taken at some 𝑟𝑖.
If a photo covers 𝑟𝑖 and 𝑟𝑗 then also all 𝑟𝑖 ≤ 𝑟𝑥 ≤ 𝑟𝑗 .
Cover 𝑛 points on the line using 𝑘 segments, such that sum of squares of
segment lengths is minimal.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens - DP

DP𝑖,𝑗 ≔ minimum cost to cover first 𝑖 points with at most 𝑗 photosDP0,𝑗 = 0DP𝑖,1 = (𝑟𝑖−1 − 𝑟0 + 1)2DP𝑖,𝑗 = min1≤𝑥<𝑖 DP𝑥,𝑗−1 + (𝑟𝑖−1 − 𝑟𝑥 + 1)2
Answer in DP𝑛,𝑘 .𝒪(𝑛𝑘) states, calculating one costs 𝒪(𝑛), total 𝒪(𝑛2𝑘).

AACPP WiSe 2025/26 Mateusz Gienieczko

ie 0in ri ritt

Aliens - DP

Now drop the 𝑟𝑖 = 𝑐𝑖 simplification.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens - DP

Now drop the 𝑟𝑖 = 𝑐𝑖 simplification.

A photo from (𝑥, 𝑥) to (𝑦 , 𝑦) (𝑥 ≤ 𝑦) covers a point (𝑟𝑖, 𝑐𝑖) iff the segment[min(𝑟𝑖, 𝑐𝑖), max(𝑟𝑖, 𝑐𝑖)] is fully contained in [𝑥, 𝑦].
So now we are covering segments instead of points.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens - DP

First, convert (𝑟𝑖, 𝑐𝑖) to segment 𝑠𝑖 = min(𝑟𝑖, 𝑐𝑖), 𝑒𝑖 = max(𝑟𝑖, 𝑐𝑖). Sort by 𝑠𝑖
ascending and then 𝑒𝑖 descending.

Remove segments fully contained in other ones. Then:DP𝑖,𝑗 ≔ minimum cost to cover first 𝑖 points with at most 𝑗 photosDP0,𝑗 = 0DP𝑖,1 = (𝑟𝑖−1 − 𝑟0 + 1)2DP𝑖,𝑗 = min1≤𝑥<𝑖 DP𝑥,𝑗−1 + (𝑟𝑖−1 − 𝑙𝑥 + 1)2 − (max(0, 𝑟𝑥−1 − 𝑙𝑥 + 1))2
Still 𝒪(𝑛2𝑘).
AACPP WiSe 2025/26 Mateusz Gienieczko

ji

x ̅

Knuth’s optimization

Work by Knuth in 1971, improved by Yao (a.k.a. the Knuth-Yao Speedup).¹

Given a recurrence relation (over 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑚):𝑓𝑖,𝑗 = 𝑐𝑖,𝑗 + min𝑖<𝑘≤𝑗(𝑓𝑖,𝑘−1 + 𝑓𝑘,𝑗)
and assuming the optimal splitting point 𝑘𝑖,𝑗 satisfies:𝑘𝑖,𝑗−1 ≤ 𝑘𝑖,𝑗 ≤ 𝑘𝑖+1,𝑗 for 𝑖 ≤ 𝑗
we can speed up computation by a linear factor (𝒪(𝑛2𝑚) to 𝒪(𝑛2)).

¹You can find the proof of all this in Yao’s Efficient Dynamic Programming Using Quadrangle
Inequalities, STOC’80.
AACPP WiSe 2025/26 Mateusz Gienieczko

https://dl.acm.org/doi/pdf/10.1145/800141.804691
https://dl.acm.org/doi/pdf/10.1145/800141.804691
https://dl.acm.org/doi/pdf/10.1145/800141.804691
https://dl.acm.org/doi/pdf/10.1145/800141.804691

Knuth’s optimization𝑓𝑖,𝑗 = 𝑐𝑖,𝑗 + min𝑖<𝑘≤𝑗(𝑓𝑖,𝑘−1 + 𝑓𝑘,𝑗)
Previous may be hard to prove. But, if the cost function 𝑐 is monotone and
satisfies the quadrangle inequality:𝑐𝑖′,𝑗′ ≤ 𝑐𝑖,𝑗 𝑐𝑖,𝑗 + 𝑐𝑖′,𝑗′ ≤ 𝑐𝑖′,𝑗 + 𝑐𝑖,𝑗′ for 𝑖 ≤ 𝑖′ ≤ 𝑗 ≤ 𝑗′
then it implies the splitting point property.

AACPP WiSe 2025/26 Mateusz Gienieczko

Knuth’s optimization𝑓𝑖,𝑗 = 𝑐𝑖,𝑗 + min𝑖<𝑘≤𝑗(𝑓𝑖,𝑘−1 + 𝑓𝑘,𝑗)
To calculate 𝑘𝑖,𝑗 , instead of testing values from 𝑖 + 1 to 𝑗 we only need to look at
values between 𝑘𝑖,𝑗−1 to 𝑘𝑖+1,𝑗 .
We need to change the loop directions for that.

It can be proven that this results in at most 𝒪(𝑛) minimisation operations for
each 𝛿 = 𝑗 − 𝑖, giving 𝒪(𝑛2) complexity.

AACPP WiSe 2025/26 Mateusz Gienieczko

Knuth’s optimization – note𝑓𝑖,𝑗 = 𝑐𝑖,𝑗 + min𝑖<𝑘≤𝑗(𝑓𝑖,𝑘−1 + 𝑓𝑘,𝑗)
This is a general optimisation.

It of course also works for max, or for slightly different bounds (e.g. max0≤𝑘<𝑗),
etc.

The point is to understand the technique, not memorise an equation.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens – Knuth’s optimization

We have code like:

for i in [1,n]
 for j in [2,k]
 DP[i][j] = DP[i][j-1]
 for k in [1, i)
 let local = DP[x][j-1] +
 (S[i-1].r - S[x].l + 1)^2 - max(0, S[x-1].r - S[x].l + 1)^2
 DP[i][j] = min(DP[i][j], local)

AACPP WiSe 2025/26 Mateusz Gienieczko

InitializationofDP 03 DP 1 S

Aliens – Knuth’s optimization

Switching loop order and adding an additional table:

for j in [2,k]
 for i in [n,1]
 DP[i][j] = DP[i][j-1]
 opt[i][j] = i
 for k in [opt[i][j-1], opt[i+1][j])
 let local = DP[x][j-1] +
 (S[i-1].r - S[x].l + 1)^2 - max(0, S[x-1].r - S[x].l + 1)^2
 if local <= DP[i][j]
 DP[i][j] = local
 opt[i][j] = k

AACPP WiSe 2025/26 Mateusz Gienieczko

Initialization of DP opt S

Divide and Conquer

Divide and Conquer is a general algorithm construction technique.

Split into smaller subproblems, merge solutions.

Prime example – merge-sort.

AACPP WiSe 2025/26 Mateusz Gienieczko

Divide and Conquer DP optimisation

For recurrences over 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑚 where we optimise something similar to𝑓𝑖,𝑗 = min0≤𝑘≤𝑗 𝑓𝑖−1,𝑘 + 𝑐𝑖,𝑘
and we have the previously established property:𝑘𝑖,𝑗 ≤ 𝑘𝑖,𝑗+1
we can apply divide-and-conquer to improve complexity from 𝒪(𝑛2𝑚) to𝒪(𝑛𝑚 log 𝑛).
AACPP WiSe 2025/26 Mateusz Gienieczko

Divide and Conquer DP optimisation

Since 𝑘𝑖,𝑗 for fixed 𝑖 increases as 𝑗 increases we know, after computing some 𝑘𝑖,𝑗 ,
that for 𝑗′ < 𝑗 𝑘𝑖,𝑗′ is bound by 𝑘𝑖,𝑗 .
First calculate 𝑘𝑖, 𝑛2 . Using that bound find 𝑘𝑖, 𝑛4 (≤ 𝑘𝑖,𝑛2) and 𝑘𝑖, 3𝑛4 (≥ 𝑘𝑖,𝑛2), etc.

Creates a recursion tree of log 𝑛 levels, the same value of 𝑘 can occur only twice
at the same level.

We get 𝒪(𝑛𝑚 log 𝑛), which might be better than Knuth’s speedup if 𝑚 is small.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens – Divide and Conquer

Applying to our task is straightforward.

Easiest to implement recursively:

fn solve(j, i_lo, i_hi, x_lo, x_hi)
 if i_lo > i_hi return
 let i_mid = (i_hi + i_lo) / 2
 // find DP[i_mid, j], opt[i_mid, j] like before
 solve(j, i_lo, i_mid - 1, x_lo, opt[i_mid, j])
 solve(j, i_mid + 1, i_hi, opt[i_mid, j], x_hi)

AACPP WiSe 2025/26 Mateusz Gienieczko

Convex Hull Trick

Consider a problem where we have a set of linear functions 𝑎𝑖𝑥 + 𝑏𝑖 and want to
answer queries – which function is minimal (or maximal) at given 𝑥?

E.g. minimising cost or maximising yield of an investment.

Naively, you have to look through all functions for each 𝑥 .

AACPP WiSe 2025/26 Mateusz Gienieczko

Convex Hull Trick

Sort the functions descending by 𝑎𝑖 (for maximum, ascending).

Sort the queries ascending.

Key observation is that if at some point 𝑓𝑖 is better than 𝑓𝑗 , 𝑖 > 𝑗, then it will
always be better.

AACPP WiSe 2025/26 Mateusz Gienieczko

Convex Hull Trick

AACPP WiSe 2025/26 Mateusz Gienieczko

Convex Hull Trick

Keep a stack of functions.

When adding a function remove all from the stack that are dominated.

When querying, check the two top functions. If the top one is no longer the
best, remove it.

Both operations are 𝒪(1) amortised.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens – Convex Hull Trick

We can rewrite the DP equation:DP𝑖,𝑗 = min1≤𝑥<𝑖 DP𝑥,𝑗−1 + (𝑟𝑖−1 − 𝑙𝑥 + 1)2 − (max(0, 𝑟𝑥−1 − 𝑙𝑥 + 1))2
= min1≤𝑥<𝑖 DP𝑥,𝑗−1 + 𝑟2𝑖−1 − 2(𝑙𝑥 − 1)𝑟𝑖−1 + (𝑙𝑥 − 1)2 − (max(0, 𝑟𝑥−1 − 𝑙𝑥 + 1))2= 𝐶𝑖 + min1≤𝑥<𝑖 𝐴𝑥𝑟𝑖−1 + 𝐵𝑥,𝑗

Thus, we have linear functions with coefficients 𝐴𝑥, 𝐵𝑥,𝑗 , evaluated at 𝑟𝑖−1.

As 𝑖 increases, 𝐴𝑥 decreases and 𝑟𝑖−1 increases.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens – Convex Hull Trick

Go over 𝑗 first.

At each 𝑖 first add the function 𝐴𝑖𝑥 + 𝐵𝑖,𝑗 to the set and then query for
minimum at 𝑟𝑖−1.

Total running time 𝒪(𝑛𝑘).
AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens – Convex Hull Trick

Go over 𝑗 first.

At each 𝑖 first add the function 𝐴𝑖𝑥 + 𝐵𝑖,𝑗 to the set and then query for
minimum at 𝑟𝑖−1.

Total running time 𝒪(𝑛𝑘).
AACPP WiSe 2025/26 Mateusz Gienieczko

2 3 45 6 7 89
i er

1 2 DPx.intex112mat10rxnext12

TJ
j 1 TO 43 DPA 49,3649,81

j 2

Parameter search

This optimisation is also known as lambda optimisation, or… the trick from
Aliens.

This is a trick that reduces the number of dimensions in a DP as long as the DP
functions is convex.

AACPP WiSe 2025/26 Mateusz Gienieczko

Parameter search – convexivity

A function is convex if connecting two points on its graph doesn’t lead outside
of the graph.

In case of our DP problems over (𝑖, 𝑗), this is equivalent to saying:𝑓𝑖,𝑗 − 𝑓𝑖,𝑗+1 ≥ 𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗+2
Intuitively, further increasing the use of resource 𝑗 gives diminishing returns.

In the case of Aliens, taking the 𝑗-th photo decreases the result by more than
taking the 𝑗 + 1-st photo.

AACPP WiSe 2025/26 Mateusz Gienieczko

Parameter search – convexivity

The idea is to transform our function from:𝑓𝑖,𝑗 = min0≤𝑘≤𝑗 𝑓𝑖−1,𝑘 + 𝑐𝑖,𝑘
into: ̃𝑓𝑖,𝑗 = 𝑓𝑖,𝑗 + 𝜆𝑗
and an optimisation problem:𝑔𝑖 = min0≤𝑘≤𝑛 ̃𝑓𝑖,𝑘 = min0≤𝑘≤𝑛(𝑓𝑖,𝑘 + 𝜆𝑗)
Intuitively, 𝜆 is a penalty for taking more of the 𝑗 resource.
AACPP WiSe 2025/26 Mateusz Gienieczko

Parameter search – convexivity𝑔𝑖 = min0≤𝑘≤𝑛 ̃𝑓𝑖,𝑘 = min0≤𝑘≤𝑛(𝑓𝑖,𝑘 + 𝜆𝑗)
The trick here is that 𝑔𝑖 is usually much easier to compute, as it has only one
dimension.

Crucially, ̃𝑓 is also convex.

Let the function 𝑘𝑔(𝜆) return the optimal splitting point 𝑘 above for given 𝜆.

Since ̃𝑓 is convex, this is the minimum 𝑘 such that ̃𝑓𝑛,𝑘 − ̃𝑓𝑛,𝑘+1 is negative.

The 𝑘𝑔(𝜆) is unimodal, and thus we can ternary search 𝜆 and find such 𝜆opt that𝑘𝑔(𝜆opt) satisfies the resource constraint in the task.
AACPP WiSe 2025/26 Mateusz Gienieczko

Parameter search – result𝑔𝑖 = min0≤𝑘≤𝑛 ̃𝑓𝑖,𝑘 = min0≤𝑘≤𝑛(𝑓𝑖,𝑘 + 𝜆𝑗)
We have two points now: 𝑘1 = 𝑘𝑔(𝜆opt) and 𝑘2 = 𝑘𝑔(𝜆opt + 1). To find 𝑓𝑛,𝑘 , the
answer to the task, we need to interpolate 𝑓𝑛,𝑗 on this interval.

This can be done since all differences (𝑓𝑛,𝑘2 − 𝑓𝑛,𝑘2+1), (𝑓𝑛,𝑘2+1 −𝑓𝑛,𝑘2+2), …, (𝑓𝑛,𝑘1−1, 𝑓𝑛,𝑘1) are equal.

AACPP WiSe 2025/26 Mateusz Gienieczko

Aliens – parameter search

For Aliens, the penalty 𝜆 is given to each additional photo:𝑔𝑖 = min0≤𝑥≤𝑛 ̃𝑓𝑖,𝑥 = min0≤𝑥≤𝑛(𝑓𝑖,𝑥 + 𝜆𝑗)
𝑔𝑖 = min0≤𝑥≤𝑛 𝑔𝑥 + (𝑟𝑖−1 − 𝑙𝑥 + 1)2 − max(0, 𝑟𝑥−1 − 𝑙𝑥 + 1)2 + 𝜆

This can be computed using the convex hull trick in 𝒪(𝑛).
Adding ternary search and sorting the segments from the start gives us𝒪(𝑛 log 𝑚 + 𝑛 log 𝑛).
AACPP WiSe 2025/26 Mateusz Gienieczko

x ̅

Aliens – parameter search

For Aliens, the penalty 𝜆 is given to each additional photo:𝑔𝑖 = min0≤𝑥≤𝑛 ̃𝑓𝑖,𝑥 = min0≤𝑥≤𝑛(𝑓𝑖,𝑥 + 𝜆𝑗)
𝑔𝑖 = min0≤𝑥≤𝑛 𝑔𝑥 + (𝑟𝑖−1 − 𝑙𝑥 + 1)2 − max(0, 𝑟𝑥−1 − 𝑙𝑥 + 1)2 + 𝜆

This can be computed using the convex hull trick in 𝒪(𝑛).
Adding ternary search and sorting the segments from the start gives us𝒪(𝑛 log 𝑚 + 𝑛 log 𝑛).
AACPP WiSe 2025/26 Mateusz Gienieczko

DREI 4,93649,813
7searchoverZEO813

a
2 3 4 5 6 7 8 9

1 2

5

D
2 3

EEE.E.EE EE
424 2

8
9

Er EHE 94820 40193

gg 9240121 4 1
KLUO 1 3 7oz 40

Aliens – parameter search

For Aliens, the penalty 𝜆 is given to each additional photo:𝑔𝑖 = min0≤𝑥≤𝑛 ̃𝑓𝑖,𝑥 = min0≤𝑥≤𝑛(𝑓𝑖,𝑥 + 𝜆𝑗)
𝑔𝑖 = min0≤𝑥≤𝑛 𝑔𝑥 + (𝑟𝑖−1 − 𝑙𝑥 + 1)2 − max(0, 𝑟𝑥−1 − 𝑙𝑥 + 1)2 + 𝜆

This can be computed using the convex hull trick in 𝒪(𝑛).
Adding ternary search and sorting the segments from the start gives us𝒪(𝑛 log 𝑚 + 𝑛 log 𝑛).
AACPP WiSe 2025/26 Mateusz Gienieczko

DREI 4,936149,813
7searchover70813

n 23 4 56

71 p
61

1 2
DJ 2 Eff no interpolation

3g
84 DP15,3 951716116.3824

