
Base Cases

Transition

Complexity

Aliens DP Solution - Recap

1



Segments (i=3):
[0,1], [1,3], [3,4]

We produce the following
DP table:

Complexity:

 

Aliens DP Solution - Recap

2

j\i 1 2 3

1 4 16 25

2 4 12 19

3 4 12 15



● Knuth’s optimization can bring this down to O(n²) total (or O(nk) in general).
● Our transition function: 

can be rewritten as follows: 

Knuth optimization applies when the cost function satisfies two properties (for a ≤ b ≤ c ≤ d):
● Monotonicity on lattice of intervals (MLI): cost(b,c) ≤ cost(a,d) 
● Quadrangle inequality (QI): 

These ensure a convex-like structure on the DP surface.

Both of MLI and QI are easy to prove for the Aliens problem.

Knuth’s optimization



Let's define another array in addition to the dp array - opt[N][N]. Define opt[i][j] as the maximum 
(or minimum) value of k for which dp[i][j] is minimized in the dp transition.

The key to Knuth's optimization, and several other optimizations in DP is the following inequality:

So instead of checking all t in [0, i-1], we only check between opt[i][j-1] and opt[i+1][j].
This shrinks the search range dynamically.

Knuth’s optimization



When we move i forward, we keep a pointer x_opt that tracks the best split.
● Every time we compare x_opt and x_opt+1,

○ we move x_opt forward only when the cost gets smaller.
○ Because the cost is convex in x, once it increases, it will keep increasing.

x_opt only moves forward at most n−1 times in total.

So across the whole layer:

● Each i does one comparison to check the next,
● Each forward move adds one comparison,

 giving ≤ 2n comparisons total — hence O(n) per layer.

Why O(n²)?



Knuth Summary

Property Requirement

Applies when cost satisfies QI and MLI

Guarantees opt[i][j-1] ≤ opt[i][j] ≤ opt[i+1][j]

Per layer O(n)

Total O(nk) → O(n²) if k = n



● Sometimes we can’t prove the full quadrangle inequality. 
● The cost function might not be enough for Knuth, but we can still show that opt[i] is 

monotone.
● In that case, we can use Divide and Conquer optimization.

Divide and Conquer



● We recursively compute midpoints.
● We use the known opt boundaries to limit our search.
● Each level does O(n) total work.
● The recursion has O(log n) depth → O(n log n) per layer. 

Divide and Conquer



Summary

Property Requirement Per Layer Requirement

Naive None O(n²) O(n³)

Divide & Conquer Monotone opt O(n log n) O(n² log n)

Knuth Monotone opt + QI O(n) O(n²)


