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Motivation
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PCIe / CXL PCIe / CXL

Table: Memory device properties as seen from a CPU.
Name Bw. Lat. Gran. Attached Sync Persist.
Cache ++ ++ 1 B CPU ✓ ✗

HBM ++ + 64 B CPU ✓ ✗

DRAM + + 64 B CPU ✓ ✗

PMem ◦ ◦ 256 B CPU ✓ ✓

CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗

Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗

SSD − − 4 KiB PCIe ✗ ✓

HDD −− −− 4 KiB SATA ✗ ✓

⇒ How can we develop & optimize applications for heterogeneous, disaggregated environments?
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CXL Enables a Memory-Centric View

– Leverage memory regions [1, 3] as abstraction layer for disaggregated memory!
– Memory Regions are logical view on physical memory!

DRAM 1 DRAM 2

PMEM CXL DRAM

Memory Pool

Abstraction Layer

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

M
R

1
M

R
2

Latency: low
Bandwidth: high

Latency: medium
Persistent: ✓

[1] Gay and Aiken: “Memory Management with Explicit Regions” (1998)
[3] Tofte and Talpin: “Region-based Memory Management” (1997)
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Mapping Memory Regions to Devices

– Task Placement

– Memory Region Properties:
MR1 : low lat., sync
MR2: low lat., persistent, async
MR3: low lat., high bandwith, sync

– Handovers:
MR1 : T0 Output, T1 Input
MR2: T1 Output, T2 Input

– Device Utilization

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 1Task 0 Task 2

MR1

MR2

MR3

GPU

Runtime System

Flexible mapping at runtime → Late Binding
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Dataflow Systems on Disaggregated Systems

Declaratively attach properties to

– Memory Regions
– Tasks
– Pipelines
– Jobs
– Applications
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Typed Memory Regions [2]

Dataflow applications use memory for . . .

. . . Communication
– Purpose: Syncing tasks, message passing, . . .
– Properties: coherent, sync

. . . Exchanging Data (e.g. Caching)
– Properties: coherent, async

. . . Thread-local State
– Properties: non-coherent, sync, fast

⇒ Global State

⇒ Global Scratch

⇒ Private Scratch

[2] Gog et al.: “Broom: Sweeping Out Garbage Collection from Big Data Systems” (2015)
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Typed Memory Regions – cont’d

How will different application types use the Typed Memory Regions?

Priv. Scratch Glob. State Glob. Scratch

DBMS
operator state

(hashtables, . . . )
synchronization

(locks, . . . )
(temp) indexes,

caches

ML/AI
model training

state
metadata,

worker state
input data,

cached transf. data

HPC
node-local

working mem.
job metadata,
node states

object/blob
storage

Streaming
cache/buffer
(send, recv.)

cluster/worker
state

result/data
cache
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Lifetime Management of Memory Regions

– Challenge: Memory Regions might outlive CPU/GPU/. . . Tasks/Processes
– Ownership of Memory Regions:

Unique Ownership Transfer Ownership Shared Ownership

Task Memory Regionown

Task 1

Task 2

Memory Region

own

Transfer Ownership

Task 1

Task 3

Memory Region

Task 2
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Our Vision

Challenge: Developing dataflow applications for fully disaggregated systems

We propose a new programming model:

(1) A memory-centric view based on logical memory regions

(2) Requesting memory declaratively based on properties

(3) Typed memory regions

(4) A runtime system that co-optimizes data- and compute-placement
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The Way Forward

How can we turn our vision into a programing model?

(1) The Runtime System . . .
– What functionality is required from the RTS?

– Where should the RTS/control plane be placed?
– Page- or object-based memory allocations?
– What layer supports the RTS memory deployment?

(2) The Programming Model . . .

– Can we combine declarative and iterative concepts?

Thank you for your attention!
anneser@in.tum.de
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Roadmap

– Set-up the testbed
– Machine with CXL-support (e.g. Intel’s Sapphire Rapids)
– Identify suitable Workloads for CXL

– Dataflow over heterogeneous hardware
– Memory extension for large intermediate state

– Understand CXL’s performance implications through benchmarks

– Design and implement the RTS key components & building blocks
– CXL-enabled vmcache, overcoming the accelerator’s limited capacities
– Optimizer for data- and compute-placement
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