Aliens DP Solution - Recap

DP, ; := minimum cost to cover first ¢ points with at most j photos.

Base Cases

DP()J' — O,
DPi’l = (7“@'_1 —To —|— 1)2

Transition

DPi,jZI?}?[DP:E, i—14(7_1—1,+1)*—(max(0, Tx—l_lil?+1))2]

Complexity
O(kn?)



Aliens DP Solution - Recap

DP, ; := minimum cost to cover first ¢ points with at most j photos.

Segments (i=3):

[0,1], [1,3], [3,4]

We produce the following °

DP table: N1 2 3

1 4 16 25
2 4 12 19

3 4 12 15

Complexity: O(kn?)



Knuth’s optimization

e Knuth’s optimization can bring this down to O(n?) total (or O(nk) in general).
e Our fransition function: DPZ',FIE}E?[DP%j—1+(7“i_1—lx+1)2—(max(ov Tx—l_lwﬂ))?}
can be rewritten as follows:

fi’j:()rgnq}gj Jio1.tcosta

cost(x,i)=(r;_—l,+1)*—(max(0, rwl—lw—i—l))Q
Knuth optimization applies when the cost function satisfies two properties (fora < b = ¢ < d):
e Monotonicity on lattice of intervals (MLI): cost(b,c) < cost(a,d)
e Quadrangle inequality (QI): cost(a,c)+cost(b,d) <cost(b,c)+cost(a,d) V a<b<c<d
These ensure a convex-like structure on the DP surface.

Both of MLI and QI are easy to prove for the Aliens problem.



Knuth’s optimization TUTI

Let's define another array in addition to the dp array - opt[N][N]. Define opt[i][j] as the maximum

(or minimum) value of k for which dp[i][j] is minimized in the dp transition.
[optlilljl=arg win (DPLi]lk}+DPk+1][])]

The key to Knuth's optimization, and several other optimizations in DP is the following inequality:
Lopt[d][j—1] <opt[i][j] <opt[i+1][/]]

So instead of checking all t in [0, i-1], we only check between opt[i][j-1] and opt[i+1][j].
This shrinks the search range dynamically.



Why O(n?)?

When we move i forward, we keep a pointer x_opt that tracks the best split.
e Every time we compare x_opt and x_opt+1,
o we move x_opt forward only when the cost gets smaller.
o Because the cost is convex in x, once it increases, it will keep increasing.

x_opt only moves forward at most n-1 times in total.

So across the whole layer:

e Each i does one comparison to check the next,
e Each forward move adds one comparison,
giving = 2n comparisons total — hence O(n) per layer.



Knuth Summary

Property Requirement

Applies when cost satisfies QI and MLI
Guarantees opt[i][j-1] = opt[il[j] = opt[i+1][j]
Per layer O(n)

Total O(nk) - O(n®) ifk =n



TUT

Divide and Conquer

Sometimes we can’t prove the full quadrangle inequality.

e The cost function might not be enough for Knuth, but we can still show that opt[i] is
monotone.

e Inthat case, we can use Divide and Conquer optimization.

fn solve(j, i_lo, i_hi, x_lo, x_hi)
if i_lo > i_hi return
let i_mid = (i_hi + i_lo) / 2
// find DP[i_mid, j], optl[i_mid, j] like before
solve(j, i_lo, i_mid - 1, x_lo, opt[i_mid, jl)
solve(j, i_mid + 1, i_hi, opt[i_mid, jl, x_hi)



Divide and Conquer

We recursively compute midpoints.

We use the known opt boundaries to limit our search.
Each level does O(n) total work.

The recursion has O(log n) depth — O(n log n) per layer.

fn solve(j, i_lo, i_hi, x_lo, x_hi)
if i_lo > i_hi return
let i_mid = (i_hi + i_lo) / 2
// find DP[i_mid, j], optl[i_mid, j] like before
solve(j, i_lo, i_mid - 1, x_lo, opt[i_mid, jl)
solve(j, i_mid + 1, i_hi, opt[i_mid, jl, x_hi)



Summary

Property
Naive
Divide & Conquer

Knuth

Requirement
None
Monotone opt

Monotone opt + QI

Per Layer
o(n?»
O(n log n)
Oo(n)

Requirement
o(n?)
O(n? log n)

o(n?»



