
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 3: Greedy or Dynamic?

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.05.13

AACPP 2025 Mateusz Gienieczko

First round – survey

AACPP 2025 Mateusz Gienieczko

Second round

Second deadline – 27.05.2025, 10:00 AM.

No class on 20th due to SVV.

AACPP 2025 Mateusz Gienieczko

TOY – Toy Ordering Plan

AACPP 2025 Mateusz Gienieczko

TOY – Toy Ordering Plan

Very simple.

AACPP 2025 Mateusz Gienieczko

TOY – Toy Ordering Plan

Very simple.

Take the stores that have any day where the number of toys is at least 𝑛.

AACPP 2025 Mateusz Gienieczko

TOY – Toy Ordering Plan

Very simple.

Take the stores that have any day where the number of toys is at least 𝑛.

Select the one with lowest price and return that times 𝑛.

AACPP 2025 Mateusz Gienieczko

TOY – Toy Ordering Plan

Very simple.

Take the stores that have any day where the number of toys is at least 𝑛.

Select the one with lowest price and return that times 𝑛.

Time: 𝒪(𝑠𝑑). Can be done in 𝒪(1) memory but no need.

AACPP 2025 Mateusz Gienieczko

TOY – Toy Ordering Plan

Very simple.

Take the stores that have any day where the number of toys is at least 𝑛.

Select the one with lowest price and return that times 𝑛.

Time: 𝒪(𝑠𝑑). Can be done in 𝒪(1) memory but no need.

Subtasks are a lie.

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

One way of looking at it: efficiently distribute 𝑘 breaks to minimize energy
costs.

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

One way of looking at it: efficiently distribute 𝑘 breaks to minimize energy
costs.

However.

If we fix starting 𝑒 we can check if it’s enough in 𝒪(𝑛).

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Simulate by keeping the current energy level.

If we can jump, we jump.

If not, we take a break and continue.

Either we reach the end or run out of breaks.

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Subtask 1: 𝑛 ≤ 250, 𝑒𝑖 ≤ 103. So 𝐸 = ∑𝑖 𝑒𝑖 ≤ 250 000.

Obviously the result is in [1, 𝐸]. So we can go through all possible starting
values and check if they work.

Takes 𝑂(𝑛𝐸) time.

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Subtask 2 – we’ll talk about it later (it’s DP!).

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Subtask 3 – all energy costs are equal to some 𝑒.

You can decide the required energy with some math in 𝒪(1).

If 𝑘 + 1 | 𝑛 then we can have 𝑘 + 1 equal jump series of length 𝑙 = 𝑛
𝑘+1 .

We need 𝑙𝑒 + 𝑘 starting energy.

If 𝑘 + 1 | 𝑛 then we need to do rem = 𝑛 − 𝑙(𝑘 + 1) series of length 𝑙 + 1.

This requires 𝑒 − 𝑘 + rem − 1 additional energy (if positive).

AACPP 2025 Mateusz Gienieczko

BTW

You can combine subtasks.

E.g.

let input = Input::read();

if input.n <= 250 {

 run_brute_force(&input);

} else {

 run_special_case(&input);

}

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Model solution – binary-search through the result.

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Model solution – binary-search through the result.

Monotonicity – if 𝑒 energy is enough then obviously 𝑒 + 1 is also enough.

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Model solution – binary-search through the result.

Monotonicity – if 𝑒 energy is enough then obviously 𝑒 + 1 is also enough.

We already have a 𝒪(𝑛) check for a given energy level.

So 𝒪(𝑛 log 𝐸) time and

AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Manual bin-search (Rust).

let mut lower_bound: u64 = 1;

let mut upper_bound: u64 = input.jumps.iter().sum();

while lower_bound < upper_bound {

 let mid = lower_bound.midpoint(upper_bound);

 if is_enough(&input, mid) {

 upper_bound = mid;

 } else {

 lower_bound = mid + 1;

 }

}
AACPP 2025 Mateusz Gienieczko

ZOO – Zoomies

Manual bin-search (C++).

uint64_t midpoint(uint64_t x, uint64_t y) {

 return ((x ^ y) >> 1) + (x & y);

}

while (lower_bound < upper_bound) {

 uint64_t mid = midpoint(lower_bound, upper_bound);

 if (is_enough(input, mid)) {

 upper_bound = mid;

 } else {

 lower_bound = mid + 1;

 }

}
AACPP 2025 Mateusz Gienieczko

Recall the plan

• Greedy and dynamic programming (DP) ← we are here
• Trees
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees
• Number theory
• String algorithms (KMP, tries, suffix tables)

Some problems can’t even be solved efficiently (NP-completeness)
AACPP 2025 Mateusz Gienieczko

Optimisation problems

Make a number of decisions creating a strategy that produces an optimal
(minimal, maximal, …) result.

Can often be solved with dynamic programming.

Some can be solved greedily.

AACPP 2025 Mateusz Gienieczko

Greedy

During each step make the decision that appears the best (locally optimal).

Classic example: task assignment.

AACPP 2025 Mateusz Gienieczko

Greedy example

Dexter is a very busy cat. During the day he has many (𝑛) activities he can choose
to do like napping, running, sleeping, eating, resting, etc. Each activity has a start
time 𝑠𝑖 and end time 𝑓𝑖. Some of them conflict with each other (times overlap), and
there’s only one Dexter who can do only one activity at a time. Help him choose
the maximum possible number of activities without any conflicts!

11

1 3 0 5 3 5 6 8 8 2 12

4 5 6 7 9 9 10 11 12 14 16

4

1 4 8 11

AACPP 2025 Mateusz Gienieczko

Greedy example

Once we choose an activity we can’t choose anything until it ends.

Intuition: we want to choose the activity that limits as least, i.e. ends earliest.

Turns out it’s true!

AACPP 2025 Mateusz Gienieczko

Greedy solution

Sort the activities by their end time.

Set time to 𝑡 = 0.

Choose the first activity that starts at or after 𝑡 .

Set 𝑡 to its ending time and continue.

𝒪(𝑛 log 𝑛) for sorting (𝒪(𝑛) if input is sorted).

AACPP 2025 Mateusz Gienieczko

Greedy solution

Another formulation: let 𝑆𝑖 be the solution for the problem assuming we can
only schedule activities that start after 𝑖.

Two crucial properties of greedy solutions:

• Optimal problem substructure. Here if we choose some activity 𝑎 ending at 𝑗
then we can use 𝑆𝑗 as the optimal subsolution, i.e. pick 𝑆𝑗 ∪ {𝑎}.

• The greedy choice always leads to optimal results. Here minimal 𝑗 gives
maximal 𝑆𝑗 .

AACPP 2025 Mateusz Gienieczko

Greedy solution

Another formulation: let 𝑆𝑖 be the solution for the problem assuming we can
only schedule activities that start after 𝑖.

Two crucial properties of greedy solutions:

• Optimal problem substructure. Here if we choose some activity 𝑎 ending at 𝑗
then we can use 𝑆𝑗 as the optimal subsolution, i.e. pick 𝑆𝑗 ∪ {𝑎}.

• The greedy choice always leads to optimal results. Here minimal 𝑗 gives
maximal 𝑆𝑗 .

BTW only 𝑆𝑖 where 𝑖 = 𝑓𝑘 for some activity 𝑎𝑘 are interesting.

AACPP 2025 Mateusz Gienieczko

Greedy – proving correctness

Greedy algorithms are naturally inductive.

Usual proof strategy – replacement.

Show that if we have an optimal solution then it can just as well be the greedy
one.

AACPP 2025 Mateusz Gienieczko

Greedy – proving correctness

Solution for 𝑆max 𝑓 is trivially empty.

Assume 𝑆𝑖 is optimal for 𝑖 > 𝑛 and in 𝑆𝑛 the first activity to end is 𝑎 ending at 𝑗.
Then there exists optimal 𝑆′𝑛 = {𝑎} ∪ 𝑆𝑗 (and thus |𝑆𝑛| = |𝑆𝑗 | + 1).

Moreover, if there exists 𝑎′ that starts at or after 𝑛 and ends at 𝑗′ ≤ 𝑗 then {𝑎′} ∪ 𝑆𝑗′
is also optimal, in particular 𝑆𝑗 is also optimal for 𝑗′.

AACPP 2025 Mateusz Gienieczko

Greedy – other examples

Shortest paths in a graph.

Shortest paths in a weighted graph (with non-negative edges).

Huffman coding.

Special cases of graph colouring.

AACPP 2025 Mateusz Gienieczko

Greedy – other examples

Shortest paths in a graph.

Shortest paths in a weighted graph (with non-negative edges).

Huffman coding.

Special cases of graph colouring.

Continuous knapsack problem.

AACPP 2025 Mateusz Gienieczko

Greedy – continuous knapsack problem

Dexter got his paws on the stash of creamy snacks. He’d love to eat them all, but
his stomach has a fixed capacity 𝑐. Each snack 𝑖 has an amount 𝑎𝑖 and its tastiness
𝑡𝑖. Dexter can eat any integer amount between 0 and 𝑎𝑖 of the snack, and he wants
to maximise the overall tastiness sum.

3 5

1 2 3

6 10 12

24

AACPP 2025 Mateusz Gienieczko

Greedy – continuous knapsack problem

Greedy approach works: order all snacks by their value ratio 𝑡𝑖𝑎𝑖
 and fill up to

capacity.

Here: take all of item 1, 2, and then 2 units of item 3 for a total of 24.

𝒪(𝑛 log 𝑛) for sorting.

AACPP 2025 Mateusz Gienieczko

Sidenote – comparing rationals

No need to use floating-point to work with rational numbers.

Example: comparison for non-negative numbers:

𝑎
𝑏
< 𝑐

𝑑
⇔ 𝑎𝑑 < 𝑐𝑏

AACPP 2025 Mateusz Gienieczko

NOT Greedy – discrete knapsack problem

Dexter got his paws on the stash of crunchy snacks. He’d love to eat them all, but
his stomach has a fixed capacity 𝑐. Each snack 𝑖 has an amount 𝑎𝑖 and its tastiness
𝑡𝑖. Dexter can either eat the whole snack or leave it alone, and he wants to
maximise the overall tastiness sum.

3 5

1 2 3

6 10 12

22

AACPP 2025 Mateusz Gienieczko

NOT Greedy – discrete knapsack problem

A similar greedy approach does not work.

Here item 1 is the most valuable so we would take it, but the optimal solution
does not include it.

This is actually a classic DP problem.

AACPP 2025 Mateusz Gienieczko

Dynamic programming

The name is quite literally a buzzword so don’t worry about it.

We will still be building solutions inductively, but without greedy assumptions.

AACPP 2025 Mateusz Gienieczko

Dynamic programming – discrete knapsack

Let 𝑉𝑘,𝑖 be the optimal value for having 𝑖 capacity remaining after picking from
the first 𝑘 items.

𝑉0,𝑐 = 0

when 𝑖 < 𝑎𝑘 : 𝑉𝑘,𝑖 = 𝑉𝑘−1,𝑖; otherwise

𝑉𝑘,𝑖 = max(𝑉𝑘−1,𝑖, 𝑉𝑘−1,𝑖−𝑎𝑘 + 𝑣𝑘)

AACPP 2025 Mateusz Gienieczko

Dynamic programming – top-down

Such formulation naturally leads to a recursive algorithm.

However, naively doing it will lead to an exponential running time due to
recomputation.

Memoisation means remembering all results for previously computed tasks to
be used on demand.

AACPP 2025 Mateusz Gienieczko

Dynamic programming – memoisation

solve_knapsack(k, i)

 if k == 0 { return 0 }

 if memo.contains(k, i) { return memo.get(k, i) }

 let res = solve_knapsack(k - 1, i)

 if a[k] <= i {

 res = max(res, solve_knapsack(k - 1, i - a[k]) + v[k])

 }

 memo.set(k, i, res)

 return res

}

AACPP 2025 Mateusz Gienieczko

Dynamic programming – bottom-up

Usually there is an iterative method of filling up the DP array.

𝑖\𝑘 𝟎 𝟏 𝟐 𝟑
𝟎
𝟏
𝟐
𝟑
𝟒
𝟓 0

AACPP 2025 Mateusz Gienieczko

Dynamic programming – bottom-up

Usually there is an iterative method of filling up the DP array.

𝑖\𝑘 𝟎 𝟏 𝟐 𝟑
𝟎
𝟏
𝟐
𝟑
𝟒 6
𝟓 0 0

AACPP 2025 Mateusz Gienieczko

Dynamic programming – bottom-up

Usually there is an iterative method of filling up the DP array.

𝑖\𝑘 𝟎 𝟏 𝟐 𝟑
𝟎
𝟏
𝟐 16
𝟑 10
𝟒 6 6
𝟓 0 0 0

AACPP 2025 Mateusz Gienieczko

Dynamic programming – bottom-up

Usually there is an iterative method of filling up the DP array.

𝑖\𝑘 𝟎 𝟏 𝟐 𝟑
𝟎 22
𝟏 18
𝟐 16 16
𝟑 10 10
𝟒 6 6 6
𝟓 0 0 0 0

AACPP 2025 Mateusz Gienieczko

Dynamic programming – which to choose?

Subjective opinion: usually recursive is more straight-forward as it follows
directly from the formula.

Iteration tends to be faster, especially if recursion is not tail.

On the other hand, recursion by design visits only reachable states – in the DP
table before all empty cells have to be visited, even though they are useless.

In both cases here we have 𝒪(𝑛𝑐) complexity.

AACPP 2025 Mateusz Gienieczko

Dynamic programming – result recovery

Often tasks ask not only for the optimal value, but the entire solution.

This is usually not hard to recover by recording some additional information in
the DP array (“where did we come from”) and backtracking.

AACPP 2025 Mateusz Gienieczko

Dynamic programming – another example

Dexter loves stick snacks. He’s very picky and enjoys different lengths of sticks
differently. You have a single stick of length 𝑛 and can divide it into any number of
smaller pieces with integral length. How to divide the stick to maximise Dexter’s
total enjoyment?

10

1 5 8 9 10 17 17 20 24 25

27

AACPP 2025 Mateusz Gienieczko

Dynamic programming – another example

When dividing a stick of length 𝑛:
• either don’t divide at all; or
• divide once and use the optimal solution for the two resulting fragments

AACPP 2025 Mateusz Gienieczko

Dynamic programming – another example

When dividing a stick of length 𝑛:
• either don’t divide at all; or
• divide once and use the optimal solution for the two resulting fragments

𝑉𝑘 = max(𝑣𝑘 , max𝑖 𝑉𝑖 + 𝑉𝑘−𝑖)

𝑘 0 1 2 3 4 5 6 7 8 9 10
𝑉𝑘 0 1 5 8 10 13 17 18 22 25 27

𝒪(𝑛2), 𝑛 states each computed in 𝒪(𝑛).

AACPP 2025 Mateusz Gienieczko

Dynamic programming – yet another

Zoomies can be solved with DP! (Subtask 2)

DP[𝑏][𝑓][𝑡] – how much energy is required to complete all jumps between 𝑓
and 𝑡 using 𝑏 breaks.

DP[0][𝑓][𝑡] = ∑𝑓 ≤𝑖≤𝑡 𝑒𝑖

If we break at 𝑓 < 𝑗 < 𝑡 then we pay ∑𝑓 ≤𝑖≤𝑗 𝑒𝑖 + DP[𝑏 − 1][𝑗 + 1][𝑡] + 1.

We can also not break at all for a baseline of DP[𝑏 − 1][𝑓][𝑡].

This is 𝒪(𝑛2𝑘) (the running sum of 𝑒𝑖 is computed on the fly).

AACPP 2025 Mateusz Gienieczko

Dynamic programming – requirements

For DP to be applicable the problem has to have optimal substructure.

To solve a big problem we can use optimal solutions of smaller problems solved
independently.

AACPP 2025 Mateusz Gienieczko

Dynamic programming – correctness

In our two examples we can use DP because of optimal substructure.

Choosing other items up to some capacity that still allows for our current item
is independent.

Splitting two smaller sticks is independent.

Correctness can be easily proven by induction.

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Longest common subsequence of two strings in 𝒪(𝑛𝑚).

𝑏 𝑑 𝑐 𝑎 𝑏 𝑎
0 0 0 0 0 0 0

𝑎 0
𝑏 0
𝑐 0
𝑏 0
𝑑 0
𝑎 0
𝑏 0

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Longest common subsequence of two strings in 𝒪(𝑛𝑚).

𝑏 𝑑 𝑐 𝑎 𝑏 𝑎
0 0 0 0 0 0 0

𝑎 0 0 0 0 1 1 1
𝑏 0 1 1 1 1 2 2
𝑐 0 1 1 2 2 2 2
𝑏 0 1 1 2 2 3 3
𝑑 0 1 2 2 2 3 3
𝑎 0 1 2 2 3 3 4
𝑏 0 1 2 2 3 4 4

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Longest common subsequence of two strings in 𝒪(𝑛𝑚).

𝑏 𝑑 𝑐 𝑎 𝑏 𝑎
0 0 0 0 0 0 0

𝑎 0 0 ↑ 0 ↑ 0 ↑ 1 ↖ 1 ← 1 ↖
𝑏 0 1 ↖ 1 ← 1 ← 1 ↑ 2 ↖ 2 ←
𝑐 0 1 ↑ 1 ↑ 2 ↖ 2 ← 2 ↑ 2 ↑
𝑏 0 1 ↖ 1 ↑ 2 ↑ 2 ↑ 3 ↖ 3 ←
𝑑 0 1 ↑ 2 ↖ 2 ↑ 2 ↑ 3 ↑ 3 ↑
𝑎 0 1 ↑ 2 ↑ 2 ↑ 3 ↖ 3 ↑ 4 ↖
𝑏 0 1 ↖ 2 ↑ 2 ↑ 3 ↑ 4 ↖ 4 ↑

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Longest common subsequence of two strings in 𝒪(𝑛𝑚).

𝑏 𝑑 𝑐 𝑎 𝑏 𝑎
0 0 0 0 0 0 0

𝑎 0 0 ↑ 0 ↑ 0 ↑ 1 ↖ 1 ← 1 ↖
𝑏 0 1 ↖ 1 ← 1 ← 1 ↑ 2 ↖ 2 ←
𝑐 0 1 ↑ 1 ↑ 2 ↖ 2 ← 2 ↑ 2 ↑
𝑏 0 1 ↖ 1 ↑ 2 ↑ 2 ↑ 3 ↖ 3 ←
𝑑 0 1 ↑ 2 ↖ 2 ↑ 2 ↑ 3 ↑ 3 ↑
𝑎 0 1 ↑ 2 ↑ 2 ↑ 3 ↖ 3 ↑ 4 ↖
𝑏 0 1 ↖ 2 ↑ 2 ↑ 3 ↑ 4 ↖ 4 ↑

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Tasks of the form “find a path from top-left to bottom-right optimising some
value”.

🐈 🐈

🐈 🐈

🐈🐈 🐈

🐈🐈

🐈 🐈

🐈 🐈🐈

🐈 🐈

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Tasks of the form “find a path from top-left to bottom-right optimising some
value”.

🐈 🐈

🐈 🐈

🐈🐈 🐈

🐈🐈

🐈 🐈

🐈 🐈🐈

🐈 🐈

0 0 1 1 2 2 2

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Tasks of the form “find a path from top-left to bottom-right optimising some
value”.

🐈 🐈

🐈 🐈

🐈🐈 🐈

🐈🐈

🐈 🐈

🐈 🐈🐈

🐈 🐈

0 0 1 1 2 2 2
0 1 1 1 2 2 3

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Tasks of the form “find a path from top-left to bottom-right optimising some
value”.

🐈 🐈

🐈 🐈

🐈🐈 🐈

🐈🐈

🐈 🐈

🐈 🐈🐈

🐈 🐈

0 0 1 1 2 2 2
0 1 1 1 2 2 3
1 2 2 2 2 3 3
1 2 2 3 4 4 4
1 2 2 4 4 4 5
2 2 2 4 5 6 6
2 2 2 5 5 7 7

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

Tasks of the form “find a path from top-left to bottom-right optimising some
value”.

🐈 🐈

🐈 🐈

🐈🐈 🐈

🐈🐈

🐈 🐈

🐈 🐈🐈

🐈 🐈

0 0 1 1 2 2 2
0 1 1 1 2 2 3
1 2 2 2 2 3 3
1 2 2 3 4 4 4
1 2 2 4 4 4 5
2 2 2 4 5 6 6
2 2 2 5 5 7 7

AACPP 2025 Mateusz Gienieczko

Dynamic programming – other examples

LCS-likes (e.g. editing distance)

Optimal ordering of matrices to multiply.

Join ordering.

Counting combinations.

Shortest paths in graphs with negative weights.

Longest path in a DAG.

AACPP 2025 Mateusz Gienieczko

NOT optimal substructure

Shortest paths in a graph have optimal substructure.

For the shortest path 𝑣 ⇝ 𝑢 pick a middle vertex 𝑤 and consider 𝑣 ⇝ 𝑤 ⇝ 𝑢.

Picking the shortest path 𝑣 ⇝ 𝑤 and 𝑤 ⇝ 𝑢 works.

For longest simple paths this substructure does not exist.

The longest paths 𝑣 ⇝ 𝑤 and 𝑤 ⇝ 𝑢 might share vertices which cannot be
picked again, so they’re not independent.

This problem is actually NP-complete.

AACPP 2025 Mateusz Gienieczko

That being said…

Most NP-complete problems have a natural DP characterisation, but the state
space is exponential.

E.g. in the longest-path case consider all subsets of vertices to pick to the path.

AACPP 2025 Mateusz Gienieczko

See you in two weeks

SLI and TES: 27.05.2025,
10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 3: Greedy or Dynamic?

	First round – survey
	Second round
	TOY – Toy Ordering Plan
	ZOO – Zoomies
	ZOO – Zoomies
	ZOO – Zoomies
	ZOO – Zoomies
	ZOO – Zoomies
	BTW
	ZOO – Zoomies
	ZOO – Zoomies
	ZOO – Zoomies
	Recall the plan
	Optimisation problems
	Greedy
	Greedy example
	Greedy example
	Greedy solution
	Greedy solution
	Greedy – proving correctness
	Greedy – proving correctness
	Greedy – other examples
	Greedy – continuous knapsack problem
	Greedy – continuous knapsack problem
	Sidenote – comparing rationals
	NOT Greedy – discrete knapsack problem
	NOT Greedy – discrete knapsack problem
	Dynamic programming
	Dynamic programming – discrete knapsack
	Dynamic programming – top-down
	Dynamic programming – memoisation
	Dynamic programming – bottom-up
	Dynamic programming – bottom-up
	Dynamic programming – bottom-up
	Dynamic programming – bottom-up
	Dynamic programming – which to choose?
	Dynamic programming – result recovery
	Dynamic programming – another example
	Dynamic programming – another example
	Dynamic programming – yet another
	Dynamic programming – requirements
	Dynamic programming – correctness
	Dynamic programming – other examples
	Dynamic programming – other examples
	Dynamic programming – other examples
	Dynamic programming – other examples
	Dynamic programming – other examples
	Dynamic programming – other examples
	Dynamic programming – other examples
	Dynamic programming – other examples
	Dynamic programming – other examples
	Dynamic programming – other examples
	NOT optimal substructure
	That being said…
	See you in two weeks

