Aliens DP Solution - Recap

 $DP_{i,j} := \text{minimum cost to cover first } i \text{ points with at most } j \text{ photos.}$

Base Cases

$$DP_{0,j} = 0,$$

$$DP_{i,1} = (r_{i-1} - r_0 + 1)^2$$

Transition

$$DP_{i,j} = \min_{x < i} \left[DP_{x,j-1} + (r_{i-1} - l_x + 1)^2 - \left(\max(0, r_{x-1} - l_x + 1) \right)^2 \right]$$

Complexity

$$O(kn^2)$$

Aliens DP Solution - Recap

 $DP_{i,j} := \text{minimum cost to cover first } i \text{ points with at most } j \text{ photos.}$

Segments (i=3):

[0,1], [1,3], [3,4]

We produce the following

DP table:

j∖i	1	2	3
1	4	16	25
2	4	12	19
3	4	12	15

•			•		
	•				
			•		

Complexity: $O(kn^2)$

Knuth's optimization

- Knuth's optimization can bring this down to O(n²) total (or O(nk) in general).
- Our transition function: $DP_{i,j} = \min_{x < i} \left[DP_{x,j-1} + (r_{i-1} l_x + 1)^2 \left(\max(0, r_{x-1} l_x + 1) \right)^2 \right]$ can be rewritten as follows:

$$f_{i,j} = \min_{0 \le x \le j} f_{i-1,x} + \cos t_{x,i}$$
$$\cos t(x,i) = (r_{i-1} - l_x + 1)^2 - (\max(0, r_{x-1} - l_x + 1))^2$$

Knuth optimization applies when the cost function satisfies two properties (for $a \le b \le c \le d$):

- Monotonicity on lattice of intervals (MLI): cost(b,c) ≤ cost(a,d)
- Quadrangle inequality (QI): $cost(a,c) + cost(b,d) \le cost(b,c) + cost(a,d) \ \forall \ a \le b \le c \le d$

These ensure a convex-like structure on the DP surface.

Both of MLI and QI are easy to prove for the Aliens problem.

Knuth's optimization

Let's define another array in addition to the dp array - opt[N][N]. Define opt[i][j] as the maximum (or minimum) value of k for which dp[i][j] is minimized in the dp transition.

$$\left[\operatorname{opt}[i][j] = \arg\min_{i \le k < j} \left(DP[i][k] + DP[k+1][j] \right) \right]$$

The key to Knuth's optimization, and several other optimizations in DP is the following inequality:

$$\left[\operatorname{opt}[i][j-1] \le \operatorname{opt}[i][j] \le \operatorname{opt}[i+1][j]\right]$$

So instead of checking all t in [0, i-1], we only check between opt[i][j-1] and opt[i+1][j]. This shrinks the search range dynamically.

Why O(n²)?

When we move i forward, we keep a pointer $\mathbf{x}_{\mathbf{opt}}$ that tracks the best split.

- Every time we compare x_opt and x_opt+1,
 - we move x_opt forward only when the cost gets smaller.
 - Because the cost is convex in x, once it increases, it will keep increasing.

x_opt only moves forward at **most n-1** times in total.

So across the whole layer:

- Each i does one comparison to check the next,
- Each forward move adds one comparison,
 giving ≤ 2n comparisons total hence O(n) per layer.

Knuth Summary

Property	Requirement
Applies when	cost satisfies QI and MLI
Guarantees	$opt[i][j-1] \le opt[i][j] \le opt[i+1][j]$
Per layer	O(n)
Total	$O(nk) \rightarrow O(n^2)$ if $k = n$

Divide and Conquer

- Sometimes we can't prove the full quadrangle inequality.
- The cost function might not be enough for Knuth, but we can still show that **opt[i] is** monotone.
- In that case, we can use Divide and Conquer optimization.

```
fn solve(j, i_lo, i_hi, x_lo, x_hi)
  if i_lo > i_hi return
  let i_mid = (i_hi + i_lo) / 2
  // find DP[i_mid, j], opt[i_mid, j] like before
  solve(j, i_lo, i_mid - 1, x_lo, opt[i_mid, j])
  solve(j, i_mid + 1, i_hi, opt[i_mid, j], x_hi)
```


Divide and Conquer

- We recursively compute midpoints.
- We use the known opt boundaries to limit our search.
- Each level does O(n) total work.
- The recursion has $O(\log n)$ depth $\rightarrow O(n \log n)$ per layer.

```
fn solve(j, i_lo, i_hi, x_lo, x_hi)
  if i_lo > i_hi return
  let i_mid = (i_hi + i_lo) / 2
  // find DP[i_mid, j], opt[i_mid, j] like before
  solve(j, i_lo, i_mid - 1, x_lo, opt[i_mid, j])
  solve(j, i_mid + 1, i_hi, opt[i_mid, j], x_hi)
```


Summary

Property	Requirement	Per Layer	Requirement	
Naive	None	O(n²)	O(n³)	
Divide & Conquer	Monotone opt	O(n log n)	O(n² log n) O(n²)	
Knuth	Monotone opt + QI	O(n)		