
24

Cloud-Based Data Processing

Distributed Data: Partitioning

Jana Giceva



 What are the benefits of replication?

 What are the challenges?

 In leader-based replication, the leader sends a replication log to its followers. 

What are different ways to implement it?

 What must one be careful of when issuing the read requests to the followers?

 What is leaderless replication?

 How is it implemented?

 Give an example of a quorum.

Replication 

25



 There are two common ways data is distributed across multiple nodes.

 Replication

 Keeps a copy of the same data on different nodes (potentially different locations).

 Provides redundancy – If some nodes are unavailable, others can continue serving requests.

 Reduces latency especially for high load or wide distribution of users across the globe.

 Partitioning

 Split the big dataset into smaller subsets called partitions.

 Each partition placed on a separate node.

 One can combine both replication and partitioning!

Replication vs. Partitioning

26



Partitioning



 For very large datasets, or very high throughput, we need to break the data up into partitions.

 Q: Why?

 Clarifying terminology:

 What we call a partition here is called a shard in MongoDB, Elasticsearch, and SolrCloud; region in 

Hbase, a tablet in BigTable, a vnode in Cassandra and Riak, and a vBucket in Couchbase.

 Partitions are defined in such a way that a piece of data belongs to exactly one partition.

Partitioning

28



 Improve scalability

 Different partitions can be placed on different nodes in a shared nothing cluster

 Improve performance

 Data operations on each partition work on smaller data volume

 Operations that affect more than one partition can run in parallel

 Improve security

 Can separate sensitive and non-sensitive data into different partitions and 

apply different security controls to the sensitive data

 Improve availability

 Avoid a single point of failure. If one partition becomes unavailable, the others are still intact.

 Allows better customization

Why partition data?

29



 Horizontal partition (sharding):

 Each partition is a separate data store, but all partitions have the same schema

 Each partition is known as a shard and holds a specific subset of the data

 e.g., all the orders for a specific set of customers

 Vertical partitioning:

 Each partition holds a subset of the fields for items in the data store

 e.g., frequently accessed fields, may be placed in one vertical partition and 

less frequently accessed fields in another.

 Functional partitioning:

 Data is aggregated according to how it is used by each bounded context in the system

 e.g., An e-commerce might store invoice data in one partition and product inventory data in another

Designing partitions

30



 Example horizontal partitioning or sharding

Horizontal partitioning (sharding)

31

Product inventory data is divided into 

shards based on the product key. 

Each shard holds the data for a cont.

range of shard keys (A-G and H-Z)

Spread the load over more nodes, to 

reduce contention and response time.



 The most important factor is the choice of sharding key.

 Q: What’s should we optimize for with the sharding key?

 Goal is 

 Not necessarily to have the shards the same size, but

 to spread the data and query load evenly across the nodes.

 Q: What if the partitioning is not fair?

 If the partitioning is unfair, some partitions will have more data or queries, we call it skewed.

 A partition with disproportionally high load is called a hot spot.

Horizontal partitioning (sharding)

32



Horizontal Partitioning strategies

33

 by Key Range

 Assign a continuous range of keys to each partition.

 The range of keys are not necessarily evenly spaced, 

because your data may not be evenly distributed.

BigTable, Hbase, RethinkDB, and MongoDB before v2.4

 Advantage:

 Within each partition we can keep the keys in sorted order 

 range scans are fast and easy

 Can fetch several related records in one query

 Disadvantage:

 Certain access patterns can lead to hot spots



Horizontal Partitioning strategies II

34

 by Hash of Key

 hash a key to determine the partition

 a partition for a range of hashes

 if a key’s hash value belongs to a 

partition’s range then the key is placed

in that partition.

 Advantage:

 No problem with skew and hot spots (overstatement, we may still have issues, but they are rare)

 Disadvantage:

 No longer easy to do efficient range queries.

 e.g., range queries on the primary key are not supported by Riak, Couchbase or Voldemort.



 Rebalancing is 

often necessary

 Strategies of rebalancing:

 Q: How not to do it? 

 Hash mod N.

 If the number of nodes N changes, most of the keys will need to be moved from one node to another.

Rebalancing partitions

35



 Rebalancing is often necessary

 Strategies of rebalancing:

 Q: Can you think of a better way?

 Fix the number of partitions P so that P >> N

 If a node is removed/added to the cluster, 

only a few (entire) partitions need to be moved.

 The number of partitions remains the same, and the assignment of keys to partitions is not changed.

 Q: What happens when a partition’s size exceeds the limit?

 split it into two (like in a B-tree).

 Dynamic partitioning

 Applicable with range and hash partitioning

 Q: How do you ensure proportional load across the nodes?

 Have a fixed number of partitions per node. 

Rebalancing partitions

36



 Open question: when a client wants to make a request, how does it know which node to ask?

 As partitions are rebalanced, the assignment of partitions to nodes changes

 Someone needs to have the top-level overview.

 Many systems rely on a coordination service such as Zookeeper to keep track of cluster meta data. 

 Others use alternatives like gossip protocol among the nodes to disseminate cluster state changes.

Request routing

37

 Three main options:

 The node layer

 The routing tier (or third party)

 The clients

 It is a challenging problem as all

participants need to agree 

requires reaching a consensus.



 The routing tier can subscribe to this information from the ZooKeeper service

Example using ZooKeeper to keep track

38



 Goal to reduce the I/O and performance costs when fetching items that are frequently accessed.

Vertical partitioning

39

 Different properties of an item are stored in 

different partitions.

 One partition holds data that is accessed more 

frequently: product name, description and price

 Another holds inventory data: the stock count 

and the last ordered date.

 Application regularly gets the product name, desc. 

and price when displaying the product details.

 Stock count and last ordered data are commonly 

used together and are more frequently modified.



 Q: Can you think of any other advantages?

 Other advantages:

 Relatively slow moving data can be separated from the more dynamic data

 Slow moving data is a good candidate for an application to cache in memory

 Sensitive data can be stored in a separate partition with additional security control.

 Ideally suited for column-oriented data stores.

Vertical partitioning cont.

40



 When possible to identify a bounded context, 

functional partitioning is a way to improve 

isolation and data access performance.

 Another common use is to separate read-write data 

from read-only data

 This strategy can help reduce data access 

contention across different parts of the system

Functional partitioning

41



 Q: How would you approach partitioning for scalability?

 Analyze the application to understand the data access patterns:

 Result set returned by each query

 The frequency of access

 The inherent latency

 The server-side compute processing requirements.

 Determine the current and future scalability targets, such as data size and workload

 Distribute the data across the partitions to meet the scalability target, choose the right shard key.

 Make sure each node has enough resources to handle the requirements in terms of storage space, 

processing power or network bandwidth.

 Monitor to verify that the data is distributed well and that the partitions can handle the load

 Actual usage does not always match what an analysis predicts

 It may be required to rebalance the partitions

Partitioning for scalability

42



 Q: How would you approach it to improve query performance?

 Query performance can be boosted by using smaller data sets and by running parallel queries.

 Each partition should contain a small proportion of the entire data set.

 Follow these steps to improve the overall query performance of your system/application.

 Examine the application requirements and performance.

 Identify the critical queries that must always perform quickly.

 Monitor the system to detect any queries that perform slowly.

 Find which queries are performed most frequently.

 Partition the data that causes slow performance.

 Consider running queries in parallel across partitions to improve response time.

Partitioning for query performance

43



 Q: How would you use partitioning to improve availability?

 Avoid having the entire dataset does not constitute a single point of failure.

 Consider the following factors that affect availability:

 Identify critical data

 Consider storing critical data in highly available partitions with an appropriate back-up plan

 Establish separate management and monitoring procedures for the different datasets

 Place data that has the same level of criticality in the same partition

 Decide how to manage individual partitions

 If a partition fails, it can be recovered independently

 Partition data by geographical area allows scheduled maintenance at off-peak hours

 Replicate critical data across partitions.

 This strategy can improve availability and performance, but 

can also introduce consistency issues related to replication lag.

Partitioning for better availability

44



 How to partition a secondary index

 Document-partitioned index (local indexes), where the secondary index are stored in the same 

partition as the primary key and value.

 Only a single partition needs to be updated on write, but a read requires scatter/gather across all.

 Term-partitioned index (global indexes), where the secondary indexes are partitioned separately, 

using the indexed values.

 When a document is written, several partitions of the secondary index need to be updated; 

however a read can be served from a single partition.

 Creating materialized views that summarize data to support fast query operations.

 Useful in a partitioned data store if the partitions that contain the data being summarized 

are distributed across multiple sites.

 Parallel Query Execution in presence of partitions

 Distributed Transactions (later in class)

We did not cover…

45



 Partitioning is necessary when data and load volume exceeds a single machine’s capacity.

 The goal is to spread the data and query load evenly across multiple machines, avoiding hotspots.

 Need to be careful when choosing the partitioning scheme so that it is appropriate to the data and 

workload properties, and rebalance it when nodes are added/removed.

 Three main types of partitioning: 

 horizontal, 

 vertical and 

 functional.

 Two main approaches for horizontal partitioning: key range and hash-based.

 Various techniques for rebalancing and routing.

Summary

46



The material covered in this class is mainly based on:

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and 

Maintainable Systems” by Martin Kleppmann (Chapters 5 and 6) (link)

Some information and images were based on material from:

 Microsoft’s Azure Application Architecture Guide 

 Best practices for horizontal, vertical and functional data partitioning (link)

 Data partitioning strategies in various Azure services (link)

 Sharding pattern (link)

References

47

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding

