
Programming Fully Disaggregated Systems

Christoph Anneser, Lukas Vogel, Ferdinand Gruber, Maximilian Bandle, Jana Giceva
School of Computation, Information and Technology
Technical University of Munich

19th Workshop on Hot Topics in Operating Systems
Providence, Rhode Island, USA
22–24 June 2023

Motivation

CXL
DRAM

DRAM

1 DRAM2

TPU

CPU

1 CPU2

FPGA GPU1 GPU2

PMEM GDDR1 GDDR2

PCIe / CXL PCIe / CXL

Table: Memory device properties as seen from a CPU.
Name Bw. Lat. Gran. Attached Sync Persist.
Cache ++ ++ 1 B CPU ✓ ✗

HBM ++ + 64 B CPU ✓ ✗

DRAM + + 64 B CPU ✓ ✗

PMem ◦ ◦ 256 B CPU ✓ ✓

CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗

Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗

SSD − − 4 KiB PCIe ✗ ✓

HDD −− −− 4 KiB SATA ✗ ✓

⇒ How can we develop & optimize applications for heterogeneous, disaggregated environments?

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 2

Motivation

CXL
DRAM

DRAM1 DRAM2

TPU CPU1 CPU2

FPGA GPU1 GPU2

PMEM GDDR1 GDDR2

PCIe

/ CXL

PCIe

/ CXL

Table: Memory device properties as seen from a CPU.
Name Bw. Lat. Gran. Attached Sync Persist.
Cache ++ ++ 1 B CPU ✓ ✗

HBM ++ + 64 B CPU ✓ ✗

DRAM + + 64 B CPU ✓ ✗

PMem ◦ ◦ 256 B CPU ✓ ✓

CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗

Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗

SSD − − 4 KiB PCIe ✗ ✓

HDD −− −− 4 KiB SATA ✗ ✓

⇒ How can we develop & optimize applications for heterogeneous, disaggregated environments?

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 2

Motivation

CXL
DRAM

DRAM1 DRAM2

TPU CPU1 CPU2

FPGA GPU1 GPU2

PMEM GDDR1 GDDR2

PCIe / CXL PCIe / CXL

Table: Memory device properties as seen from a CPU.
Name Bw. Lat. Gran. Attached Sync Persist.
Cache ++ ++ 1 B CPU ✓ ✗

HBM ++ + 64 B CPU ✓ ✗

DRAM + + 64 B CPU ✓ ✗

PMem ◦ ◦ 256 B CPU ✓ ✓

CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗

Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗

SSD − − 4 KiB PCIe ✗ ✓

HDD −− −− 4 KiB SATA ✗ ✓

⇒ How can we develop & optimize applications for heterogeneous, disaggregated environments?

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 2

Motivation

CXL
DRAM

DRAM1 DRAM2

TPU CPU1 CPU2

FPGA GPU1 GPU2

PMEM GDDR1 GDDR2

PCIe / CXL PCIe / CXL

Table: Memory device properties as seen from a CPU.
Name Bw. Lat. Gran. Attached Sync Persist.
Cache ++ ++ 1 B CPU ✓ ✗

HBM ++ + 64 B CPU ✓ ✗

DRAM + + 64 B CPU ✓ ✗

PMem ◦ ◦ 256 B CPU ✓ ✓

CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗

Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗

SSD − − 4 KiB PCIe ✗ ✓

HDD −− −− 4 KiB SATA ✗ ✓

⇒ How can we develop & optimize applications for heterogeneous, disaggregated environments?

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 2

Motivation

CXL
DRAM

DRAM1 DRAM2

TPU CPU1 CPU2

FPGA GPU1 GPU2

PMEM GDDR1 GDDR2

PCIe / CXL PCIe / CXL

Table: Memory device properties as seen from a CPU.
Name Bw. Lat. Gran. Attached Sync Persist.
Cache ++ ++ 1 B CPU ✓ ✗

HBM ++ + 64 B CPU ✓ ✗

DRAM + + 64 B CPU ✓ ✗

PMem ◦ ◦ 256 B CPU ✓ ✓

CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗

Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗

SSD − − 4 KiB PCIe ✗ ✓

HDD −− −− 4 KiB SATA ✗ ✓

⇒ How can we develop & optimize applications for heterogeneous, disaggregated environments?

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 2

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!
– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!
– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!
– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!
– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!
– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!

– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1

M
R

2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!

– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1

M
R

2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!

– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!

– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!
– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 3

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 4

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to

– Memory Regions
– Tasks
– Pipelines
– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to

– Memory Regions
– Tasks
– Pipelines
– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to

– Memory Regions
– Tasks
– Pipelines
– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to

– Memory Regions
– Tasks
– Pipelines
– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to

– Memory Regions
– Tasks
– Pipelines
– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to
– Memory Regions

– Tasks
– Pipelines
– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to
– Memory Regions
– Tasks

– Pipelines
– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to
– Memory Regions
– Tasks
– Pipelines

– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to
– Memory Regions
– Tasks
– Pipelines
– Jobs

– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Dataflow Systems on Disaggregated Systems

Declaratively attach properties to
– Memory Regions
– Tasks
– Pipelines
– Jobs
– Applications

Job1

Job2

. . .

T1

T2

T3

T4

T5

Pipeline

co
nfi

de
nt

ia
l

m
at

er
ia

liz
e

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 5

Typed Memory Regions [2]

Dataflow applications use memory for . . .

. . . Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

. . . Exchanging Data (e.g. Caching)
– Properties: coherent, async

. . . Thread-local State
– Properties: non-coherent, sync, fast

⇒ Global State

⇒ Global Scratch

⇒ Private Scratch

[2] Gog et al.: “Broom: Sweeping Out Garbage Collection from Big Data Systems” (2015)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 6

Typed Memory Regions [2]

Dataflow applications use memory for . . .

. . . Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

. . . Exchanging Data (e.g. Caching)
– Properties: coherent, async

. . . Thread-local State
– Properties: non-coherent, sync, fast

⇒ Global State

⇒ Global Scratch

⇒ Private Scratch

[2] Gog et al.: “Broom: Sweeping Out Garbage Collection from Big Data Systems” (2015)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 6

Typed Memory Regions [2]

Dataflow applications use memory for . . .

. . . Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

. . . Exchanging Data (e.g. Caching)
– Properties: coherent, async

. . . Thread-local State
– Properties: non-coherent, sync, fast

⇒ Global State

⇒ Global Scratch

⇒ Private Scratch

[2] Gog et al.: “Broom: Sweeping Out Garbage Collection from Big Data Systems” (2015)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 6

Typed Memory Regions [2]

Dataflow applications use memory for . . .

. . . Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

. . . Exchanging Data (e.g. Caching)
– Properties: coherent, async

. . . Thread-local State
– Properties: non-coherent, sync, fast

⇒ Global State

⇒ Global Scratch

⇒ Private Scratch

[2] Gog et al.: “Broom: Sweeping Out Garbage Collection from Big Data Systems” (2015)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 6

Typed Memory Regions [2]

Dataflow applications use memory for . . .

. . . Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

. . . Exchanging Data (e.g. Caching)
– Properties: coherent, async

. . . Thread-local State
– Properties: non-coherent, sync, fast

⇒ Global State

⇒ Global Scratch

⇒ Private Scratch

[2] Gog et al.: “Broom: Sweeping Out Garbage Collection from Big Data Systems” (2015)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 6

Typed Memory Regions [2]

Dataflow applications use memory for . . .

. . . Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

. . . Exchanging Data (e.g. Caching)
– Properties: coherent, async

. . . Thread-local State
– Properties: non-coherent, sync, fast

⇒ Global State

⇒ Global Scratch

⇒ Private Scratch

[2] Gog et al.: “Broom: Sweeping Out Garbage Collection from Big Data Systems” (2015)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 6

Typed Memory Regions [2]

Dataflow applications use memory for . . .

. . . Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

. . . Exchanging Data (e.g. Caching)
– Properties: coherent, async

. . . Thread-local State
– Properties: non-coherent, sync, fast

⇒ Global State

⇒ Global Scratch

⇒ Private Scratch

[2] Gog et al.: “Broom: Sweeping Out Garbage Collection from Big Data Systems” (2015)

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 6

Typed Memory Regions – cont’d

How will different application types use the Typed Memory Regions?

Priv. Scratch Glob. State Glob. Scratch

DBMS
operator state

(hashtables, . . .)
synchronization

(locks, . . .)
(temp) indexes,

caches

ML/AI
model training

state
metadata,

worker state
input data,

cached transf. data

HPC
node-local

working mem.
job metadata,
node states

object/blob
storage

Streaming
cache/buffer
(send, recv.)

cluster/worker
state

result/data
cache

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 7

Typed Memory Regions – cont’d

How will different application types use the Typed Memory Regions?

Priv. Scratch Glob. State Glob. Scratch

DBMS
operator state

(hashtables, . . .)
synchronization

(locks, . . .)
(temp) indexes,

caches

ML/AI
model training

state
metadata,

worker state
input data,

cached transf. data

HPC
node-local

working mem.
job metadata,
node states

object/blob
storage

Streaming
cache/buffer
(send, recv.)

cluster/worker
state

result/data
cache

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 7

Typed Memory Regions – cont’d

How will different application types use the Typed Memory Regions?

Priv. Scratch Glob. State Glob. Scratch

DBMS
operator state

(hashtables, . . .)
synchronization

(locks, . . .)
(temp) indexes,

caches

ML/AI
model training

state
metadata,

worker state
input data,

cached transf. data

HPC
node-local

working mem.
job metadata,
node states

object/blob
storage

Streaming
cache/buffer
(send, recv.)

cluster/worker
state

result/data
cache

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 7

Typed Memory Regions – cont’d

How will different application types use the Typed Memory Regions?

Priv. Scratch Glob. State Glob. Scratch

DBMS
operator state

(hashtables, . . .)
synchronization

(locks, . . .)
(temp) indexes,

caches

ML/AI
model training

state
metadata,

worker state
input data,

cached transf. data

HPC
node-local

working mem.
job metadata,
node states

object/blob
storage

Streaming
cache/buffer
(send, recv.)

cluster/worker
state

result/data
cache

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 7

Typed Memory Regions – cont’d

How will different application types use the Typed Memory Regions?

Priv. Scratch Glob. State Glob. Scratch

DBMS
operator state

(hashtables, . . .)
synchronization

(locks, . . .)
(temp) indexes,

caches

ML/AI
model training

state
metadata,

worker state
input data,

cached transf. data

HPC
node-local

working mem.
job metadata,
node states

object/blob
storage

Streaming
cache/buffer
(send, recv.)

cluster/worker
state

result/data
cache

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 7

Lifetime Management of Memory Regions

– Challenge: Memory Regions might outlive CPU/GPU/. . . Tasks/Processes
– Ownership of Memory Regions:

Unique Ownership Transfer Ownership Shared Ownership

Task Memory Regionown

Task 1

Task 2

Memory Region

own

Transfer Ownership

Task 1

Task 3

Memory Region

Task 2

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 8

Lifetime Management of Memory Regions

– Challenge: Memory Regions might outlive CPU/GPU/. . . Tasks/Processes

– Ownership of Memory Regions:

Unique Ownership Transfer Ownership Shared Ownership

Task Memory Regionown

Task 1

Task 2

Memory Region

own

Transfer Ownership

Task 1

Task 3

Memory Region

Task 2

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 8

Lifetime Management of Memory Regions

– Challenge: Memory Regions might outlive CPU/GPU/. . . Tasks/Processes
– Ownership of Memory Regions:

Unique Ownership

Transfer Ownership Shared Ownership

Task Memory Regionown

Task 1

Task 2

Memory Region

own

Transfer Ownership

Task 1

Task 3

Memory Region

Task 2

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 8

Lifetime Management of Memory Regions

– Challenge: Memory Regions might outlive CPU/GPU/. . . Tasks/Processes
– Ownership of Memory Regions:

Unique Ownership Transfer Ownership

Shared Ownership

Task Memory Regionown

Task 1

Task 2

Memory Region

own

Transfer Ownership

Task 1

Task 3

Memory Region

Task 2

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 8

Lifetime Management of Memory Regions

– Challenge: Memory Regions might outlive CPU/GPU/. . . Tasks/Processes
– Ownership of Memory Regions:

Unique Ownership Transfer Ownership Shared Ownership

Task Memory Regionown

Task 1

Task 2

Memory Region

own

Transfer Ownership

Task 1

Task 3

Memory Region

Task 2

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 8

Our Vision

Challenge: Developing dataflow applications for fully disaggregated systems

We propose a new programming model:

(1) A memory-centric view based on logical memory regions

(2) Requesting memory declaratively based on properties

(3) Typed memory regions

(4) A runtime system that co-optimizes data- and compute-placement

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 9

Our Vision

Challenge: Developing dataflow applications for fully disaggregated systems

We propose a new programming model:

(1) A memory-centric view based on logical memory regions

(2) Requesting memory declaratively based on properties

(3) Typed memory regions

(4) A runtime system that co-optimizes data- and compute-placement

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 9

Our Vision

Challenge: Developing dataflow applications for fully disaggregated systems

We propose a new programming model:

(1) A memory-centric view based on logical memory regions

(2) Requesting memory declaratively based on properties

(3) Typed memory regions

(4) A runtime system that co-optimizes data- and compute-placement

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 9

Our Vision

Challenge: Developing dataflow applications for fully disaggregated systems

We propose a new programming model:

(1) A memory-centric view based on logical memory regions

(2) Requesting memory declaratively based on properties

(3) Typed memory regions

(4) A runtime system that co-optimizes data- and compute-placement

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 9

The Way Forward

How can we turn our vision into a programing model?

(1) The Runtime System . . .
– What functionality is required from the RTS?

– Where should the RTS/control plane be placed?
– Page- or object-based memory allocations?
– What layer supports the RTS memory deployment?

(2) The Programming Model . . .

– Can we combine declarative and iterative concepts?

Thank you for your attention!
anneser@in.tum.de

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 10

mailto:anneser@in.tum.de

The Way Forward

How can we turn our vision into a programing model?

(1) The Runtime System . . .
– What functionality is required from the RTS?
– Where should the RTS/control plane be placed?

– Page- or object-based memory allocations?
– What layer supports the RTS memory deployment?

(2) The Programming Model . . .

– Can we combine declarative and iterative concepts?

Thank you for your attention!
anneser@in.tum.de

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 10

mailto:anneser@in.tum.de

The Way Forward

How can we turn our vision into a programing model?

(1) The Runtime System . . .
– What functionality is required from the RTS?
– Where should the RTS/control plane be placed?
– Page- or object-based memory allocations?

– What layer supports the RTS memory deployment?

(2) The Programming Model . . .

– Can we combine declarative and iterative concepts?

Thank you for your attention!
anneser@in.tum.de

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 10

mailto:anneser@in.tum.de

The Way Forward

How can we turn our vision into a programing model?

(1) The Runtime System . . .
– What functionality is required from the RTS?
– Where should the RTS/control plane be placed?
– Page- or object-based memory allocations?
– What layer supports the RTS memory deployment?

(2) The Programming Model . . .

– Can we combine declarative and iterative concepts?

Thank you for your attention!
anneser@in.tum.de

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 10

mailto:anneser@in.tum.de

The Way Forward

How can we turn our vision into a programing model?

(1) The Runtime System . . .
– What functionality is required from the RTS?
– Where should the RTS/control plane be placed?
– Page- or object-based memory allocations?
– What layer supports the RTS memory deployment?

(2) The Programming Model . . .

– Can we combine declarative and iterative concepts?

Thank you for your attention!
anneser@in.tum.de

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 10

mailto:anneser@in.tum.de

The Way Forward

How can we turn our vision into a programing model?

(1) The Runtime System . . .
– What functionality is required from the RTS?
– Where should the RTS/control plane be placed?
– Page- or object-based memory allocations?
– What layer supports the RTS memory deployment?

(2) The Programming Model . . .
– Can we combine declarative and iterative concepts?

Thank you for your attention!
anneser@in.tum.de

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 10

mailto:anneser@in.tum.de

The Way Forward

How can we turn our vision into a programing model?

(1) The Runtime System . . .
– What functionality is required from the RTS?
– Where should the RTS/control plane be placed?
– Page- or object-based memory allocations?
– What layer supports the RTS memory deployment?

(2) The Programming Model . . .
– Can we combine declarative and iterative concepts?

Thank you for your attention!
anneser@in.tum.de

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 10

mailto:anneser@in.tum.de

Sources

[1] David Gay and Alexander Aiken. “Memory Management with Explicit Regions”. In: PLDI. ACM, 1998, pp. 313–323.

[2] Ionel Gog et al. “Broom: Sweeping Out Garbage Collection from Big Data Systems”. In: HotOS. USENIX Association, 2015.

[3] Mads Tofte and Jean-Pierre Talpin. “Region-based Memory Management”. In: Inf. Comput. 132.2 (1997), pp. 109–176.

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 11

Roadmap

– Set-up the testbed
– Machine with CXL-support (e.g. Intel’s Sapphire Rapids)
– Identify suitable Workloads for CXL

– Dataflow over heterogeneous hardware
– Memory extension for large intermediate state

– Understand CXL’s performance implications through benchmarks

– Design and implement the RTS key components & building blocks
– CXL-enabled vmcache, overcoming the accelerator’s limited capacities
– Optimizer for data- and compute-placement

Christoph Anneser (TUM) | Programming Fully Disaggregated Systems | June 24, 2023 12

	References

