
Heterogeneous Intra-Pipeline Device-Parallel Aggregations

Artem Kroviakov1

TUM
kroviakov@in.tum.de

Petr Kurapov
Intel Deutschland GmbH
petr.a.kurapov@intel.com

Christoph Anneser
TUM

anneser@in.tum.de

Jana Giceva
TUM

jana.giceva@in.tum.de

ABSTRACT

The rising hardware heterogeneity in modern systems emphasizes
new dimensions of optimizing task execution for data processing
frameworks. Specialized hardware is often expected to be the exclu-
sive executor of some particular workload because it was designed
for it or is simply the fastest option. In heterogeneous database sys-
tems, almost always, the entire operation o�oading is considered.
However, little attention was given to database systems with hori-
zontal cross-device pipeline parallelization. We argue that such an
approach can be applied to systems with morsel-driven parallelism
and improve performance. We apply our parallelization strategy to
an existing system and accelerate aggregations using two devices
by up to 1.5x compared to the fastest exclusive device executor.

CCS CONCEPTS

• Information systems → Database query processing; Main

memory engines; Online analytical processing engines; DBMS

engine architectures; • Computer systems organization →

Heterogeneous (hybrid) systems.

KEYWORDS

Query engine, heterogeneous query processing, dedicated GPUs

ACM Reference Format:

Artem Kroviakov, Petr Kurapov, Christoph Anneser, and Jana Giceva. 2024.

Heterogeneous Intra-Pipeline Device-Parallel Aggregations. In 20th Inter-

national Workshop on Data Management on New Hardware (DaMoN ’24),

June 10, 2024, Santiago, AA, Chile. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3662010.3663441

1 INTRODUCTION

Device heterogeneity is rising and accelerators like GPUs are be-
coming omnipresent in modern systems [11, 25, 31]. Thus, it is
unsurprising that database systems explore various ways to best
exploit them [22]. A majority of the research attention has been
either on (1) how to facilitate o�oading part of or a full query
onto an accelerator like the GPU [14, 19, 22, 24, 27, 35] or (2) on
how to work around various HW-related constraints (e.g., limited
on-device memory capacity or interconnect bandwidth between
the devices) [38, 39] with techniques such as caching, overlapping

1Work done while at Intel.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

DaMoN ’24, June 10, 2024, Santiago, AA, Chile

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0667-7/24/06
https://doi.org/10.1145/3662010.3663441

computation and data transfer costs, or pre-processing tasks on the
CPU (�lters, predicate evaluation) before invoking the GPU.

Most existing systems that support cross-device execution lever-
age the so-called vertical device parallelism [15, 33, 34] and constrain
the execution of a particular task to a single device. However, given
the rise in complexity of data processing tasks and the increase
in data volumes, it is safe to assume that many jobs can bene�t
from spreading both the workload and the data for co-execution
on both processing devices (i.e., the many CPU cores and the GPU).
Unfortunately, designing a uni�ed system supporting both types
of devices is non-trivial. The �rst major issue is in their di�erent
programming models, which can exacerbate if the engine wants
to support accelerators from various vendors. A poor design deci-
sion can easily increase code complexity and decrease the system’s
maintainability. The second major issue is the di�erence in their
execution model and how they support parallelism. For example,
CPUs are task-parallel executors that focus onminimizing the given
task’s latency, whereas GPUs are data-parallel executors that focus
on maximizing the throughput. The former has many cores that can
operate on di�erent data shares and work on various smaller tasks
concurrently. In contrast, the latter requires a larger and more com-
plex kernel function that can leverage the warp-based execution
but needs to work on a single task (with notable exceptions) and
a larger data chunk to saturate the device capacity and amortize
the data-transfer costs. Supporting both types of operation within
a single uni�ed system remains a relatively unexplored problem
for our community. Yet, if solved, it can unleash a great potential
for the growing demand for cross-device co-execution.

In the remainder of the paper, we will refer to that problem
as supporting a horizontal device parallelism, i.e., architecting the
foundation of a system that can leverage all processing units concur-
rently despite their heterogeneity. One notable prior work proposed
an ingenious approach that supports horizontal device parallelism
based on the exchange operator (HetExchange [21]), which is com-
patible with many systems supporting Volcano-based parallelism.

This paper explores an alternative design to enable horizontal de-
vice parallelism on an intra-pipeline level for systems that internally
use task-based scheduling following the morsel-driven parallelism
model [36]. More speci�cally, we propose a novel approach that
can facilitate the e�cient execution of analytical queries in het-
erogeneous CPU-GPU database systems based on fragment-based

parallelism. Furthermore, we describe our prototype implementa-
tion in Heterogeneous Data Kernels (HDK) [3], which is an exe-
cution backend for analytical queries based on OmniSciDB [54]
along with a discussion on potential optimizations. OmnisciDB
(now HeavyDB [4]) represents a meaningful baseline as it is GPU-
centric and shows reasonable GPU resource utilization [20]. Finally,
we explore the importance of determining the suitable fragment
size to experimentally evaluate when co-execution pays o� and
identify potential contention spots.

https://doi.org/10.1145/3662010.3663441
https://doi.org/10.1145/3662010.3663441

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Kroviakov et al.

2 RELATED WORK

Heterogeneous systems are often used for CPU-GPU setups [40].
Such systems showed success in areas like scienti�c computing [32,
42, 48] and ML frameworks (e.g., TensorFlow [10], PyTorch [43]).
Heterogeneous databases have received a lot of attention in the
last decade [16, 18, 21, 30, 44, 45, 47] and were extensively discussed
in the context of query acceleration [14, 19, 22, 24, 27, 35]. The re-
search converges to the bottleneck of interconnects and query com-
pilation, focusing on what (e.g., operator, pipeline) to execute where
(e.g., CPU, GPU). A recent survey [46] provides a good overview
of the existing CPU-GPU systems and classi�es their approaches.
For instance, SABER [34] schedules queries either on CPU or GPU
based on the execution time estimates. HetExchange [21] and Co-
GaDB [15] / GAT [52] take a step further and allow the decision to
be made on a query pipeline and operator granularity. They di�er in
the policy on when to schedule an operator to the GPU: either on
data transfer costs [15], or the compute intensity [52]. HERO [33]
is a task-parallel system that places sub-operators onto execution
islands (logical PU groups with known intermediate cardinalities)
based on data locality and cardinalities. Various hardware architec-
tures can also be found within one device [41].
Device-parallel databases. Previous work has shown the bene�ts
of device-parallel execution of operations [17], sub-operators [33]
or sub-pipelines [23]. Integrated CPU-GPU systems are a good
platform for heterogeneous execution [53] and device-parallel in
particular [29] as both devices can directly access the main mem-
ory. GPUs are treated as another CPU-like accelerator without the
need to explicitly address various interconnects [37], dedicated
caching mechanisms, etc. This complexity relaxation allows simple
�ne-grained parallelism [29] where devices divide input data per
pipeline. Our approach (cf. Section 3) also applies to such systems.

Mordred [51] integrates operators from the Crystal [47] library,
enabling device-parallel query execution of sub-column segments

and semantic-aware caching. An execution plan is determined for
each sub-column segment, and segments with the same plan are
assigned to the same segment group. Segment groups are then
executed in parallel, enhancing vertical parallelism.

HetExchange [21] is a state-of-the-art parallel query execution
framework designed for multi-CPU-multi-GPU servers. It intro-
duces device-crossing operators to manage data and control �ow
transfers between GPU to CPU. They consist of two parts that
communicate via an asynchronous queue – one residing on the
GPU and the other on the CPU. Router operators encapsulate paral-
lelism by e�ciently routing tasks between multiple producer and
consumer instances based on hash-based and round-robin routing
policies that allow for dynamic load-balancing. Router operators do
not make any assumptions about the data. Instead, they pass trans-
parent block handles from one to the other operator. Furthermore,
HetExchange introduces two data �ow operators. The mem-move

operators facilitate asynchronous data transfers, while the pack-

/unpack operators optimize these transfers by bundling multiple
tuples into blocks to minimize the overhead of moving individual
tuples. HetExchange has been integrated with JIT-compiling query
engines that fuse these additional operators into e�cient pipelines,
which are concurrently executed on CPUs, GPUs, or a mix of both.

Execution Policy
GPU: 30%
CPU: 70%

Compiler

Cost model/
Manual

Scheduler

GPUCPU

Collect and merge

Kernels

Device
Results

Cache

Table
Fragment

Query
result

Fragment

Figure 1: An overview of our approach’s execution �ow.

SiliconDB [23] presents an execution model for a system with
CPU cores and devices that only support a limited set of functions
(e.g., FPGAs, DAX engines). Query pipelines are decomposed into
�ner-grained sub-pipelines, which are then placed into the work
queue for the corresponding accelerator. After executing a task,
the sub-pipeline’s result is materialized, and the next sub-pipeline
is pushed to an appropriate queue or gets directly consumed to
leverage the proximity of the cached data.
Cost modeling. Heterogeneous databases use cost models to
assign work units to devices. Most cost models rely on data locality
or execution time estimates of operators or queries [28, 29, 46, 51].
For example, Mordred [51] models the costs per operator using
the Crystal library [47]. Based on the Roo�ine model [50], Cao et
al. [20] analyzed resource utilization across several GPU databases
and proposed a new analytical model that estimates the processing
time for GPU-accelerated query execution, which also e�ectively
optimizes concurrent query execution. SiliconDB [23] uses a cost
model based on queuing theory to adjust the queue size and derive
run time estimates. In contrast, we model the cost of data fragment
distribution via calibrated graph patterns, as described in more
detail in Section 3.

3 APPROACH

HetExchange showed that it is possible to e�ciently parallelize a
pipeline across devices by following the Volcano-based parallelism
(i.e., by leveraging the exchange operator) [26]. Another popular
approach in modern databases is morsel-driven parallelism [36].
While both approaches assume batching of data that facilitates work
distribution, morsel-driven parallelism allows for a simpler query
graph and strives for data locality. To the best of our knowledge and
as con�rmed by a recent comprehensive survey of heterogeneous
query processing systems [46], the morsel-driven approach has not
been explored in the context of device-parallel pipeline execution.
It is, thus, the focus of this paper.

In this section, we present a novel approach that enables e�cient
execution of analytical queries in heterogeneous morsel-driven
CPU-GPU database systems. For this, we establish the main compo-
nents that facilitate the key property of scaling pipeline execution
horizontally across devices.

Heterogeneous Intra-Pipeline Device-Parallel Aggregations DaMoN ’24, June 10, 2024, Santiago, AA, Chile

Column 1

Physical chunk

Column 2
Physical chunkFragment 1

Fragment 2

Figure 2: Fragments and a possible data storage layout.

Fragment-based parallelism. Modern processors have hundreds
of cores and threads, which our approach aims to utilize by im-
plementing fragment-based parallelism. Fragments are horizontal
partitions of a data table with a �xed number of tuples. They are
a logical abstraction guaranteeing that its column’s data is stored
contiguously in memory during query execution. Figure 2 shows
an example of two fragments spanning two columns.

In contrast to morsels [36], we impose no limitations on the
GPU’s capacity to process only one fragment at a time. Further-
more, instead of employing a direct 1:1 mapping between a task
and morsel, our system supports the simultaneous processing of
multiple fragments by the GPU, drawing on concepts from adaptive
scheduling [49]. Compared to variable-sized morsels, our approach
uses �xed-sized fragments to avoid invalidating cached fragments
that will trigger expensive data transfers. Finally, a fragment does
not impose any restrictions on the storage layout.

During query execution, the database scheduler assigns frag-
ments to processing units (PUs). A PU can either be a single CPU
core, a tile of a GPU (e.g., Ponte Vecchio [25]), or the entire GPU.
However, the programming models of CPUs and GPUs fundamen-
tally di�er: CPUs are task-parallel, while GPUs are data-parallel.
On the one hand, working with large fragments can reduce the
degree of parallelism and leave some CPU cores idle. On the other
hand, the GPU’s data parallelism can be best leveraged with coarse-
grained fragments. We evaluate the impact of the fragment size on
the overall system performance in Figure 4 in Section 4.
Executionmodel. We do not make any assumptions on the under-
lying engine’s execution model. For a compiled query engine, we
can use existing compiler infrastructure to reduce the complexity
of supporting various devices and/or vendors (e.g., we can use a
multi-level intermediate representation).
Pipeline execution. The work distribution is based on so-called
fragments proportions that are speci�ed per device by individual
policies (cf. Figure 1). The execution policy determines the data
�ow of the query and can be used to support data locality.

Every pipeline can be described as a function that operates on
input bu�ers (i.e., fragments) and utilizes additional memory bu�ers

(e.g., output bu�ers). These components jointly constitute a kernel
(cf. Figure 1), which is an abstraction that our approach uses to
pass execution tasks transparently to the database’s scheduler to
be executed on either device.
Intermediate results. To enable fragment-based parallelism of
the next pipeline, a pipeline’s result needs to be in the same format
as the input bu�ers (i.e., organized in fragments). For cases where
we need a single output, we gather their intermediate results on
the CPU and merge them in a post-processing step (e.g., in the case
of aggregations).

Scheduling. While we can manually specify the fragment pro-
portions between CPU and GPU, a system should balance the task
placement automatically. There are two approaches: implementing
a comprehensive cost model and/or relying on adaptive scheduling.
We have implemented a cost model that decides on the distribution
among devices, optimizing for e�ciency but also accounting for
the type of computation tasks within the pipeline. Unfortunately,
compilation-based techniques make cost estimation of individual
operators quite di�cult. We would like to note that some of the
other cost models mentioned in Section 2 are also applicable to
model performance in our system. For example, Cao et al. use the
Roo�ine analysis and previous run times to derive the query execu-
tion time [20]. Alternatively, SiliconDB’s cost model considers the
accelerator’s utilization and hardware queue size to determine the
maximum number of work elements that can be processed/stored
by the accelerator [23].

In contrast, our cost model (cf. Figure 1) identi�es computational
patterns (e.g., hash group by) from the pipeline graph. These compu-
tational patterns, called ‘dwarfs’ [12], capture the system’s typical
computations. After establishing the patterns, we measure their
execution times across various input sizes and parameters for each
device in our hardware setup. This calibration helps place reference
points in the problem space for each pattern on a device. We then
�t a hyperplane through these points, which allows us to estimate
the execution time for arbitrary input parameters.

Calibrating the patterns is costly and time-consuming, as we
must evaluate them across a range of realistic and large input sizes.
This calibration must be conducted for each hardware con�gura-
tion the database system runs on. Furthermore, supporting more
patterns (e.g., other than aggregations) would also add to the calibra-
tion time. However, these costs can be amortized over long-running
queries or recurring workloads. Once we detect a calibrated pattern,
we search for a minimal execution time on the �tted hyperplane
by selecting a suitable input data distribution (i.e., fragments). The
proportions are then included in the scheduler’s execution policy.
Adaptive scheduling. An alternative approach to balance the
fragment distribution is to leverage adaptive scheduling, which
aims to reduce a pipeline’s tail latency by dynamically adjusting
the morsel sizes. For example, at the pipeline’s end, morsel sizes
are progressively decreased to avoid ‘stragglers’, thereby reducing
idle PUs and achieving an e�ect called ‘photo �nish’ [49]. Existing
heterogeneous systems like HetExchange [21] that employ such
runtime adaptive scheduling would probably also achieve this e�ect.

While our approach assumes �xed-size fragments, it could still
bene�t from adaptive scheduling. For instance, Figure 3 shows a
typical CPU-GPU pipeline execution timeline, including the data
transfer times for the GPU and the post-processing step. Before
the results can be merged, the CPU Processing Units (PUs) must
wait for the completion of data transfer from GPU PU#1, which
increases the tail latency. Adaptive scheduling could mitigate this
issue by dynamically allocating fragments based on each query’s
estimated remaining processing time. For example, had Fragment 6
been assigned to the CPU rather than the GPU, the pipeline’s tail
latency could have been reduced.
When does device-parallel acceleration help? Considering
Figure 3 again, we observe that device-parallel acceleration is useful
when (1) the processed data set has enough fragments, (2) it spends

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Kroviakov et al.

CPU PU#1

GPU PU#1

Fragment 1 Fragment 4

Fragment 5Fragment 2

Fragment 3

Fragments [6,10]Possible data
transfer

CPU PU#3

CPU PU#2

Fragment 6

Merge results

Merge results

Merge results

Data
transfer

Figure 3: Timeline example of a heterogeneous query

pipeline with 10 fragments. Please notice the adaptive sched-

uling opportunities for fragment 6.

a non-negligible time period performing computation, and (3) it
transfers a reasonably sized output. Otherwise, data transfer will
outweigh execution time.

Inter-query parallelism. Since executing single heteroge-
neous queries might not fully utilize the GPUs, fortunately, our
approach also allows for inter-query parallelism. We abstract from
physical hardware threads of CPUs and GPUs and consider them as
Processing Units (PU) instead. While PUs handle tasks sequentially,
multiple PUs can simultaneously process fragments and kernels
from di�erent queries. To e�ciently schedule fragments of di�er-
ent queries in parallel, we must update our cost model and include
new parameters like the current device’s utilization, the number of
cached fragments on a device, or the device’s memory utilization.
We plan to integrate inter-query parallelism into our prototypical
implementation in HDK.

Heterogeneity beyond aggregations. While this work fo-
cuses on fragment-based heterogeneous aggregations that require
a special merge phase of the output results, other operators like
joins could be implemented similarly. For example, one strategy
to implement e�cient heterogeneous joins is based on hash par-
titioning the input data �rst [13]. The resulting hash-partitioned
tables can be split into fragments such that a fragment does not
cross a partition. A hash partition that consists of possibly multiple
fragments, can then be either scheduled as part of a multi-fragment
kernel (cf. Section 4) on GPU or processed regularly by the CPU.
The primary advantage of using hash partitioning is to eliminate the
costly task of merging join results from di�erent devices. Although
our cost model can estimate the build and probe phases e�ectively,
it does not yet account for the bene�ts of hash partitioning and
would need to be extended.

4 IMPLEMENTATION IN HDK

A recent survey has noticed that most modern heterogeneous query
processors are CPU-centric [46]. In contrast, this work shows how a
GPU-centric database system can be adapted for the device-parallel
pipeline execution using morsel-driven parallelism. More specif-
ically, we build upon Heterogeneous Data Kernels (HDK), a fast
execution library for data analytics tasks [3]. HDK’s architecture is
inspired by OmnisciDB [54], an LLVM-compiling database system
supporting CPU and GPU. As most other heterogeneous systems
described in Section 2, OmnisciDB executes pipelines exclusively
on CPU or GPU. This section �rst provides an overview of HDK’s
architecture and then explains how we integrated our approach to
enable intra-pipeline device parallelism for aggregation queries.

Storage. HDK’s in-memory representation is based on Apache
Arrow [1]. Columns are stored as ChunkedArrays, which support
fast, multi-threaded construction. Figure 2 conceptually visualizes
the storage layout of a table with two columns in HDK. HDK’s
storage layer does not guarantee that the data within a fragment
will be stored linearly, which may lead to additional materialization
overhead. For example, column 1’s physical chunks are aligned with
the logical fragments, allowing direct memory access by simply
passing a pointer to PUs. In contrast, column 2’s physical chunks
have a di�erent alignment, requiring their prior materialization.
An alternative would be to select a fragment size that matches
the underlying Arrow’s physical chunk size. However, this could
also negatively impact pipeline parallelization. To optimize device
parallel pipeline execution, it is crucial to identify an appropriate
fragment size.
Fragment size. As discussed before, CPUs and GPUs work best
with di�erent fragment sizes. Task-parallel CPUs perform better
with a larger number of smaller fragments, facilitating a more e�-
cient workload distribution across cores. In contrast, data-parallel
GPUs work better with fewer but larger fragments.

We have explored how the number of fragments a�ects perfor-
mance by running Q2 on Machine 1 (cf. Section 5) with a uniform
distribution over 200 million rows and a varying number of result
groups. The results are presented in Figure 4. Please note that the
GPU launches one kernel with multiple fragments to avoid the over-
head of scheduling multiple kernels in this experiment. The number
of result groups at the top of every plot corresponds to the number
of aggregation groups. We assume that the corresponding fragment
proportions are cached on the GPU. In HDK, CPU performance de-
teriorates when its parallelism is underutilized, as seen with fewer
fragments. Additionally, we observe that the combination of many
fragments and many result groups also diminishes CPU perfor-
mance (cf. Section 5). In contrast, although the GPU’s performance
degrades with more fragments, its overall performance across pos-
sible fragment counts is more stable than the CPU. Scheduling a
kernel with a single fragment for GPUs causes kernel launch over-
head. Therefore, instead of processing one fragment per kernel, we

Num. Result Groups 5M Num. Result Groups 7M

Num. Result Groups 500K Num. Result Groups 1M

Num. Result Groups 300 Num. Result Groups 10K

8 16 32 64 128 8 16 32 64 128

0

50

100

150

0
250
500
750

0
500

1000
1500
2000

0
200
400
600

0
200
400
600
800

0
500

1000
1500

Number of fragments

E
xe

c
u

ti
o

n
 t

im
e

 (
m

s
)

Device

GPU

CPU

Figure 4: The query execution time on the CPU is more sen-

sitive to changes in fragment count compared to the GPU.

Setup: Machine 1, Query 2, 200M rows.

Heterogeneous Intra-Pipeline Device-Parallel Aggregations DaMoN ’24, June 10, 2024, Santiago, AA, Chile

Γ

HDK IR LLVM IR

NVVM

SPIRV

LLVM JIT

NVCC

IGC

Kernel

Figure 5: High-level overview of compilation in HDK.

use the multifragment mode that runs one kernel on multiple frag-
ments, e.g., we loop over the fragments within a launched kernel.
This mode amortizes such overheads and retrieves only one result
from the GPU once the last fragment has been processed. Based on
the �ndings of our experiments, we heuristically set the fragment
size to 2 × (#A>FB/#2?D_?ℎ~B820;_2>A4B). This approach generates
su�cient fragments to fully utilize the CPU while ensuring that
additional fragments are available for processing by the GPU.
Compilation. Figure 5 shows an overview of HDK’s query com-
pilation approach. HDK implements a custom intermediate repre-
sentation (IR) to express relational algebra. In the next step, HDK’s
IR is lowered to LLVM IR and device-speci�c representations (e.g.,
NVVM for Nvidia or SPIRV for Intel GPUs). Last, specialized com-
pilers like NVCC [6] or IGC [5] produce executable binary �les.
The CPU compilation follows the normal LLVM JIT compilation
path.
Scheduling. The cost model described in Section 3 is implemented
as an external component using SYCL [9], which is a high-level
language that allows lowering patterns into many execution targets.
The system’s compiler generates code for di�erent device types.
The pattern implementation in SYCL should approximate the code
produced by the system’s compiler, hence the pattern implementa-
tion is meaningful for the device types supported by the system’s
compiler. For example, we might express a pattern of scan and
selection in SYCL that would be compiled into a device-speci�c
binary, which can then be calibrated on a device under various pa-
rameters (e.g., input size). Hence, we approximate HDK’s compiler
in a portable and transparent way for a set of query graph patterns.
The calibrated estimates are used for a linear regression �t to �nd
an optimal time estimate by iteratively changing the input size (i.e.,
fragment count) of a pattern for a device. Once the fragment distri-
bution is known, we place it into the pipeline’s execution policy (cf.
Section 3).
Execution. After constructing all kernels, we launch them in
asynchronous threads. CPU kernels are executed using LLVM JIT,
whereas GPU kernels are launched using drivers such as CUDA [2]
or LevelZero[7]. For device-parallel execution of aggregations, we
must wait for all devices to complete their tasks before merging
their results in a post-processing step.
Impact of heterogeneity on infrastructure. OmnisciDB is a
GPU-centric database that assumes large fragments. Our approach,
however, considers multi-core CPUs as equal executors to GPUs
and expects tables to produce signi�cantly more fragments. For
instance, in a system with 512 physical CPU cores and a GPU ac-
celerator, we would need > 512 fragments to assign at least one
fragment to every PU. However, experimenting with larger frag-
ment numbers showed signi�cant slowdowns (cf. Figure 6): despite
the constant number of allocations for each column, the infras-
tructure was overwhelmed after processing a few columns as the

0

500

1000

1 2 3 4 5 6 7 8

Cumulative processed column count

T
im

e
 (

m
s
)

Measured operation

fetchChunks

prepareKernelParams

Figure 6: Table with 80M rows divided into 2000 fragments,

the bu�er manager faced increasing di�culties in managing

allocations.

0

50

100

150

3 32 800 2000

Number of Fragments

T
im

e
 (

m
s
)

Measured operation

Query pre−execution steps

create QueryExecutionContext

Figure 7: The original system copied each fragment’s meta-

data, which signi�cantly slowed down the system even before

query execution began.

bu�er managers in OmniSciDB were not designed for this use case.
The search for a free spot took too long. We, thus, implemented a
simple index structure for free bu�ers, resulting in constant column
processing time. The original system assumed few fragments and
thus experienced little overhead from copies of the fragments’ meta-
data. We now need more fragments and the copies may become
a considerable overhead (cf. Figure 7) which we solve by sharing
fragments’ metadata.
Discussion. HDK has room for improvement on its path towards
more e�cient intra-pipeline parallelism. In the future, we plan to
adapt fragments to directly represent physical memory chunks,
alleviating the need for redundant materializations. This would,
however, put more restrictions on the storage layer. One of the more
problematic points is how we approximate the HDK’s compiler
performance. As we do the calibration outside of HDK, we fail to
capture all steps of a pattern processing that are non-negligible
(cf. Section 5). Furthermore, the calibration process is costly due to
the problem’s dimensionality. The combination of large engineering
e�ort for pattern implementation with the costly calibration process
restrained us from further development, and in the future, we may
also resort to adaptive scheduling.

5 EVALUATION

After discussing the key system infrastructure changes needed to
implement heterogeneous execution, we continuewith our system’s
evaluation. We answer the following three research questions:

RQ1 Which pipeline parameters allow heterogeneous accelera-
tion?

RQ2 Can the morsel-driven execution model e�ciently support
device-parallelism?

RQ3 How does a device-parallel system scale with the input size?

Queries. Listing 1 shows the two aggregation queries that we
use to evaluate our approach’s performance in HDK considering

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Kroviakov et al.

-- The table layout

CREATE TABLE tab (

group_<nr> INT64,

rand_data_0 DOUBLE,

rand_data_1 DOUBLE

);

-- Query 1: 1 output column aggregation

SELECT group_<nr>, AVG(rand_data_0)

FROM tab

GROUP BY group_<nr>;

-- Query 2: 2 output columns aggregation

SELECT group_<nr>, AVG(rand_data_0), MAX(rand_data_1)

FROM tab

GROUP BY group_<nr>;

Listing 1: The table layout and two aggregation queries.

group_<nr> represents a column with <nr> groups.

di�erent parameters, such as the input cardinality (number of rows),
the output cardinality (number of result groups), and the number
of aggregates (total result size). Grouping columns in the table are
64-bit integers, while columns used for aggregation calculations,
such as averages and maximums, are doubles.
Testbed. Table 1 shows the con�guration of the two machines we
used for the experimental evaluation. They are equipped with GPUs
from di�erent vendors to show our approach’s generalizability.
GPU Caching. In HDK, the device-relevant input portion can be
accessible without data transfers when the relevant data is already
cached in the accelerator’s memory. On the other hand, a query
result always needs to be sent back to the host to construct the �nal
result. All experiments show the end-to-end query performance
with the cached data and include the result transfer times. Prior
fragment materializations are not required as we store columns in
contiguous memory for testing purposes.

Expecting data reuse and caching is reasonable within the explo-
rative setting of analytical queries, but we also conduct experiments
for cases when the entire proportion needs to be sent to the GPU
in Figure 8a where the baseline (dashed lines) refers to the default
setting of Omnisci (i.e., no device results merge phase and very
large fragments). Figure 8a indicates that the input proportion to
transfer is too large to be compensated by the CPU execution. In the
worst case, we match the GPU baseline. However, we expect this to
be less of a problem with newer interconnects. Figure 8b shows the
same benchmark with cached data, where large outputs might still
be bottlenecks. We are, therefore, interested in aggregation queries
over large datasets with small outputs.

As shown in Table 1, Machine 2 has an Intel GPU interconnected
via PCI Express 5. We compare the time di�erence between cold
and hot runs on the PCIe 3.0 machine (cf. Figure 9a) and PCIe
5.0 machine (cf.Figure 9b). The results demonstrate that the better
interconnect combined with a more sophisticated transfer logic [8]
signi�cantly mitigates the drawbacks of ‘cold’ data on the query
execution time.
Low cardinality tables (RQ1). Processing small tables typically
results in fast execution, which reduces the bene�ts of parallel com-
putation. In many cases, we can also expect low cardinality results
for aggregation queries, so the bene�t from hiding transfer costs is

0

500

1000

1500

2000

0 25 50 75 100

GPU Proportion

T
im

e
(m

s
)

Group count

100K

10K

1M

500K

5M

7M

(a) “Cold” (i.e., uncached) data.

0

500

1000

1500

0 25 50 75 100

GPU Proportion

T
im

e
(m

s
)

Group count

100K

10K

1M

500K

5M

7M

(b) “Hot” (i.e., cached) data.

Figure 8: Example of Q2 on 300M rows and 32 Fragments

running on Machine 1.

Table 1: Testbed setup.

Machine 1 Machine 2

CPU Intel Xeon 6226R (64 cores) 2x Intel Xeon 8468 (32 cores)
GPU NVIDIA Quadro RTX 6000 Intel GPU Max Series 1100
RAM 96 GB DDR4-2933 MHz 1 TB DDR5-4800 MHz
PCI-e x16 PCI Express 3 x16 PCI Express 5

also minimal. Indeed, for small tables, the pipelines execute so fast
on either device that execution-independent system components
start to play a signi�cant role. Consider the compilation: additional
steps for GPU (cf. Figure 5) mean that the compilation is typically
slightly longer than for CPUs. Even with parallel compilation, this
disparity introduces an additional execution-invariant overhead.
Other examples include initializing CPU bu�ers and merging ker-
nels’ results; each can take longer than the execution or result
transfer. Therefore, to pay o�, heterogeneous aggregations in HDK
require su�ciently large tables, typically consisting of millions of
rows.
Data properties (RQ1). We also observe that the optimal fragment
size depends on the analyzed data, which can signi�cantly impact

Heterogeneous Intra-Pipeline Device-Parallel Aggregations DaMoN ’24, June 10, 2024, Santiago, AA, Chile

0

200

400

600

0 25 50 75 100
GPU Proportion

T
im

e
(m

s
)

Group count

10K

100K

500K

1M

5M

7M

(a) Machine 1 (PCIe 3.0).

0

200

400

600

0 25 50 75 100
GPU Proportion

T
im

e
(m

s
)

Group count

10K

100K

500K

1M

5M

7M

(b) Machine 2 (PCIe 5.0).

Figure 9: Time di�erence ∆(t_cold_run − t_hot_run) for Q1

on 300M rows and 64 Fragments.

the query execution time. Figure 4 shows that the result size (i.e.,
the number of groups) also impacts the execution time of CPU-
and GPU-based execution. For example, we expect that CPU-only
execution bene�ts from an increasing number of fragments due to
more concurrent execution. Interestingly, Figure 4 demonstrates
that this expectation does not always hold. For instance, the query
returning 7M result groups executed faster on the CPU using fewer
fragments, which needs a more thorough investigation.

Some logical steps of query processing cannot be avoided. For
example, aggregation results can overlap and must be merged after
the local aggregations have �nished. In Figure 10, we investigate
the merging and execution time of an aggregation query when
executed on a CPU for di�erent numbers of fragments. We can
observe a linear dependence between the number of fragments and
the merging time. Notably, the CPU execution time decreases when
the fragment count is reduced to 16, which is fewer than the 64
available CPU cores.

Initially, we expected the fragment count to at least equal the
number of CPU cores to leverage parallelism fully. However, we dis-
covered that the primary factor in�uencing the CPU execution time
is the initialization of the hash tables per kernel. The size of each
hash table is based on the estimated number of distinct elements in
a column. As a result, hash tables are often larger than necessary,
and multiple threads initializing their large bu�ers concurrently
can saturate the memory bandwidth. Therefore, in this case, having

0.00

0.25

0.50

0.75

1.00

8 16 32 64 128

Number of Fragments

R
e
la

ti
ve

 e
xe

c
u
ti
o
n
 t
im

e
 p

ro
p
o
rt

io
n Measured operation

Result Set Merge

CPU Execution Time

Figure 10: CPU aggregation on 200M rows and 7M result

groups on Machine 1.

0

1000

2000

0 25 50 75 100
GPU Proportion

T
im

e
 (

m
s
)

Best execution mode

CPU
GPU
Heterogen.

Group count

300
10K
100K
500K
1M
5M
7M

(a) Machine 1, Query 2, 128 fragments.

0

2500

5000

7500

10000

12500

0 25 50 75 100
GPU Proportion

T
im

e
 (

m
s
)

Best execution mode

CPU
GPU
Heterogen.

Group count

300
10K
100K
500K
1M
5M
7M

(b) Machine 2, Query 1, 64 fragments.

Figure 11: Example queries 1 and 2 executed on machines

1 and 2 over 300M rows for di�erent result group numbers.

The x-axis shows the amount of data the GPU processed.

fewer threads can improve CPU execution time despite using less
parallelism. This demonstrates that more fragments do not always
improve CPU performance but can lead to longer merge times.

The CPU processing in the original OmnisciDB struggles with
smaller fragments. To combat merging issues, we may reside in
a hash partitioning scheme [13]; early attempts showed little im-
provement in the end-to-end time of various workloads.
Aggregation Analysis (RQ2). Figure 11 investigates the impact of
the data proportion executed by the GPU for di�erent result group
counts on the query execution time. Figure 11a shows the results
for running Q2 on Machine 1 for 300M rows and 128 fragments,
and Figure 11b shows the results for Q1 running on Machine 2 for
300M rows and 64 fragments. In both experiments, each line rep-
resents the execution time for a di�erent number of result groups
after the aggregation. We exclude compilation times from the re-
ported measurements, as the query remains unchanged. The results

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Kroviakov et al.

highlight how heterogeneous aggregations with varying proper-
ties favor di�erent execution settings. The line styles indicate the
optimal execution mode, e.g., dotted lines indicate that CPU-only
execution performed best, and dashed lines indicate that GPU-only
execution performed best. Solid lines show the cases where hetero-
geneous execution yielded the lowest execution time. The presence
of heterogeneous mode for both machines indicates heterogeneous
acceleration, as expected per our analysis earlier.

The observed device preferences at speci�c group sizes not only
depend on the merging behavior but also on the device’s properties
and the operator implementation. When we have a low number of
unique elements (e.g., 300) in a big table, many GPU threads will
try to access the same memory, and the synchronization overhead
makes the CPU a better choice. On the other hand, many distinct
elements may cause issues during the CPU-resident result merging.
Balancing opportunities (RQ3). Intra-pipeline device parallelism
o�ers another edge in balancing capabilities. For example, we may
balance out the negative impact of the increased table size by vary-
ing the device proportions. Figure 12 shows how heterogeneous
pipeline execution helps to amortize the execution time better than
device-exclusive runs when the dataset doubles in size. Notice the
hotspots in the upper and lower rows in Figure 12. They indicate
that doubling the dataset size imposes a larger performance penalty
when executing device-exclusively. In contrast, the area between
the upper and lower rows shows milder performance reductions
compared to device-exclusive execution

0

10

20

30

40

50

60

70

80

90

100

300 1K 10K 100K 1M 5M 7M
Group count

G
P

U
 d

a
ta

 p
ro

p
o
rt

io
n

Execution time delta %,
 lower is better

20

40

60

80

Figure 12: Time di�erence (in %) of aggregations after dou-

bling the data size from 100M rows to 200M rows. Machine 1,

Query 2, 64 fragments.

Discussion. We conclude that the determining factors for hetero-
geneity bene�t in aggregations are: the input table cardinality, the
number of groups, the number of results for CPU, and the output
size for GPU. In such a system, when we improve the execution
performance of one device, the "heterogeneity valley" shifts to a
di�erent set of query or data parameters.

6 CONCLUSIONS

This paper presented a new approach to enable device-parallel ag-
gregations in heterogeneous database systems with fragment-based
parallelism. Our system-level integration into HDK in Section 4 has
shown that our ideas can be transferred to a real system. Further-
more, a comparison between heterogeneous and device-exclusive

execution showed query performance improvements by up to 1.5x
compared to the fastest executor (CPU or GPU) as well as the amor-
tization capacity for increasing input cardinalities.

Outlook. In the context of the presented system, the ad-
vent of multi-GPU deployments alongside advanced interconnects
promises signi�cant scalability improvements. This is primarily
due to the utilization of DMA for CPU-GPU transfers and the sys-
tem infrastructure’s support for device-to-device fragment passing.
Furthermore, it would be interesting to investigate the impact of
Heterogeneous Memory Management (HMM) support for CUDA
devices. Comparing this to explicit fragment/morsel caching in
systems equipped with modern interconnects, such as PCI Express
5, could provide valuable insights into task elasticity, which is a
fundamental aspect of heterogeneous execution.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.

REFERENCES
[1] 2024. Apache Arrow. https://arrow.apache.org/ Accessed on 16.02.2024.
[2] 2024. CUDA Driver API. https://docs.nvidia.com/cuda/cuda-driver-

api/ Accessed on 07.02.2024.
[3] 2024. HDK. https://github.com/intel-ai/hdk Accessed on 16.02.2024.
[4] 2024. Heavy.AI. https://www.heavy.ai/ Accessed on 07.02.2024.
[5] 2024. Intel Graphics Compiler. https://github.com/intel/intel-graphics-

compiler Accessed on 08.02.2024.
[6] 2024. NVIDIA CUDA Compiler. https://docs.nvidia.com/cuda/cuda-

compiler-driver-nvcc/index.html Accessed on 08.02.2024.
[7] 2024. OneAPI Level Zero Speci�cation. https://spec.oneapi.io/level-

zero/latest/index.html Accessed on 07.02.2024.
[8] 2024. Pull request with a transfer scheme improvement proposal. https:

//github.com/intel-ai/hdk/pull/711 Accessed on 07.05.2024.
[9] 2024. SYCL. https://www.khronos.org/sycl/ Accessed on 07.02.2024.
[10] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. arXiv:1603.04467 [cs.DC]

[11] Hartwig Anzt, Yuhsiang M. Tsai, Ahmad Abdelfattah, Terry Cojean, and Jack
Dongarra. 2020. Evaluating the Performance of NVIDIA’s A100 Ampere GPU
for Sparse and Batched Computations. In 2020 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS).
26–38. https://doi.org/10.1109/PMBS51919.2020.00009

[12] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. 2006. The Landscape of
Parallel Computing Research: A View from Berkeley. Technical Report UCB/EECS-
2006-183. EECS Department, University of California, Berkeley. http://www2.

eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[13] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware.
In 2013 IEEE 29th International Conference on Data Engineering (ICDE). 362–373.
https://doi.org/10.1109/ICDE.2013.6544839

[14] Sebastian Breß. 2013. Why it is time for a HyPE: A Hybrid Query Processing
Engine for E�cient GPU Coprocessing in DBMS. Proc. VLDB Endow. 6, 12 (2013),
1398–1403. https://doi.org/10.14778/2536274.2536325

[15] Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust Query Processing
in Co-Processor-Accelerated Databases. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 1891–1906.
https://doi.org/10.1145/2882903.2882936

[16] Sebastian Breß, Max Heimel, Michael Saecker, Bastian Köcher, Volker Markl, and
Gunter Saake. 2014. Ocelot/HyPE: Optimized Data Processing on Heterogeneous
Hardware. Proc. VLDB Endow. 7, 13 (2014), 1609–1612. https://doi.org/10.

14778/2733004.2733042

https://arrow.apache.org/
https://docs.nvidia.com/cuda/cuda-driver-api/
https://docs.nvidia.com/cuda/cuda-driver-api/
https://github.com/intel-ai/hdk
https://www.heavy.ai/
https://github.com/intel/intel-graphics-compiler
https://github.com/intel/intel-graphics-compiler
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://spec.oneapi.io/level-zero/latest/index.html
https://spec.oneapi.io/level-zero/latest/index.html
https://github.com/intel-ai/hdk/pull/711
https://github.com/intel-ai/hdk/pull/711
https://www.khronos.org/sycl/
https://arxiv.org/abs/1603.04467
https://doi.org/10.1109/PMBS51919.2020.00009
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.14778/2536274.2536325
https://doi.org/10.1145/2882903.2882936
https://doi.org/10.14778/2733004.2733042
https://doi.org/10.14778/2733004.2733042

Heterogeneous Intra-Pipeline Device-Parallel Aggregations DaMoN ’24, June 10, 2024, Santiago, AA, Chile

[17] Sebastian Breß, Norbert Siegmund, Ladjel Bellatreche, and Gunter Saake. 2013.
An Operator-Stream-Based Scheduling Engine for E�ective GPU Coprocessing.
In Advances in Databases and Information Systems, Barbara Catania, Giovanna
Guerrini, and Jaroslav Pokorný (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 288–301.

[18] S. Breß, Igor Geist, E. Schallehn, M. Mory, and Gunter Saake. 2012. A framework
for cost based optimization of hybrid CPU/GPU query plans in database systems.
Control and Cybernetics 41 (01 2012), 715–742.

[19] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter
Saake. 2014. GPU-Accelerated Database Systems: Survey and Open Challenges.
Vol. 8920. 1–35. https://doi.org/10.1007/978-3-662-45761-0_1

[20] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim. 2023.
GPU Database Systems Characterization and Optimization. Proc. VLDB Endow.
17, 3 (nov 2023), 441–454. https://doi.org/10.14778/3632093.3632107

[21] Periklis Chrysogelos, Manos Karpathiotakis, R. Appuswamy, and Anastasia Aila-
maki. 2019. HetExchange: encapsulating heterogeneous CPU-GPU parallelism in
JIT compiled engines. Proceedings of the VLDB Endowment 12 (01 2019), 544–556.
https://doi.org/10.14778/3303753.3303760

[22] Hawon Chu, Seounghyun Kim, Joo-Young Lee, and Young-Kyoon Suh. 2020.
Empirical evaluation across multiple GPU-accelerated DBMSes. In Proceedings of
the 16th International Workshop on Data Management on New Hardware (Portland,
Oregon) (DaMoN ’20). Association for Computing Machinery, New York, NY,
USA, Article 16, 3 pages. https://doi.org/10.1145/3399666.3399907

[23] Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, Garret Swart, and Weiwei
Gong. 2019. A Morsel-Driven Query Execution Engine for Heterogeneous Multi-
Cores. Proc. VLDB Endow. 12, 12 (2019), 2218–2229.

[24] Emily Furst, Mark Oskin, and Bill Howe. 2017. Pro�ling a GPU Database Im-
plementation: A Holistic View of GPU Resource Utilization on TPC-H Queries.
In Proceedings of the 13th International Workshop on Data Management on New
Hardware (Chicago, Illinois) (DAMON ’17). Association for ComputingMachinery,
New York, NY, USA, Article 3, 6 pages. https://doi.org/10.1145/3076113.

3076119

[25] Wilfred Gomes, Altug Koker, Pat Stover, Doug Ingerly, Scott Siers, Srikrishnan
Venkataraman, Chris Pelto, Tejas Shah, Amreesh Rao, Frank O’Mahony, Eric Karl,
Lance Cheney, Iqbal Rajwani, Hemant Jain, Ryan Cortez, Arun Chandrasekhar,
Basavaraj Kanthi, and Raja Koduri. 2022. Ponte Vecchio: A Multi-Tile 3D Stacked
Processor for Exascale Computing. In 2022 IEEE International Solid-State Circuits
Conference (ISSCC), Vol. 65. 42–44. https://doi.org/10.1109/ISSCC42614.

2022.9731673

[26] Goetz Graefe. 1990. Encapsulation of parallelism in the Volcano query processing
system. In Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data (Atlantic City, New Jersey, USA) (SIGMOD ’90). Association
for Computing Machinery, New York, NY, USA, 102–111. https://doi.org/

10.1145/93597.98720

[27] Chris Gregg and Kim Hazelwood. 2011. Where is the data? Why you cannot
debate CPU vs. GPU performance without the answer. ISPASS 2011 - IEEE
International Symposium on Performance Analysis of Systems and Software, 134–
144. https://doi.org/10.1109/ISPASS.2011.5762730

[28] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. 2009. Relational Query Coprocessing on Graphics Processors.
ACM Trans. Database Syst. 34, 4, Article 21 (dec 2009), 39 pages. https://doi.

org/10.1145/1620585.1620588

[29] Jiong He, Mian Lu, and Bingsheng He. 2013. Revisiting Co-Processing for Hash
Joins on the Coupled CPU-GPU Architecture. Proc. VLDB Endow. 6, 10 (aug 2013),
889–900. https://doi.org/10.14778/2536206.2536216

[30] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
2013. Hardware-Oblivious Parallelism for In-Memory Column-Stores. Proceedings
of the VLDB Endowment 6 (08 2013). https://doi.org/10.14778/2536360.

2536370

[31] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cli�ord Young,
Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically
Recon�gurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, Article 82, 14 pages. https://doi.org/10.

1145/3579371.3589350

[32] Homin Kang, Jaehong Lee, and Duksu Kim. 2021. HI-FFT: Heterogeneous Parallel
In-place Algorithm for Large-scale 2D-FFT. IEEE Access PP (08 2021), 1–1. https:
//doi.org/10.1109/ACCESS.2021.3108404

[33] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive Work
Placement for Query Processing on Heterogeneous Computing Resources. Proc.
VLDB Endow. 10, 7 (mar 2017), 733–744. https://doi.org/10.14778/3067421.

3067423

[34] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-Based Hybrid
Stream Processing for Heterogeneous Architectures. In Proceedings of the 2016
International Conference on Management of Data (San Francisco, California,

USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,
555–569. https://doi.org/10.1145/2882903.2882906

[35] Petr Kurapov and Areg Melik-Adamyan. 2023. Analytical Queries: A Compre-
hensive Survey. arXiv:2311.15730 [cs.DB]

[36] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for Com-
puting Machinery, New York, NY, USA, 743–754. https://doi.org/10.1145/

2588555.2610507

[37] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R. Tallent,
and Kevin J. Barker. 2020. Evaluating Modern GPU Interconnect: PCIe, NVLink,
NV-SLI, NVSwitch and GPUDirect. IEEE Transactions on Parallel and Distributed
Systems 31, 1 (2020), 94–110. https://doi.org/10.1109/TPDS.2019.2928289

[38] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2016. Hippogri�DB: Balancing I/O and GPU Bandwidth in Big Data
Analytics. Proc. VLDB Endow. 9, 14 (oct 2016), 1647–1658. https://doi.org/

10.14778/3007328.3007331

[39] Clemens Lutz, Sebastian Breß, Ste�en Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-
connects. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Comput-
ing Machinery, New York, NY, USA, 1633–1649. https://doi.org/10.1145/

3318464.3389705

[40] Sparsh Mittal and Je�rey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Comput. Surv. 47, 4, Article 69 (jul 2015), 35 pages.
https://doi.org/10.1145/2788396

[41] Tobias Mühlbauer, Wolf Rödiger, Robert Seilbeck, Alfons Kemper, and Thomas
Neumann. 2014. Heterogeneity-Conscious Parallel Query Execution: Getting a
Better Mileage While Driving Faster!. In Proceedings of the Tenth International
Workshop on Data Management on New Hardware (Snowbird, Utah) (DaMoN ’14).
Association for Computing Machinery, New York, NY, USA, Article 2, 10 pages.
https://doi.org/10.1145/2619228.2619230

[42] Yasuhito Ogata, Toshio Endo, Naoya Maruyama, and Satoshi Matsuoka. 2008.
An e�cient, model-based CPU-GPU heterogeneous FFT library. (2008), 1–10.
https://doi.org/10.1109/IPDPS.2008.4536163

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703 [cs.LG]

[44] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-Based Pipelined
Query Processing Engine. In Proceedings of the 2016 International Conference on
Management of Data (San Francisco, California, USA) (SIGMOD ’16). Association
for Computing Machinery, New York, NY, USA, 1935–1950. https://doi.org/

10.1145/2882903.2915224

[45] Chrysogelos Periklis, Panagiotis Sioulas, andAnastasia Ailamaki. 2019. Hardware-
conscious Query Processing in GPU-accelerated Analytical Engines. In 9th Bi-
ennial Conference on Innovative Data Systems Research, CIDR 2019, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org. http:

//cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf

[46] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2022. Query Processing
on Heterogeneous CPU/GPU Systems. ACM Comput. Surv. 55, 1, Article 11 (jan
2022), 38 pages. https://doi.org/10.1145/3485126

[47] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machin-
ery, New York, NY, USA, 1617–1632. https://doi.org/10.1145/3318464.

3380595

[48] Marc Tallada and Enric Morancho. 2023. Heterogeneous programming using
OpenMP and CUDA/HIP for hybrid CPU-GPU scienti�c applications. The In-
ternational Journal of High Performance Computing Applications 37 (08 2023).
https://doi.org/10.1177/10943420231188079

[49] Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-Tuning Query
Scheduling for Analytical Workloads. In SIGMOD Conference. ACM, 1879–1891.

[50] Samuel Williams, Andrew Waterman, and David A. Patterson. 2009. Roo�ine: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[51] Bobbi W. Yogatama, Weiwei Gong, and Xiangyao Yu. 2022. Orchestrating Data
Placement and Query Execution in Heterogeneous CPU-GPU DBMS. Proc. VLDB
Endow. 15, 11 (jul 2022), 2491–2503. https://doi.org/10.14778/3551793.

3551809

[52] Bowen Zhang, Yanyan Shen, Yanmin Zhu, and Jiadi Yu. 2018. A GPU-Accelerated
Framework for Processing Trajectory Queries. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). 1037–1048. https://doi.org/10.1109/
ICDE.2018.00097

https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.14778/3632093.3632107
https://doi.org/10.14778/3303753.3303760
https://doi.org/10.1145/3399666.3399907
https://doi.org/10.1145/3076113.3076119
https://doi.org/10.1145/3076113.3076119
https://doi.org/10.1109/ISSCC42614.2022.9731673
https://doi.org/10.1109/ISSCC42614.2022.9731673
https://doi.org/10.1145/93597.98720
https://doi.org/10.1145/93597.98720
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.14778/2536206.2536216
https://doi.org/10.14778/2536360.2536370
https://doi.org/10.14778/2536360.2536370
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1109/ACCESS.2021.3108404
https://doi.org/10.1109/ACCESS.2021.3108404
https://doi.org/10.14778/3067421.3067423
https://doi.org/10.14778/3067421.3067423
https://doi.org/10.1145/2882903.2882906
https://arxiv.org/abs/2311.15730
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.14778/3007328.3007331
https://doi.org/10.14778/3007328.3007331
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/2788396
https://doi.org/10.1145/2619228.2619230
https://doi.org/10.1109/IPDPS.2008.4536163
https://arxiv.org/abs/1912.01703
https://doi.org/10.1145/2882903.2915224
https://doi.org/10.1145/2882903.2915224
http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
https://doi.org/10.1145/3485126
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1177/10943420231188079
https://doi.org/10.14778/3551793.3551809
https://doi.org/10.14778/3551793.3551809
https://doi.org/10.1109/ICDE.2018.00097
https://doi.org/10.1109/ICDE.2018.00097

DaMoN ’24, June 10, 2024, Santiago, AA, Chile Kroviakov et al.

[53] Feng Zhang, Lin Yang, Shuhao Zhang, Bingsheng He, Wei Lu, and Xiaoyong
Du. 2020. FineStream: Fine-Grained Window-Based Stream Processing on CPU-
GPU Integrated Architectures. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 633–647. https://www.usenix.org/

conference/atc20/presentation/zhang-feng

[54] Yansong Zhang, Yu Zhang, Jiaheng Lu, Shan Wang, Zhuan Liu, and Ruichen
Han. 2020. One size does not �t all: accelerating OLAP workloads with GPUs.
Distributed and Parallel Databases 38 (12 2020). https://doi.org/10.1007/

s10619-020-07304-z

https://www.usenix.org/conference/atc20/presentation/zhang-feng
https://www.usenix.org/conference/atc20/presentation/zhang-feng
https://doi.org/10.1007/s10619-020-07304-z
https://doi.org/10.1007/s10619-020-07304-z

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Implementation in HDK
	5 Evaluation
	6 Conclusions
	Acknowledgments
	References

