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Static and Adaptive Optimizations

¥ Static Optimizations

⇒ At development time
⇒ Independent of input data
⇒ Theoretical runtime

Ù Adaptive Optimizations

⇒ At execution time
⇒ Data distribution & patterns
⇒ Hardware avail. & utilization
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ABSTRACT
While index structures are crucial components in high-performance
query processing systems, they occupy a large fraction of the avail-
able memory. Recently-proposed compact indexes reduce this space
overhead and thus speed up queries by allowing the database to
keep larger working sets in memory. These compact indexes, how-
ever, are slower than performance-optimized in-memory indexes
because they adopt encodings that trade performance for memory
efficiency. Applying different encodings within a single index might
allow optimizing both dimensions at the same time ś however, it is
not clear which encodings should be applied to which index parts
at build-time.

To take advantage of multiple encodings in one index structure,
we present a new framework forming the basis ofworkload-adaptive
hybrid indexes which moves encoding decisions to run-time instead.
By sampling incoming queries adaptively, it tracks accesses to index
parts and keeps fine-grained statistics which are used for space-
and performance-optimized encoding migrations. We evaluated
our framework using B+-trees and tries, and examine the adapta-
tion process and space/performance trade-off for real-world and
synthetic workloads. For skewed workloads, our framework can
reduce the space by up to 82% while retaining more than 90% of
the original performance.
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Figure 1: Our sampling-based workload adaptation supports
hybrid index structures in choosing the most suitable encod-
ing for each part based on fine-grained access statistics at
run-time. It supports user-defined settings such as an upper
memory budget and it keeps sampling-related overhead lim-
ited by following an adaptive cost-optimized approach.

1 INTRODUCTION
Back in 2006, Jim Gray stated that memory is the new disk and disk
is the new tape [5]. This also applies to modern database systems
that store the entire data in random access memory (RAM) to allow
real-time analyses for trading companies and financial services, for
example. They need to process large datasets efficiently to react to
new developments and updates within a few milliseconds.

While the DRAM-prices have been stable during the last six
to seven years, the data collected by sensors, smartphones, social
media platforms, IoT-devices, and digital market-places increases at
a high rate resulting in data overflows [54], and storing all data in
memory becomes infeasible in many cases. However, as in-memory
database systems become more and more popular for performance-
critical businesses, AWS offers RAM instances that are optimized
for in-memory database systems [1]. These instances are equipped
with in-memory capacities of up to 24 TB, but the hourly cost of
such an instance is more than $120.

To achieve high-performance query-processing for real-time
analyses, index structures such as B-trees, tries, and hash tables are
widely used by DBMSs. Because there might be multiple indexes per
table, especially in OLTP DBMSs, the storage overhead for indexes
can be significant. In many cases, more than half of the available
memory of a DBMS can be attributed to index structures [54].

@SIGMOD’22
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Adaptive Hybrid Indexes – Problem

- Index structures are essential for fast query processing

- Typically optimized for performance
and not for memory efficiency

- Make up to 50% of the memory footprint of a DBMS
- Compression almost always incurs some overhead!

- Real-world workloads are skewed

- Information is available at run-time
and depends on the workload
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Adaptive Hybrid Trie
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Figure: Query latency and index size of ART and FST

Adaptive Hybrid Trie is a level-wise
combination of ART and FST!

Experiment Setup:
- Dataset: 33M unique email adresses (host-reversed order, e.g. com.foo@<username>)
- Workload: 50% Reads, 50% Scans, key selection follows a Zipf distribution
- Setup: 16-core AMD Ryzen 9 3950X CPU @ 3.5GHz, 64GB DDR4 RAM
- Compiler: GCC 9.3.0 with flags O3 and march=native
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Evaluation: Hybrid Trie – Space & Performance
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Conclusions:
For point lookups, Hybrid Trie

⇒ reduces index size by 63% comp. to ART
⇒ improves performance by 2.7x comp. to FST

The Pre-Trained Hybrid Trie does not include tracking-
related overhead

Experiment Setup:
- Dataset: 33M unique email adresses (host-reversed order, e.g. com.foo@<username>)
- Workload: 50% Reads, 50% Scans, key selection follows a Zipf distribution
- Setup: 16-core AMD Ryzen 9 3950X CPU @ 3.5GHz, 64GB DDR4 RAM
- Compiler: GCC 9.3.0 with flags O3 and march=native
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ABSTRACT
While index structures are crucial components in high-performance
query processing systems, they occupy a large fraction of the avail-
able memory. Recently-proposed compact indexes reduce this space
overhead and thus speed up queries by allowing the database to
keep larger working sets in memory. These compact indexes, how-
ever, are slower than performance-optimized in-memory indexes
because they adopt encodings that trade performance for memory
efficiency. Applying different encodings within a single index might
allow optimizing both dimensions at the same time ś however, it is
not clear which encodings should be applied to which index parts
at build-time.

To take advantage of multiple encodings in one index structure,
we present a new framework forming the basis ofworkload-adaptive
hybrid indexes which moves encoding decisions to run-time instead.
By sampling incoming queries adaptively, it tracks accesses to index
parts and keeps fine-grained statistics which are used for space-
and performance-optimized encoding migrations. We evaluated
our framework using B+-trees and tries, and examine the adapta-
tion process and space/performance trade-off for real-world and
synthetic workloads. For skewed workloads, our framework can
reduce the space by up to 82% while retaining more than 90% of
the original performance.
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Figure 1: Our sampling-based workload adaptation supports
hybrid index structures in choosing the most suitable encod-
ing for each part based on fine-grained access statistics at
run-time. It supports user-defined settings such as an upper
memory budget and it keeps sampling-related overhead lim-
ited by following an adaptive cost-optimized approach.

1 INTRODUCTION
Back in 2006, Jim Gray stated that memory is the new disk and disk
is the new tape [5]. This also applies to modern database systems
that store the entire data in random access memory (RAM) to allow
real-time analyses for trading companies and financial services, for
example. They need to process large datasets efficiently to react to
new developments and updates within a few milliseconds.

While the DRAM-prices have been stable during the last six
to seven years, the data collected by sensors, smartphones, social
media platforms, IoT-devices, and digital market-places increases at
a high rate resulting in data overflows [54], and storing all data in
memory becomes infeasible in many cases. However, as in-memory
database systems become more and more popular for performance-
critical businesses, AWS offers RAM instances that are optimized
for in-memory database systems [1]. These instances are equipped
with in-memory capacities of up to 24 TB, but the hourly cost of
such an instance is more than $120.

To achieve high-performance query-processing for real-time
analyses, index structures such as B-trees, tries, and hash tables are
widely used by DBMSs. Because there might be multiple indexes per
table, especially in OLTP DBMSs, the storage overhead for indexes
can be significant. In many cases, more than half of the available
memory of a DBMS can be attributed to index structures [54].
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ABSTRACT
This paper presents AutoSteer, a learning-based solution that au-
tomatically drives query optimization in any SQL database that
exposes tunable optimizer knobs. AutoSteer builds on the Bandit op-
timizer (Bao) and extends it with new capabilities (e.g., automated
hint-set discovery) to minimize integration effort and facilitate
usability in both monolithic and disaggregated SQL systems. We
successfully applied AutoSteer on PostgreSQL, PrestoDB, Spark-
SQL, MySQL, and DuckDB ś five popular open-source database en-
gines with diverse query optimizers. We then conducted a detailed
experimental evaluation with public benchmarks (JOB, Stackover-
flow, TPC-DS) and a production workload from Meta’s PrestoDB
deployments. Our evaluation shows that AutoSteer can not only
outperform these engines’ native query optimizers (e.g., up to 40%
improvements for PrestoDB) but can also match the performance
of Bao-for-PostgreSQL with reduced human supervision and in-
creased adaptivity, as it replaces Bao’s static, expert-picked hint-sets
with those that are automatically discovered. We also provide an
open-source implementation of AutoSteer together with a visual
tool for interactive use by query optimization experts.
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1 INTRODUCTION
Our research community has been making rapid strides in applying
modern machine learning (ML) techniques to tackle longstanding
problems in databases [6, 24, 48]. Learned query optimization lies at
the forefront of this progress [51]. Various techniques from query-
driven and data-driven to their combinations have been proposed
[19, 20, 23] ś not only to improve core query optimization tasks
1Work done while at Intel.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
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emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611544
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Figure 1: AutoSteer is a framework for steering query opti-
mizers of SQL databases autonomously. For each query, we
search for effective rewrite rules and store them in the query
span. Then, we use a greedy algorithm to explore alternative
query plans efficiently. The results can be used to train pre-
dictive models or to debug existing query optimizers.

such as cardinality estimation [22, 23, 31, 32, 37, 39, 43], join order
enumeration [29], or query rewriting [50], but also to build end-to-
end query optimizers replacing [28, 42] or enhancing [27, 30, 44, 47]
traditional ones. The practicality and robustness of these techniques
are critical when applying them in industrial settings [47].

The so-called łsteering approachž of Bao (Bandit optimizer) has
been a successful example of a practical solution due to its empha-
sis on shortening training times, adaptivity to dynamic workloads,
and ability to integrate with traditional optimizers [27]. Given a
pre-determined collection of łhint-setsž (a hint-set indicates which
query rewrite rules (RRs) should be considered in query optimiza-
tion), Bao learns to steer an already existing query optimizer by
helping it choose the right hint-set to use for every incoming query.
This way, potential planning mistakes of traditional query optimiz-
ers can be avoided. As Bao’s initial success continues to drive wider
adoption in increasingly more sophisticated deployment and work-
load settings [3, 47], it also brings new challenges to the surface.
We tackle two such challenges in this paper:
Integration effort: Adopting Bao to a new database system re-
quires coming up with the right collection of hint-sets. In the origi-
nal approach developed for PostgreSQL [1], a static collection of
48 hint-sets is manually selected based on deep knowledge of the
underlying PostgreSQL optimizer [5], after which Bao indepen-
dently learns to choose among these hint-sets on a per-query basis.
Unfortunately, manually engineering feature hint-sets can be quite
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Background – Steering Query Optimizers

Manually

Many Database Management Systems expose tunable optimizer knobs.
- Usually belong to rewrite rules of the rule-based optimizer
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Background – Steering Query Optimizers Automatically
Lot of recent work on steered query optimizers:
 SIGMOD’21: “Bao: Learning to steer query optimizers”, Marcus et al.
 SIGMOD’21: “Steering Query Optimizers: A Practical Take on Big Data Workloads”, Negi et al.
 SIGMOD’22: “Deploying a Steered Query Optimizer in Production at Microsoft”, Zhang et al.
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Limitations of Previous Approaches

é Databases usually expose up to hundreds of knobs

é Requires good knowledge of the query optimizer

é Tight integration into the DBMS
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3 AutoSteer is a generic framework to steer query optimizers outside the DBMS!
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AutoSteer – Overview
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3 Training Mode
AutoSteer generates training data by ex-
ploring and executing alternative plans.

Inference Mode
AutoSteer steers queries at runtime and
uses the TCNN to infer execution times.
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Dashboard Application at Meta – PrestoDB

- Focus on tail latencies
- >3000 Queries, scanning PBs of data, hundreds of worker nodes
- Workload runs multiple times per day

50% 75% 98% 99% 99.9%
Percentile

0

10

20

30

40

50

W
al

lT
im

e
[m

]

0.
38 1.
35 6.

97 9.
78 32

.0
6

0.
48 1.
45 7.

65 12
.8

8 37
.0

9

0.
77 2.
03 10

.1
7 19

.0
8

50
.1

7Best Known Plan
AutoSteer’s Inference Mode
PrestoDB

1

AutoSteer significantly reduces tail latencies of production workloads at Meta

Introduction Adaptive Hybrid Indexes AutoSteer Programming Model Conclusions 15



P2: AutoSteer

SQL Parser Query Optimizer

Tables Indexes
Buffer Manager

Execution
Engine Result

Database Management System

Software

Hardware Programming Model & RTS
DRAM 1 DRAM 2CXL DRAM

CPU 1TPU CPU 2

GPU 1

GDDR 1

GPU 2

GDDR 2

FPGA

PMEM

M
ac

hi
ne

1

CXL DRAM

TPU

FPGA

PMEM

M
ac

hi
ne

2
. . .

network

AutoSteer: LearnedQuery Optimization for Any SQL Database
Christoph Anneser1
Technical University

of Munich
anneser@in.tum.de

Nesime Tatbul
Intel Labs and MIT
tatbul@csail.mit.edu

David Cohen
Intel

david.e.cohen@intel.com

Zhenggang Xu
Meta

zhenggang@fb.com

Prithviraj Pandian
Meta

prithvip@fb.com

Nikolay Laptev
Meta

nlaptev@fb.com

Ryan Marcus
University of Pennsylvania
rcmarcus@seas.upenn.edu

ABSTRACT
This paper presents AutoSteer, a learning-based solution that au-
tomatically drives query optimization in any SQL database that
exposes tunable optimizer knobs. AutoSteer builds on the Bandit op-
timizer (Bao) and extends it with new capabilities (e.g., automated
hint-set discovery) to minimize integration effort and facilitate
usability in both monolithic and disaggregated SQL systems. We
successfully applied AutoSteer on PostgreSQL, PrestoDB, Spark-
SQL, MySQL, and DuckDB ś five popular open-source database en-
gines with diverse query optimizers. We then conducted a detailed
experimental evaluation with public benchmarks (JOB, Stackover-
flow, TPC-DS) and a production workload from Meta’s PrestoDB
deployments. Our evaluation shows that AutoSteer can not only
outperform these engines’ native query optimizers (e.g., up to 40%
improvements for PrestoDB) but can also match the performance
of Bao-for-PostgreSQL with reduced human supervision and in-
creased adaptivity, as it replaces Bao’s static, expert-picked hint-sets
with those that are automatically discovered. We also provide an
open-source implementation of AutoSteer together with a visual
tool for interactive use by query optimization experts.
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1 INTRODUCTION
Our research community has been making rapid strides in applying
modern machine learning (ML) techniques to tackle longstanding
problems in databases [6, 24, 48]. Learned query optimization lies at
the forefront of this progress [51]. Various techniques from query-
driven and data-driven to their combinations have been proposed
[19, 20, 23] ś not only to improve core query optimization tasks
1Work done while at Intel.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
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Figure 1: AutoSteer is a framework for steering query opti-
mizers of SQL databases autonomously. For each query, we
search for effective rewrite rules and store them in the query
span. Then, we use a greedy algorithm to explore alternative
query plans efficiently. The results can be used to train pre-
dictive models or to debug existing query optimizers.

such as cardinality estimation [22, 23, 31, 32, 37, 39, 43], join order
enumeration [29], or query rewriting [50], but also to build end-to-
end query optimizers replacing [28, 42] or enhancing [27, 30, 44, 47]
traditional ones. The practicality and robustness of these techniques
are critical when applying them in industrial settings [47].

The so-called łsteering approachž of Bao (Bandit optimizer) has
been a successful example of a practical solution due to its empha-
sis on shortening training times, adaptivity to dynamic workloads,
and ability to integrate with traditional optimizers [27]. Given a
pre-determined collection of łhint-setsž (a hint-set indicates which
query rewrite rules (RRs) should be considered in query optimiza-
tion), Bao learns to steer an already existing query optimizer by
helping it choose the right hint-set to use for every incoming query.
This way, potential planning mistakes of traditional query optimiz-
ers can be avoided. As Bao’s initial success continues to drive wider
adoption in increasingly more sophisticated deployment and work-
load settings [3, 47], it also brings new challenges to the surface.
We tackle two such challenges in this paper:
Integration effort: Adopting Bao to a new database system re-
quires coming up with the right collection of hint-sets. In the origi-
nal approach developed for PostgreSQL [1], a static collection of
48 hint-sets is manually selected based on deep knowledge of the
underlying PostgreSQL optimizer [5], after which Bao indepen-
dently learns to choose among these hint-sets on a per-query basis.
Unfortunately, manually engineering feature hint-sets can be quite
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Abstract
With full resource disaggregation on the horizon, it is unclear
what the most suitable programming model is that enables
dataflow developers to fully harvest the potential that recent
hardware developments offer. In our vision, we propose to
raise the abstraction level to allow developers to primarily
reason about their dataflow and the requirements that need
to be met by the underlying system in a declarative fashion.
Underneath, the system works with typed memory regions
and uses the notion of ownership that allows formore flexible
memory management across the different compute devices
and the tasks mapped onto them. This requires a holistic
approach that crosses multiple layers of the system stack,
opening exciting systems research questions.
ACM Reference Format:
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Systems. InWorkshop on Hot Topics in Operating Systems (HOTOS
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1 Introduction
With the ever-increasing demand for data, where the datas-
phere volume is expected to reach 175ZB by 2025 [50], we
have reached the point where moving data is the dominating
cost factor in data centers [34, 45]. Cloud providers race to
serve the different requirements of modern workloads better
but with pressure to achieve it in a more sustainable fash-
ion [51]. To improve efficiency, data centers have evolved
to more loosely coupled software-defined racks, where they
disaggregate resources over fast network interconnects [52].
However, until recently, coherent memory remained

tightly coupled, and servers had to be equipped with large
memory capacities to serve peak workloads reliably. This
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Figure 1: Moving from a compute-centric to a memory-
centric architecture.
overprovisioning is a considerable cost (50% of Azure’s
servers [5] and 40% of Meta’s rack costs come from mem-
ory [40]) for a resource that could not be properly pooled.
The average memory utilization reported by many cloud ven-
dors remains low, typically in the range of 50-65% [38, 56].
Therefore, data centers could reduce costs by pooling dif-
ferent types of memory [9, 11, 21, 57] and compute de-
vices [6, 13, 17ś19, 30, 33, 47] by connecting them with fast
networks [14, 45].

However, data and compute placement within these pools
significantly impacts the overall system performance. For
example, non-uniform memory accesses (NUMA) can slow
down algorithms by up to 3× [39]. Similarly, a naïve data
placement in a heterogeneous storage landscape can reduce
a database system’s performance by up to 3× [59].

Moreover, today, optimal placement has become an issue
even within single processors. For example, take the recently
introduced Intel’s 4th Generation Intel® Xeon® Scalable Pro-
cessors ś codenamed Sapphire Rapids [7]. They have built-in
encryption, compression, streaming, and high-bandwidth
memory accelerators. Its most promising feature, however,
is the adoption of Compute Express Links™ (CXL™) ś an
industry standard for cache-coherent interconnects for pro-
cessors, memory expansion, and accelerators based on PCIe
5.0, which has been adopted by companies like Intel, AMD,
ARM, Samsung, and NVIDIA, amongst others [9]. CXL en-
ables us to first scale-up nodes by extending their compute
and memory pools with ‘pluggable’ compute devices and
DRAM/PMem expansion cards before we have to rely on
more expensive ‘scale-outs’ to other compute nodes that
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Motivation

CXL
DRAM DRAM1 DRAM2

TPU CPU1 CPU2

FPGA GPU1 GPU2

PMEM GDDR1 GDDR2

PCIe / CXL PCIe / CXL

Name Bw. Lat. Gran. Attached Sync Persist.
Cache ++ ++ 1 B CPU ✓ ✗

HBM ++ + 64 B CPU ✓ ✗

DRAM + + 64 B CPU ✓ ✗

PMem ◦ ◦ 256 B CPU ✓ ✓

CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗

Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗

SSD − − 4 KiB PCIe ✗ ✓

HDD −− −− 4 KiB SATA ✗ ✓

? How to develop & optimize software for heterogeneous, disaggregated hardware?
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CXL Enables a Memory-Centric View

DRAM1 DRAM2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R 1

M
R 2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓
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Mapping Memory Regions to Devices
⇒ Task Placement

⇒ Memory Region Properties:
MR1: low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

⇒ Handovers:
MR1: T0 Output, T1 Input
MR2: T1 Output, T2 Input

⇒ Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Memory Abstraction Layer

f RTS needs a comprehensive cost model and late binding
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Typed Memory Regions

9 Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

T Exchanging Data
– Properties: coherent, async

3 Thread-local State
– Properties: non-coherent, sync, fast

Global State

Global Scratch

Private Scratch
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Conclusions

Adaptive Hybrid Indexes reduce storage overheads &
retain high-performance

AutoSteer is a framework to steer rule-based query optimizers

Memory-centric programming model for disaggregated memory
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Questions?
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Thank you for your attention!
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