Cloud-Based Data Processing

Distributed Data: Partitioning

Jana Giceva

Replication

® What are the benéefits of replication?
® What are the challenges?

® In leader-based replication, the leader sends a replication log to its followers.
What are different ways to implement it?

® What must one be careful of when issuing the read requests to the followers?

® What is leaderless replication?
— How is it implemented?
— Give an example of a quorum.

25

Replication vs. Partitioning TLTI

® There are two common ways data is distributed across multiple nodes.

® Replication
— Keeps a copy of the same data on different nodes (potentially different locations).
— Provides redundancy — If some nodes are unavailable, others can continue serving requests.
— Reduces latency especially for high load or wide distribution of users across the globe.

® Partitioning
— Split the big dataset into smaller subsets called partitions.

— Each partition placed on a separate node.

® One can combine both replication and partitioning!

26

Partitioning

Partitioning Tm

® For very large datasets, or very high throughput, we need to break the data up into partitions.
" Q: Why?
® Clarifying terminology:
— What we call a partition here is called a shard in MongoDB, Elasticsearch, and SolrCloud; region in

Hbase, a tablet in BigTable, a vhode in Cassandra and Riak, and a vBucket in Couchbase.

® Partitions are defined in such a way that a piece of data belongs to exactly one partition.

28

Why partition data?

® Improve scalability
— Different partitions can be placed on different nodes in a shared nothing cluster

® Improve performance
— Data operations on each partition work on smaller data volume
— Operations that affect more than one partition can run in parallel

® Improve security
— Can separate sensitive and non-sensitive data into different partitions and
apply different security controls to the sensitive data

® Improve availability

— Avoid a single point of failure. If one partition becomes unavailable, the others are still intact.

® Allows better customization

29

Designing partitions TUTI

® Horizontal partition (sharding):
— Each partition is a separate data store, but all partitions have the same schema
— Each partition is known as a shard and holds a specific subset of the data
— e.g., all the orders for a specific set of customers

® Vertical partitioning:
— Each partition holds a subset of the fields for items in the data store
— e.g., frequently accessed fields, may be placed in one vertical partition and
less frequently accessed fields in another.

® Functional partitioning:

— Data is aggregated according to how it is used by each bounded context in the system
— e.g., An e-commerce might store invoice data in one partition and product inventory data in another

30

Horizontal partitioning (sharding) T

" Example horizontal partitioning or sharding Product inventory data is divided into

R B e S — shards based on the product key.

ARC1 | Arcwelder 250 Amps 2 11900 | 25 Now-2013

BREE Bracket 250mm 45 5.66 18- Mow-2013

T S T G 2 W Each shard holds the data for a cont.

WET4 Wi G 16 13.95 3-Feb-2013

WeTe T Wits T P T 7o T o0 | Sne 200 range of shard keys (A-G and H-2)

N Spread the load over more nodes, to

reduce contention and response time.

A-G Shard

Name Description Stock Price La stOrdered

Description Stock

ARC1 | Arcowelder 250 Amps 2 115.00 | 35-Mow-2013 HOS3 Hose 152" 7 27.50 18-Aug-2013
BRES Bracket 250mm 46 5.66 18-Mov-2013 WGET4 VWids gt Green 16 1399 | 3-Feb-2013
BRED Bracket A00mm 22 =] 1-Jul-2013 WETE Widzet Purple 7B 13.99 31-Mar-2013

31

Horizontal partitioning (sharding)

® The most important factor is the choice of sharding key.
¥ Q: What’s should we optimize for with the sharding key?

— Goal is
— Not necessarily to have the shards the same size, but
— to spread the data and query load evenly across the nodes.

® Q: What if the partitioning is not fair?

— If the partitioning is unfair, some partitions will have more data or queries, we call it skewed.
— A partition with disproportionally high load is called a hot spot.

32

5

Horizontal Partitioning strategies

® by Key Range
— Assign a continuous range of keys to each partition.
— The range of keys are not necessarily evenly spaced,

because your data may not be evenly distributed.
BigTable, Hbase, RethinkDB, and MongoDB before v2.4 /1

Krasnoje

Reti — Solovets
Trudeau — Zywiec

(W Otter — Rethimnon
o
—
-
—
P

(
(
(

Solovyov — Truck

Holderness

=~ Krasnokamsk — Menadra

(w1 Freon — Holderlin
(o Menage — Ottawa

‘é‘

(M Bayeu — Ceanothus
(h Delusion — Frenssen

(- A-ak — Bayes
(w Ceara — Deluc

® Advantage:
— Within each partition we can keep the keys in sorted order

-> range scans are fast and easy
— Can fetch several related records in one query

® Disadvantage:
— Certain access patterns can lead to hot spots

33

Horizontal Partitioning strategies || TUTI

® by Hash of Key “2014-04-19 17:08:10" —» 7,372
. .. "2014-04-1917:08:11" » 18,805
— hash a key to determine the partition 12014-04-19 170812 —» 50,537
— a partition for a range of hashes “2014-04-19 17:08:13" —— 31,579 | ‘
. , *2014-04-1917:08:14" » 62,253
— if a key’s hash value belongs to a “2014-04-19 17:08:15"——» 24,510 l l l
iy f . hash 1 ¥ . .
partition’s range then the key is placed (here: frst 2 bytes , po | p1 | p2 T p3 , pa | ps ’ p6 | p7 l
. .. aof MD5 hash) t - -
in that partition. : 0 16383 32767 49,151 65,535

® Advantage:
— No problem with skew and hot spots (overstatement, we may still have issues, but they are rare)

® Disadvantage:
— No longer easy to do efficient range queries.

— e.g., range queries on the primary key are not supported by Riak, Couchbase or Voldemort.

34

Rebalancing partitions

Before rebalancing (4 nodes in cluster)

® Rebalancing is
often necessary

® Strategies of rebalancing:
® Q: How not to do it?

— Hash mod N.

MNode 0 MNode 1 MNode 2 Node 3

po | pd | p8 [p12|p16 pl|p5|p9 |p13|p17 p2 | p6 |p10[p14|p18 p3 | p7 |p11|p15|p19
pl | p8 | pl2|pla pl | p5 |p13| pl7 p2 | pb |p10 | pl8 p3 | p7 (pll | pl5 pd | p9 [pl4|pl19

Node 0 MNode 1 Node 2 MNode 3 Node 4

After rebalancing (5 nodes in cluster) Legend:

partition remains on the same node

——» partition migrated to another node

— If the number of nodes N changes, most of the keys will need to be moved from one node to another.

35

Rebalancing partitions TUT

® Rebalancing is often necessary

® Strategies of rebalancing:
® Q: Can you think of a better way?

— Fix the number of partitions P so that P >> N
— If a node is removed/added to the cluster,
only a few (entire) partitions need to be moved.
— The number of partitions remains the same, and the assignment of keys to partitions is not changed.

® Q: What happens when a partition’s size exceeds the limit?
— split it into two (like in a B-tree).
— Dynamic partitioning
— Applicable with range and hash partitioning

® Q: How do you ensure proportional load across the nodes?

— Have a fixed number of partitions per node. 36

Request routing TUT

® Open question: when a client wants to make a request, how does it know which node to ask?
— As patrtitions are rebalanced, the assignment of partitions to nodes changes
— Someone needs to have the top-level overview.

® Three main options:

O oMy
client el — The node layer

get"foo” / choose node 0 get“foo”

randomly outing ter — The routing tier (or third party)
AR .
— The clients

“foo” lives on node 2 “foo” lives on node 2

node ! — Itis a challenging problem as all
i ﬁ i i L participants need to agree 2>
o0 N requires reaching a consensus.

aoaa = the knowledge of which partition is assigned to which node

node 0 node 1 node 2

® Many systems rely on a coordination service such as Zookeeper to keep track of cluster meta data.
® Others use alternatives like gossip protocol among the nodes to disseminate cluster state changes.

37

Example using ZooKeeper to keep track

® The routing tier can subscribe to this information from the ZooKeeper service

client

get“Danube”
A

routing tier

AN

ZookKeeper

Key range
A-ak — Bayes

Bayeu — Ceanothus
Ceara — Deluc
Delusion — Frenssen
Freon — Holderlin
Holderness — Krasnoje
Krasnokamsk — Menadra
Menage — Ottawa
Otter — Rethimnon
Reti — Solovets
Solovyov — Truck

(Trudeau — Zywiec

Partition
partition 0
partition 1
partition 2
partition 3
partition 4
partition 5
partition 6
partition 7
partition 8
partition 9
partition 10
partition 11

e = the knowledge of which partition is assigned to which node

Node
node 0
node 1
node 2
node 0
node 1
node 2
node 0
node 1
node 2
node 0
node 1
node 2

IP address
10.20.30.100
10.20.30.101
10.20.30.102
10.20.30.100
10.20.30.101
10.20.30.102
10.20.30.100
10.20.30.101
10,20.30.102
10.20.30.100
10.20.30.101
10.20.30.102

38

Vertical partitioning TUT

® Goal to reduce the I/O and performance costs when fetching items that are frequently accessed.

® Different properties of an item are stored in
ARCL | Arcwelder 250Amps [115.00 25-Mov-2013
BRKS Bracket 250mm a5 5.6& 18- Mow-2013 1 1+1
B [eax | om | % [es [uen different partitions.
WaTe | Wiger | GEe |15 |3 | srean — One partition holds data that is accessed more
WGETE Widget Purple 76 1359 31-Mar-2013

frequently: product name, description and price
— Another holds inventory data: the stock count
and the last ordered date.

® Application regularly gets the product name, desc.

ARCL | Arcwelder | 250Amps | 113.00 ARCL | 8 | 25Now-2013 and price when displaying the product details.
BREE Bracket 250mm 566 BRES 45 18- Now-2013

BRES Bracket A00mm 698 | BREKS a2 1-luk 2013

HO58 H_i:lsF_ 12" 7750 | HOS8 7 15-Aug-2013

WeTe T it T e T 5o WeTe T 76 T Stme-20i3 " Stock count and last ordered data are commonly

used together and are more frequently modified.

39

Vertical partitioning cont.

® Q: Can you think of any other advantages?

® Other advantages:

— Relatively slow moving data can be separated from the more dynamic data
— Slow moving data is a good candidate for an application to cache in memory

— Sensitive data can be stored in a separate partition with additional security control.

® |deally suited for column-oriented data stores.

40

Functional partitioning M

® When possible to identify a bounded context,

Corparate data domain . s . . .
- functional partitioning is a way to improve
ARCL | Arcwelder 250 Arnps 11900 | .. . -

BRKE | Bracket | 250mm | 566 | - isolation and data access performance.
BRES Bracket A00mm 6.98
HOSE Hose 1/2" 27.50
WiETE Widget Green 13.99
WETE Widget Purple 13.99 .)
S NI W N ® Another common use is to separate read-write data
1630 name address] 12345
e from read-only data
1842 narme: address| 12345
2055 narme address 17345
2139 Qe address| 12345

® This strategy can help reduce data access
contention across different parts of the system

L Name Description

] 1630 name address 12345
BRKE Bracket 250mm 5.66 1631 name address 12345
BRES Bracket 400mm 6.98 1648 name address 12345
HO52 Hase 172" 27.50 1842 name address 12345
WGET4 Widget Green 13.99 2055 name address 12345
WGTE Widget Purple 13.59 2139 name address 12345

41

Partitioning for scalability TUT

® Q: How would you approach partitioning for scalability?

® Analyze the application to understand the data access patterns:
— Result set returned by each query
— The frequency of access
— The inherent latency
— The server-side compute processing requirements.

® Determine the current and future scalability targets, such as data size and workload
— Distribute the data across the partitions to meet the scalability target, choose the right shard key.
— Make sure each node has enough resources to handle the requirements in terms of storage space,
processing power or network bandwidth.

® Monitor to verify that the data is distributed well and that the partitions can handle the load
— Actual usage does not always match what an analysis predicts
— It may be required to rebalance the partitions 42

Partitioning for query performance TUT

® Q: How would you approach it to improve query performance?

® Query performance can be boosted by using smaller data sets and by running parallel queries.
® Each partition should contain a small proportion of the entire data set.

® Follow these steps to improve the overall query performance of your system/application.

® Examine the application requirements and performance.
— Identify the critical queries that must always perform quickly.
— Monitor the system to detect any queries that perform slowly.
— Find which queries are performed most frequently.

® Partition the data that causes slow performance.

® Consider running queries in parallel across partitions to improve response time.

43

Partitioning for better availabllity

® Q: How would you use partitioning to improve availability?
® Avoid having the entire dataset does not constitute a single point of failure.

® Consider the following factors that affect availability:
— Identify critical data
— Consider storing critical data in highly available partitions with an appropriate back-up plan
— Establish separate management and monitoring procedures for the different datasets
— Place data that has the same level of criticality in the same partition
— Decide how to manage individual partitions
— If a partition fails, it can be recovered independently
— Partition data by geographical area allows scheduled maintenance at off-peak hours
— Replicate critical data across partitions.
— This strategy can improve availability and performance, but
can also introduce consistency issues related to replication lag.

44

We did not cover... TLTI

® How to partition a secondary index
— Document-partitioned index (local indexes), where the secondary index are stored in the same

partition as the primary key and value.
— Only a single partition needs to be updated on write, but a read requires scatter/gather across all.
— Term-partitioned index (global indexes), where the secondary indexes are partitioned separately,
using the indexed values.
— When a document is written, several partitions of the secondary index need to be updated;
however a read can be served from a single partition.

® Creating materialized views that summarize data to support fast query operations.
— Useful in a partitioned data store if the partitions that contain the data being summarized

are distributed across multiple sites.

® Parallel Query Execution in presence of partitions
® Distributed Transactions (later in class)
45

Summary Tm

® Partitioning is necessary when data and load volume exceeds a single machine’s capacity.
® The goal is to spread the data and query load evenly across multiple machines, avoiding hotspots.

® Need to be careful when choosing the partitioning scheme so that it is appropriate to the data and
workload properties, and rebalance it when nodes are added/removed.

® Three main types of partitioning:
— horizontal,
— vertical and
— functional.

® Two main approaches for horizontal partitioning: key range and hash-based.

® Various techniques for rebalancing and routing.

46

References Tm

The material covered in this class is mainly based on:

® The book “Designing Data-Intensive Applications — The Big Ideas Behind Reliable, Scalable, and
Maintainable Systems” by Martin Kleppmann (Chapters 5 and 6) (link)

Some information and images were based on material from:

® Microsoft’'s Azure Application Architecture Guide
— Best practices for horizontal, vertical and functional data partitioning (link)
— Data partitioning strategies in various Azure services (link)
— Sharding pattern (link)

47

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding

