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ABSTRACT
With today’s data deluge, approximate filters are particularly attrac-
tive to avoid expensive operations like remote data/disk accesses.
Among the many filter variants available, it is non-trivial to find
the most suitable one and its optimal configuration for a specific
use-case. We provide open-source implementations for the most
relevant filters (Bloom, Cuckoo, Morton, and Xor filters) and com-
pare them in four key dimensions: the false-positive rate, space
consumption, build, and lookup throughput.

We improve upon existing state-of-the-art implementations with
a new optimization, radix partitioning, which boosts the build and
lookup throughput for large filters by up to 9x and 5x. Our in-depth
evaluation first studies the impact of all available optimizations
separately before combining them to determine the optimal filter
for specific use-cases. While register-blocked Bloom filters offer
the highest throughput, the new Xor filters are best suited when
optimizing for small filter sizes or low false-positive rates.
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1 INTRODUCTION
As the volume of generated and processed data increases [41], effi-
cient access to only the relevant items is necessary. The goal is both
to achieve good performance for the executing workload and to
reduce overall pressure on data movement channels by only loading
necessary data from storage or over the network.

In this context, approximate filters are particularly useful as they
compactly represent the membership of elements in a set, however,
at the cost of having false positives. More specifically, the filter
always reports contained items as members, i.e., there are no false
negatives. For items that are not in the set, the filter returns incorrect
results with a certain probability, the false-positive rate 𝜀. Small
filters can fit in a higher level of the storage (memory) hierarchy,
leading to faster access times and lower bandwidth consumption,
putting less pressure on the rest of the system’s resources.
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Figure 1: Speedup gained by optimizing insert and lookup
operations for 100M keys.

It is therefore not a surprise that filters are often used to speed
up applications. Log-structured merge (LSM) trees, for instance,
check the filter before fetching a page from disk [31]. In databases,
filters improve query execution through selective join pushdown,
which drops tuples not needed for probing early in the pipeline [28].
Other applications include distributed joins or network applications,
where filters reduce the amount of transferred data [13, 27].

We distinguish between two filter families: Bloom filter variants
and fingerprint filters. The Bloom filter accesses several bits in
a bitmap on lookup or insert [6] and is the most popular filter
today [32]. However, fingerprint filters have recently emerged,
which store small signatures of the key in a hash table-like structure.
They are smaller in size and have lower false-positive rates than
Bloom filters, at the cost of higher access latencies. Some of themore
notable fingerprint filters are the Quotient [5], the Cuckoo [21], the
Morton filter [11], and more recently, the Xor filter [24].

With this plethora of available alternatives, it is unclearwhich fil-
ter to usewhen. Very often, one has to consider multiple dimensions
that are relevant to the use-case in mind. Thus, in this paper, we
evaluate the four most promising filters — Bloom, Cuckoo, Morton,
and Xor filters — on the following four key dimensions:

False-positive rate (FPR): it affects the application’s perfor-
mance and hints at the extra bandwidth overhead on shared
I/O resources.

Space consumption: we want to minimize the precious space
in caches/DRAM to store auxiliary data structures.

Lookup performance: it directly affects the performance of
the application.

Build performance: the time it takes to construct the filter.

All four aspects are closely interlinked, and improving one di-
mension may result in a decline in another (e.g., reducing the FPR
may necessitate an increase in size). Which dimension to prioritize
when choosing the most suitable filter is application-specific. On
the one hand, LSM-Trees primarily aim to reduce the FPR to avoid
unnecessary expensive I/O operations while limiting the memory
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Figure 2: Performance with 100M elements (10 threads).

assigned to the filters [17]. On the other hand, an in-memory join
cares more about lookup performance than filter size.

Unfortunately, a fair comparison between the filters is not pos-
sible today, as most authors introduced different optimizations in
their implementations [24, 28, 48].We therefore provide open-source
implementations for all filters and integrate all relevant optimiza-
tions. Furthermore, we apply a new optimization, radix partition-
ing [7, 46], that considerably increases build/lookup performance
for all filters when their size exceeds the last-level cache. Figure 1
shows the performance of state-of-the-art baselines compared to the
acceleration we get with vectorization and partitioning. However,
as not all optimizations are always applicable and usually entail
tradeoffs, we also investigate when to apply which optimization.

In the second part of the paper, we compare the performance
of several Bloom filter variants and the three fingerprint filters.
Figure 2 (left) shows which filter performs best for a given FPR and
filter size. Figure 2 (right) shows how each filter performs for a fixed
size. Here, an LSM-Tree would prefer one of the fingerprint filters
(e.g., Cuckoo or Xor) as they offer low FPRs with good performance
under a strict memory budget. In contrast, in-memory joins would
favor the Bloom filter, as it achieves twice the performance and the
cost of a false positive is rather inexpensive [28].

The rest of this paper is organized as follows. We first give a
brief overview of prior work before introducing the filters and their
implementation in Section 3. In Section 4, we describe the optimiza-
tions we applied and evaluate the impact of each optimization on
the baseline. Finally, in Section 5, we evaluate the filters for the four
key dimensions and propose guidelines for choosing the right filter
and which optimizations to enable.

2 RELATEDWORK
The Bloom filter was first presented in 1970 [6]. Since then, more
than 60 variants have been proposed [32]. Most of them extend
the functionality to support deleting keys [15, 22, 44] or resizing
the filter [2, 25]. Others tailor it to specific use cases, such as net-
work applications [23, 34, 45]. However, more functionality usually
results in reduced throughput, larger filter size, or higher FPRs.
We, instead, focus on variants that improve the performance with
optimizations like blocking [40] or sectorization [30].

Bonomi et al. [8] improved the space efficiency of counting
Bloom filters [22] that support deletions using fingerprints and
d-left hashing [47]. However, their fingerprint filter was still infe-
rior to the vanilla Bloom filter, using twice the space. The Quotient
filter [5] and the Cuckoo filter [21] recently revived this idea and
increased the lookup throughput compared to the original Bloom

filter using optimized hash table structures. The counting Quotient
filter [37] and Morton filter [11] improve the space efficiency of
hash table-based filters using a rank-based compression scheme.
For our analysis, we consider the Cuckoo and Morton filters, since
Quotient filters were repeatedly reported as suboptimal [21, 37, 48].
We also analyze the Xor filter [24], which promises high lookup
performance and low false-positive rates.

Over the years, there has been a lot of research and discussion on
which filter is the best. The key characteristics of interest are FPR,
space consumption, build, and lookup performance. Every filter
mentioned above shows improvements over the alternatives in at
least one dimension. However, these comparisons primarily focus
on the benefits of the newly introduced structures and optimiza-
tions. Breslow et al. [11], for example, demonstrated that batching
improves the performance of their Morton filter but did not apply it
to the Cuckoo filter. Lang et al. [28] provide the most extensive com-
parison of the Bloom and Cuckoo filters. Their performance-optimal
analysis, however, primarily focuses on FPR and lookup throughput.
Hence, it finds the optimal filter for performance-driven applica-
tions but fails to account for the memory footprint or excessive I/O
bandwidth usage. In contrast, our analysis considers all the relevant
characteristics for a wider range of filters.

3 APPROXIMATE FILTERS
All filters have two configuration parameters in common: the num-
ber of keys to insert 𝑛 and the fingerprint size 𝑘 . For Bloom filters,
𝑘 determines the number of bits to set/test for one key (often re-
ferred to as the number of hash functions). The minimum number
of bits𝑚 allocated to the filters is 𝑘 ⋅ 𝑛. However, while insertions
into Bloom filters always succeed, constructing a fingerprint filter
can fail if not enough memory is available. Therefore, we allocate
𝑠-times more memory than needed, i.e., 𝑚 = 𝑘 ⋅ 𝑛 ⋅ 𝑠 , and use
𝑘 ⋅ 𝑠 bits per key (𝑚/𝑛). Table 1 summarizes all parameters used
to configure the filters. A noteworthy difference between the two
filter classes is that increasing the data structure’s size improves
the false-positive rate only for Bloom filters. For fingerprint filters,
the size mainly decides whether the structure can be built at all and
has no significant impact on the false-positive rate.

In the following section, we provide a brief overview of the four
filters and their variants. We describe their implementation and the
changes we make to support arbitrary fingerprint sizes. Further-
more, we analyze the FPR in the two filter classes and empirically
determine the optimal values for the configuration parameters.

Table 1: Common configuration parameters

Symbol Description

𝑛 Number of elements to insert into filter.
𝑘 Number of bits to check / set (Bloom filter);

Fingerprint size in bits (Cuckoo, Morton, Xor filter)
𝑠 Memory scale factor:𝑚 = 𝑘 ⋅ 𝑛 ⋅ 𝑠 .
𝐵 Block size in bits (Bloom filter).
𝑊 Sector/word size in bits (Bloom filter).
𝑧 Number of groups per block (Bloom filter).
𝑏 Fingerprints per bucket (Cuckoo, Morton filter).



hash(𝑥)

index1 index2 index3 index4

𝑚 bits

hash(𝑥)

block idx1 idx2 idx3 idx4

𝐵 = 256 bits per block
𝑚 bits

hash(𝑥)

block idx1 idx2 idx3 idx4

𝑊 = 64 bits per sector
𝐵 = 256 bits per block

hash(𝑥)

block sector1 i1 i2 sector2 i3 i4

𝑧 = 2 sectors per group
2 groups per block

(a) Naïve (b) Blocked (𝐵 = 256) (c) Sectorized (𝐵 = 256,𝑊 = 64) (d) Cache-sectorized (𝐵 = 256,𝑊 =

64, 𝑧 = 2)
Figure 3: Access patterns for different Bloom filter variants.

3.1 Bloom Filter
We begin by analyzing the naïve Bloom filter [6], which consists of
an array of𝑚 bits. Each key inserted into the filter sets 𝑘 bits in the
array. We calculate the indices based on the key’s hash value. The
membership query tests if all 𝑘 bits are set. Therefore, the lower
bound for the false-positive rate [9] is

𝜀bloom = (1 − (1 − 1
𝑚
)
𝑘𝑛

)
𝑘

≈ (1 − 𝑒
−𝑘𝑛/𝑚)

𝑘
. (1)

For a fixed number of bits per key, the false-positive rate 𝜀bloom is
minimized by 𝑘 = ln 2 ⋅ (𝑚/𝑛) and, thus, 𝜀bloom ≈ 2−𝑘 [34]. As a
result, the optimal 𝑠 for the naïve Bloom filter is 1/ ln 2 ≈ 1.44.

Figure 3a illustrates the insert and lookup operations’ access pat-
terns for 𝑘 = 4. The performance correlates with two characteristics
of the filter: the number of hash bits required to compute the array
indices and the number of cache lines accessed. The number of
hash bits determines how often the hash function needs to be eval-
uated and thus the computational effort. For large filters, accessing
different cache lines results in cache and TLB misses. The number
of misses can be reduced by accessing a single cache line for each
key. We explore three Bloom filter variants that reduce random
memory accesses: blocked, sectorized, and cache-sectorized.

3.1.1 Blocking. Blocked Bloom filters divide the bit array into
blocks of 𝐵 bits [40]. Insert and lookup operations first select one
block, based on the hash value, and set/test only bits within that
block. The size 𝐵 is a power of two to facilitate bit addressing.
Figure 3b shows the access pattern for 256-bit blocks.

If the block fits into one cache line (512 bits on x86 proces-
sors), each operation causes at most one cache miss. The naïve
Bloom filter uses 𝑘 ⋅ log2(𝑚) bits to compute the array indices.
The blocked Bloom filter uses log2(𝑚/𝐵) bits for addressing the
block and 𝑘 ⋅ log2(𝐵) bits to access the bits in the block. The hash
function is evaluated less often, at the expense of higher FPRs, com-
pared to the naïve filter. Register-blocked Bloom filters take it a
step further and only use block sizes of 32 or 64 bits, ensuring that
all subsequent operations access only the register.

3.1.2 Sectorization. Apache Impala [27] combines blocked Bloom
filters with an m/k-partitioning [26] scheme at block level. Each
block is further split into register-sized sectors of𝑊 bits. In every
sector, we set or test 𝑘/(𝐵/𝑊 ) bits, as shown in Figure 3c. Since
each sector is accessed independently, we can parallelize the com-
putation using SIMD instructions [30]. Sectorized Bloom filters
restrict 𝑘 to multiples of the number of sectors 𝐵/𝑊 .

3.1.3 Cache-Sectorization. Cache-sectorized Bloom filters [28] al-
low more flexibility for choosing 𝑘 while also minimizing memory
accesses. They assign the sectors to 𝑧 equally-sized groups and set
or test 𝑘/𝑧 bits in each group. However, the bits are not evenly
distributed among the sectors within a group. Instead, we choose
one sector from each group and access only the selected sectors.
Figure 3d illustrates the access pattern for 256-bit blocks, 64-bit
sectors, and 𝑧 = 2 groups. Although 𝑘 still has to be a multiple of 𝑧,
more values are possible than in a sectorized Bloom filter.

3.1.4 Comparison. All the variants discussed so far focus on im-
proving the performance. In Figure 4, we compare their FPRs: the
naïve Bloom filter, two blocked versions (cache: 512-bit, register:
64-bit), the sectorized variant using four 64-bit words, and a cache-
sectorized Bloom filter that splits one cache line into two groups
of 64-bit words. The naïve Bloom filter’s FPR matches the pre-
dicted 2−𝑘 . For the other variants, the FPR initially deteriorates
only slightly before the decay grows exponentially: for 25 bits per
key, the FPR of the register-blocked Bloom filter is two orders of
magnitude larger compared to the naïve Bloom filter. The cache-
blocked and (cache-)sectorized variants are roughly one order of
magnitude inferior. This corroborates the trade-off between FPR
and lookup time.

Another disadvantage that comes with these optimizations is the
convenience of choosing an optimal 𝑘 that minimizes the filter’s
FPR. While the naïve Bloom filter accesses approximately𝑚/𝑛 ⋅1.44
bits per operation, it is more involved to determine 𝑘 for the other
variants. At first, the value grows linearly, but as the filter size
increases, the growth declines, which is consistent with the FPR’s
behavior. Thus, optimized variants are beneficial for a small number
of bits per key or when performance is more critical than FPR.
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Figure 5: Lookup operations for the three fingerprint filters. We highlight the accessed fields in orange.

3.2 Fingerprint Filter
For this filter family, we consider three representatives: the Cuckoo
filter, the Morton filter, and the Xor filter. They all store small
fingerprints instead of entire keys in a hash table-like data structure.

3.2.1 Cuckoo Filter. Fan et al. describe the Cuckoo filter as “a
compact variant of a cuckoo hash table that stores only finger-
prints” [21]. Cuckoo hash tables use the Cuckoo hashing scheme [36]
to resolve collisions. For every key 𝑥 , it computes two candidate
buckets, 𝑖1 and 𝑖2, which can hold the key. A lookup operation
checks only these two buckets. Unlike the Bloom filter, inserting
a key in the Cuckoo filter can fail. If both buckets are full, one
occupying item is removed and inserted in its alternate bucket. The
process relocates items until an empty slot is found or a threshold
is reached.

Cuckoo filters store fingerprints instead of keys in a hash table.
Each bucket in the table holds up to 𝑏 fingerprints to achieve high
load factors. Figure 5a illustrates lookup operations for 𝑏 = 4 and
4-bit fingerprints. We reserve the value 0x0 to denote an empty slot
in the bucket. The key’s fingerprint 𝑓 and the bucket index 𝑖1 are
derived from the hash value:

𝑓 = fingerprint(hash(𝑥))
𝑖1 = index(hash(𝑥)) (2)

The fingerprint function extracts 𝑘 non-zero bits, and the index
function computes the bucket index.

In the case of a relocation, it is impossible to retrieve the original
key based on the fingerprint.We, therefore, use the key’s fingerprint
𝑓 and the bucket index to determine the alternate bucket:

𝑖2 = alternate_index(𝑖1, index(hash(𝑓 ))) (3)

In particular, the function must be self-inversive:

𝑖1 = alternate_index(𝑖2, index(hash(𝑓 ))) (4)

Most open-source implementations of the Cuckoo filter support
only a few different configuration options: the fingerprint size 𝑘
can be 8, 12, or 16, while the number of fingerprints per bucket
𝑏 is restricted to 2, 4, or 8. Our implementation eliminates these
restrictions. We support fingerprints of up to 32 bits and between 2
and 8 fingerprints per bucket. However, to perform efficient lookups,
a bucket still has to fit into a processor register, i.e., 𝑘 ⋅ 𝑏 ≤ 64.
Furthermore, we do not pad buckets that are not byte-aligned, since
wasting even one bit significantly reduces memory efficiency. Thus,
some configurations, for instance, 𝑘 = 15 and 𝑏 = 4, perform either

one unaligned or two consecutively aligned memory loads to access
a bucket.

Lang et al. [28] give the following approximation for the false
positive rate:

𝜀cuckoo = 1 − (1 − 2−𝑘)
2𝑏𝛼

, with 𝛼 =
𝑘 ⋅ 𝑛
𝑚

=
1
𝑠

(5)

where 𝛼 denotes the load factor of the hash table. The FPR primarily
depends on 𝑘 and 𝑏, i.e., the rate improves as 𝑏 decreases and the
fingerprint size 𝑘 increases. Increasing the hash table or bucket size
decreases the probability of a failed build.

3.2.2 Morton Filter. TheMorton filter [11] combines Cuckoo filters
with Horton hash tables [12] to improve the load factor. It applies
a rank-based compression scheme to store multiple buckets in a
cache line-sized block. Figure 5b illustrates this principle: the twelve
buckets from the Cuckoo filter in Figure 5a are compressed into
three blocks. A block in the Morton filters consists of the fingerprint
counter array (FCA) and the fingerprint storage array (FSA). The
FCA has four entries that count the number of fingerprints in the
corresponding bucket. To access the fingerprints of a bucket, we
first compute the offset into the FSA by summing up the FCA entries.
Then we load the fingerprints from the storage array.

The overflow tracking array (OTA) occupies the remaining space
and tracks relocations. It is smaller than the number of buckets per
block and maps multiple buckets to the same entry. When remap-
ping a fingerprint from one of the buckets, we set the corresponding
overflow tracking bit. If the primary bucket’s OTA bit is zero, a
lookup operation does not have to access the alternate bucket. The
array reduces both the number of accessed blocks and the FPR. In
contrast to the Cuckoo filter, the Morton filter ideally tests only
one bucket with 𝑏 fingerprints instead of two buckets.

Besides the number of fingerprints per bucket 𝑏, the Morton
filter uses three additional parameters to control the arrays’ size:
the number of buckets per block bpb (i.e., the length of the FCA),
the number of fingerprints per block fpb (i.e., the length of the FSA),
and the number of bits in the OTA 𝑜 . Optimally, a block is as large
as a cache line to fully utilize the memory bandwidth:

bpb ⋅ ⌈log2(𝑏 + 1)⌉ + fpb ⋅ 𝑘 + 𝑜 ≤ 512 (6)

3.2.3 Xor Filter. The Xor filter [24] implements a Bloomier fil-
ter [14], which maps a set of keys to their 𝑘-bit fingerprints. How-
ever, this mapping is only correct if the key is in the filter; otherwise,
the result will be undefined. Filter queries use this characteristic
to determine whether a key 𝑥 is in the underlying set. The query



compares the computed fingerprint to the one stored in the filter.
If 𝑥 is in the filter, the retrieved and the computed fingerprint are
equal. If 𝑥 is not in the filter, the probability that both fingerprints
are identical, i.e., the FPR, is 2−𝑘 .

Following the design by Dietzelfelbinger and Pagh [18], we split
the filter into three segments, S0, S1, and S2, of size𝑚/3 bits. The
fingerprint of a key 𝑥 is retrieved by xor-ing the three values from
the corresponding segments (cf. Figure 5c):

𝑓 = ⊕𝑖∈{0,1,2} S𝑖[index(hash𝑖(𝑥))] (7)

A lookup compares the retrieved and the computed fingerprints:

fingerprint(hash(𝑥)) = 𝑓 (8)

The difficulty is constructing the filter such that Equation 7
returns the correct fingerprints for all inserted keys. We consider
two construction algorithms: the algorithm by Botelho et al. [10]
used in the original Xor filter and a new algorithm by Dietzfelbinger
and Walzer based on fuse graphs [19]. The original Xor filter takes
a set of keys and determines the order in which to insert them
and the segment to use. Then, it sequentially adds the keys to the
corresponding segment 𝑗 . For each key, we compute the value to
insert based on the values stored in the other two segments and
the fingerprint:

S𝑗 [index(hash 𝑗 (𝑥))] = fingerprint(𝑥) ⊕
(⊕𝑖∈{0,1,2}\𝑗 S𝑖[index(hash𝑖(𝑥))])

(9)

This construction algorithm ensures that once an item in one of
the segments is written or read, it never changes. Thus, the finger-
print retrieved for 𝑥 (Equation 7) is always identical to the key’s
fingerprint.

Our fuse graph-based Xor filter uses a construction algorithm
similar to the original Xor filter. However, instead of three seg-
ments, the filter now consists of 𝑙 segments. The insert and lookup
operations are essentially the same as before, except that we first
determine the index 𝑖 ∈ [0, 𝑙 − 3] and then access the segments
S𝑖 , S𝑖+1, S𝑖+2. The original Xor filter, thus, uses three segments of
which only the first one is addressable. We use 𝑙 = 130 segments to
facilitate segment addressing.

As for the Cuckoo andMorton filters, the Xor filter’s construction
can fail if the segments are too small. Majewski et al. [33] found
that for 𝑙 = 3, the segments’ minimum combined capacity is around
1.23-times the number of elements to insert. Our fuse graph-based
Xor filter improves memory efficiency and ideally uses 1.13-times
more space than required. If the build nevertheless fails, another
hash function can be used. Graf and Lemire [24] accomplish this
by combining the keys with a random seed before hashing. Our
implementation of the filter supports fingerprint sizes between 1–
32 bits. If the fingerprint does not match the registers’ size (8-, 16-
or 32-bit), the values are loaded unaligned and shifted accordingly.
Compared to other filters, Xor imposes two additional restrictions:
the keys must be unique, and the filter is immutable after building.

3.2.4 Comparison. As for the Bloom filters, we determine the opti-
mal FPR and the fingerprint size 𝑘 empirically. We also identify the
minimum values of 𝑠 that avoid unsuccessful builds. We present our
results in Figure 6. The hash table-based filters allow a variety of
different configurations. For the Cuckoo filter, we can adjust both

the fingerprint and the bucket size 𝑏. The Morton filter supports
scaling the ratio between the logical fingerprints 𝑏 ⋅ 𝑏𝑝𝑏 and the
physical fingerprints fpb per block. We also compare the Xor filter’s
implementation based on fuse graphs against the original one with
three segments.

Figure 6a shows the FPR for the three fingerprint filters. The
solid lines represent the rates achieved by our configurations. The
lighter dashed lines denote the optimal possible 𝜀 by dynamically
changing the Cuckoo and Morton filter configuration for every
measurement. Both hash table-based filters perform best with three
fingerprints per bucket, except at the beginning, where more finger-
prints are required to ensure a successful build. Our configuration
dynamically chooses the number of fingerprints per bucket based
on the fingerprint size. For the Morton filter, we use different con-
figurations based on the fingerprint size 𝑘 . When possible, we select
the number of buckets per block and the OTA size as a power of
two, to optimize the addressing within a block. Our experiments
show that the ratio of logical and physical fingerprints per bucket is
usually between 30% and 60%. When considering the FPR, the fuse
graph-based Xor filter outperforms the other filters for the same
number of bits per key.

Figure 6b shows the space overhead required to build the filter
for the given fingerprint size. For the Morton filter, 𝑠 decreases with
increasing fingerprint size and is smaller than 1.1 when 𝑘 is large.
The Cuckoo filter switches the number of fingerprints per block
from 3 to 2 for 𝑘 = 16 and needs roughly 1.15-times more space for
a successful build. The Xor filter always uses 1.23-times / 1.13-times
more space regardless of the fingerprint size. We also analyze the
stability of the factor 𝑠 in Figure 6c. The parameter converges for
𝑘 = 8 to the values from Figure 6b and remains steady for more
than 104 elements. Both the Morton filter and the fuse graph-based
Xor filter are susceptible to fluctuations with small filters.
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figurations that do not fail with 100 runs.



4 IMPLEMENTATION AND OPTIMIZATIONS
Aiming for a fair comparison of the filters presented earlier, we reim-
plemented them in C++ and exploited compile-time optimization
where possible. Parameters like the fingerprint size 𝑘 , the number
of fingerprints per bucket 𝑏 in Cuckoo filters, or the number of sec-
tions and groups in Bloom filters are compile-time constants. The
filter’s capacity𝑚, determined by 𝑠 and 𝑛, is a runtime parameter.

Prior work optimized their filter implementation using vector-
ization [11, 28] or faster hash functions [21, 28]. We apply these
optimizations and combine them with partitioning — our new op-
timization improves both build and lookup performance for large
filters without affecting either the false-positive rate or space usage.

We evaluate the impact of each optimization for a representative
of each filter, namely:

■ Bloom: 512-bit blocked Bloom filter (𝑠 = 1.5, cf. Section 3.1.1).
■ Cuckoo: the Cuckoo filter with 4 fingerprints per bucket

(𝑠 = 1.06, cf. Section 3.2.1).
■ Morton: the Morton filter with 3 fingerprints per bucket and

an 8-bit OTA (𝑠 = 1.38, cf. Section 3.2.2).
■ Xor: the original Xor filter (𝑠 = 1.23, cf. Section 3.2.3).
All filters use 𝑘 = 8 and the optimal values for 𝑠 from Sec-

tions 3.1 and 3.2. We run the microbenchmarks on an Intel i9-9900X
CPU (Skylake-X, 3.5-4.4 GHz) with 10 cores and 64 GB of memory,
running Ubuntu 20.10 (Kernel 5.8, gcc 10.2), and repeat all mea-
surements five times. Furthermore, we evaluate the scalability on
a Xeon Gold 6212U (Kaby Lake, 2.4-3.9 GHz) with 24 cores and an
AMD Ryzen 3950X (Zen2, 3.5-4.7 GHz) with 16 cores.

4.1 Block/Bucket Addressing
Fingerprint filters use the index function to map hash values to
buckets. We apply the same function in the Bloom filters to com-
pute the block indices.1 The remainder of the division provides a
precise and stable mapping: index(𝑖) = 𝑖 mod 𝐶 (with 𝐶 denoting
the number of blocks/buckets in the filter).

However, the modulo operation is more expensive than other
integer arithmetic instructions. Thus, hash tables usually allocate
space for power-of-two many elements and replace the modulo op-
eration with a single bitwise and instruction: index(𝑖) = 𝑖 and (𝐶−
1). In the worst case, this approach allocates twice as many bits as
needed and is not suitable for space-efficient implementations. Con-
sequently, Lang et al. [28] proposed using so-called magic numbers

1Although the naïve Bloom filter accesses only bits and no blocks, internally, we still
need to address a register-sized word, i.e., a block, to load into the processor’s registers.

102 103 104 105
Filter size𝑚 [KiB]

-5
0%

0%
+5

0%
+1

00
%

Sp
ee
du

p
[%
]

L2 L3

Build

102 103 104 105
Filter size𝑚 [KiB]

-5
0%

0%
+5

0%
+1

00
%

L2 L3

Lookup
Bloom filter Cuckoo filter Morton filter Xor filter

Figure 7: Performance gain/loss using Ross’s addressing ap-
proach; the baseline is the power-of-two addressing scheme
that allocates more blocks/buckets than needed.

to replace divisions by a sequence of multiple-shift instructions [49]:
index(𝑖) = 𝑖 − (mulh32(𝑖,magic) ≫ shiftAmount) ⋅𝐶 (10)

Themulh32 function returns the upper 32 bits of the 64-bit product
𝑖 ⋅magic. The magic number and the shift amount are computed
once when instantiating the filter using the libdivide library [1].

The Xor and Morton filter use a slightly different approach to
substitute the modulo operation. They map 32-bit hash values to
the interval [0,𝐶 − 1] using the method by Ross [43]2:

index(𝑖) = 𝑖 ⋅𝐶/232, with 𝑖 ∈ [0, 232 − 1] (11)
Compared to the magic number approach, Ross’s index function
executes fewer instructions and is, therefore, slightly faster.

When using a different index function, we also have to adapt the
alternate_index function (cf. Section 3.2.1) for Cuckoo and Morton
filters. If the number of buckets𝐶 is a power of two, we can use the
bitwise xor to compute the alternate bucket:

alternate_index(𝑖1, 𝑖f ) = 𝑖1 ⊕ 𝑖f (12)
However, in combination with Ross’s or the magic number ad-
dressing scheme, we have to resort to integer arithmetic and take
underflows into account:

alternate_index(𝑖1, 𝑖f ) = {𝑖f − 𝑖1 𝑖f ≥ 𝑖1
𝑖f − 𝑖1 +𝐶 𝑖f < 𝑖1

(13)

A similar approach was proposed in [28] and later refined by Neu-
mann and Kipf [35].3

While Ross’s index function is slower than the power-of-two ad-
dressing scheme, the overall performance can improve as smaller fil-
ters offer better spatial locality. Figure 7 shows the speedup achieved
by Ross’s addressing approach, which uses the exact number of
blocks/buckets 𝐶 , relative to the power-of-two addressing scheme,
which chooses the next greater power of two for 𝐶 . We, therefore,
compare a space-optimized filter against a baseline that can be up
to two times larger. The speedup diminishes when the number of
blocks/buckets 𝐶 approaches a power of two. In these cases, the
more expensive computation of Ross’s index function is not worth-
while, since the baseline uses nearly the same amount of space as
the space-optimized filter.

For construction, only the Bloom and Xor filters benefit from
the reduced space usage. Performance doubles around the cache
boundaries, as the baseline already exceeds the cache size, resulting
in significantly more cache misses. The space-optimized Cuckoo
and Morton filter use the slower alternate_index function from
Equation 13, while the baseline uses Equation 12. Therefore, hash
table-based filters cannot benefit from this optimization and are
most of the time slower than filters with power-of-two many buck-
ets. Nevertheless, in the following sections, we use the more space-
efficient addressing scheme by Ross, which is between 1.1-times
and 1.5-times faster than the magic number approach.

4.2 Hashing
Hash functions are an integral part of all filters used to compute
block/bucket addresses, bit indices, and fingerprints from 32/64-
bit keys4. The quality of the function, i.e., producing uniformly

2Lemire promoted this idea in a blog post from 2016 [29].
3We can omit (𝐶 − 1) from the original formula as it is not necessary for correctness.
4We map larger keys like strings to 32/64-bit values before passing them to the filter.
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distributed hash values, is crucial to achieving the expected false-
positive rates. However, the hash function’s execution time is also
vital for performance. Therefore, most filter implementations em-
ploy fast Multiply-Shift hash functions [42].

To investigate the impact of hash functions on the filter’s per-
formance, we compare two hash functions used in existing filter
implementationswith Google’s CityHash [38]: 1) theMurmurHash3
finalizer (MurmurMix) [3], due to its good behavior in practice, and
2) multiplicative hashing (Mul) that reduces computational effort by
multiplying the keys with large prime numbers. Figure 8 shows the
performance gain for both hash functions relative to the CityHash
function. For the Bloom filter, both MurmurMix and Mul improve
performance significantly. The speedup increases even further for
larger values of 𝑘 , as the hash function is executed more often.

When building the filter on skewed data, multiplicative hashing
can increase the false-positive rate, and the fingerprint filters’ con-
struction is more likely to fail. Therefore, we use the MurmurHash3
finalizer to ensure that our analysis is accurate for arbitrary data
distributions. Nevertheless, for uniformly distributed data, the mul-
tiplicative variant is a good option. RocksDB [20], e.g., first hashes
arbitrary large keys with XXHash3 [16] and then uses multiplica-
tion to generate more bit indices for its blocked Bloom filter.

4.3 Partitioning
The performance of all filters deteriorates as the number of elements
increases. For filters that do not fit into the last-level cache (LLC),
lookups are up to one order of magnitude slower than in filters that
fit into the L1 cache, due to random memory accesses that miss
the cache. Prior implementations reduced the number of accessed
cache lines by blocking, but even that requires at least one random
memory access per operation. We propose, instead, to partition the
filters.
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Figure 9: Build and lookup performance for partitioned
(solid lines) and non-partitioned (dashed lines) filters.

Inspired by radix joins [46], we use radix partitioning to divide
the set of keys before building the filter or performing lookups.
For construction, one filter is built for each partition. Lookups
first determine which filter to use before testing the keys in the
respective partition. If the filter fits in the caches, fewer TLB and
cache misses occur. We optimize our single-pass radix partitioning
implementation using software write-combine buffers and non-
temporal streaming stores [50].

Figure 9a shows the time per key needed to build the filter and
perform a lookup. The partitioned filters (solid lines) include the
partitioning time. The partitioned variants outperform the baseline
(dashed lines) by around 1 MiB. The Xor filter benefits earlier from
partitioning due to its memory-consuming construction algorithm.
The Cuckoo and Xor filters, in particular, benefit from this optimiza-
tion. Their build times are nearly 10x faster for filters that exceed
the LLC. They perform more random accesses than the Bloom and
Morton filters and benefit more from the increased spatial locality.

For all four filters, partitioning reduces the overall number of
TLB misses by three orders of magnitude, and the number of last-
level cache misses by almost one order. Figure 9b shows that almost
no data TLBmisses occur for partitioned filters. At first, partitioning
increases the number of LLC misses (cf. Figure 9c), but in exchange,
the number remains constant even for filters exceeding the L3 cache.
Unoptimized filters incur several misses per key as soon as the filter
exceeds the LLC.5

While applying radix partitioning in Bloom filters is straight-
forward, we experienced difficulties with fingerprint filters. More
specifically, constructing the Cuckoo or the Morton filters tends to
fail for more than 512 partitions. We, therefore, also use the Xor
filter’s seed-based retry technique for hash table-based filters with
partitioning. If building the filter fails, we xor the keys with a seed
and try again.

In Figure 10, we show the optimal number of partition bits to
use. The Bloom filter shows a clear picture. As soon as the filter size
exceeds the L2 cache, partitioning pays off for both building and
probing the filter. As anticipated, the optimal number of partitions
grows with increasing filter size. Partitioning even improves the
performance of fingerprint filters with smaller filter sizes. The Xor
filter benefits much sooner from a partitioned build process. For
lookups, all fingerprint filters perform similarly, thus we only show
the Cuckoo filter. Figure 10 also shows that the precise number of
partitioning bits does not have a significant impact on the perfor-
mance. All filters get within 5% of the optimal performance even
when choosing a partition size that differs by an order of magnitude.

5The hardware prefetcher causes additional cache misses for the blocked Bloom filter
and the Morton filter.

101 102 103 104 105 106
Filter size in [KiB]

0

24
28
212

N
um

be
ro

fP
ar
tit
io
ns L1 L2 L3

Build

101 102 103 104 105 106
Filter size in [KiB]

L1 L2 L3
Lookup

Figure 10: Throughput-optimal number of partitions. The
colored area shows throughput deviations of less than 5%.



However, it is important to note that partitioning the filters intro-
duces an additional requirement, namely batching the keys before
performing insert or lookup operations. Without partitioning, all
filters except the Xor filter support inserting single keys. Although
lookups for single elements are still possible, the performance drops
by 10%. The reason for this is the additional work needed to de-
termine the correct filter for the key. Nevertheless, partitioning is
the most effective technique to guarantee stable performance for
filters that exceed the caches, if we can batch the operations. One
particular advantage of partitioning is that it does not affect the
FPR, unlike other optimizations that minimize the number of cache
misses. RocksDB uses partitioning to split its Bloom filters and store
them on disk rather than in memory [20]. An additional top-level
index loads the correct partition from disk when it is needed.

4.4 Vectorization
As the number of cache lines accessed per lookup cannot be re-
duced further for blocked Bloom filters, several authors optimize
the computations using SIMD instructions [27, 28, 39]. We found
two techniques for vectorizing approximate filter structures: par-
allelizing the computations for one key (vertical vectorization) or
performing multiple lookups in parallel by assigning one key to
each SIMD lane (horizontal vectorization). While horizontal vec-
torization can be used with all filters, vertical vectorization only
works with the Impala library’s sectorized Bloom filter [27]. We
implement horizontal vectorized lookups for all four filters and
their variants. In contrast to existing vectorized implementations
for fingerprint filters, we support arbitrary fingerprint sizes.

Our implementations target processors that support theAVX512F
and AVX512VL instruction sets.6 We use gather and scatter in-
structions to implement horizontal vectorization and use masking
to avoid branches. Our vectorized filters share most of the code
with the scalar implementation. The SIMD instructions are inserted
through compiler intrinsics during compilation. In a few cases,
such as unaligned memory accesses, the implementations differ:
the gather instruction only supports aligned accesses, thus, we
have to perform two aligned loads instead of one unaligned load.

Although the number of executed instructions decreases almost
eightfold, the vectorized filters are at most twice as fast (cf. Fig-
ure 11). The vectorized filters spend most of the time fetching data
from memory as gather scales only modestly compared to scalar
loads. As soon as the filters exceed the L2 cache, the performance
of vectorized filters deteriorates due to TLB and cache misses. Par-
titioning mitigates this effect, but the speedup decreases, as both

6We emulate missing instructions on older platforms, but we expect no performance
gain in these cases.

100 101 102 103 104 105 106
Filter size𝑚 [KiB]

0%

+50%

+100%

Sp
ee
du

p
[%
]

L1 L2 L3
Bloom filter Cuckoo filter Morton filter Xor filter

Figure 11: Speedup using vectorized filters (AVX512); the
baseline are scalar filters (partitioning is enabled).

versions use the same radix partitioning implementation. We also
vectorized the construction of the Bloom, Cuckoo, and Xor filter
using scatter instructions. However, only the sectorized Bloom
filter using vertical vectorization benefits from this optimization.

4.5 Multi-Threading
An additional benefit of partitioning is that it simplifies the imple-
mentation of task-level parallelism: each thread builds the filters
for different partitions and avoids synchronization during construc-
tion. We parallelize the radix partitioning as proposed by Balke-
sen et al. [4] and use the single-threaded algorithms to build each
filter. This approach is particularly suitable for fingerprint filters,
since synchronizing their construction algorithms is non-trivial.
Although it is easier to parallelize the Bloom filters using atomic
instructions, partitioning results in less overhead.

Lookups, in contrast to insertions, require no synchronization.
Once the filter is built, multiple threads can read it simultane-
ously. In combination with partitioning, two different paralleliza-
tion schemes are possible: partition the data before assigning one
partition to each thread (LookupPart+MT) or first split the keys into
jobs and then partition them separately (LookupMT+Part). The sec-
ond option has the advantage that no synchronization between the
threads is required. However, the spatial locality decreases, since
each job accesses the entire filter. The first scheme, in contrast,
reads only the part of the filter relevant for the current partition.

Figure 12 shows the speedup when building the filters and per-
forming lookupswithmultiple threads. For construction and lookups
with partitioning, we report the numbers relative to the partitioned
filter versions. For non-partitioned lookups (LookupMT), we use
the filter without partitioning as the baseline. The non-partitioned
filters scale almost linearly on all threemachines. The partitioned fil-
ters, on the other hand, scale sub-linearly due to the radix partition-
ing. The second partitioned lookup variant (LookupMT+Part) scales
on all three machines better than the first variant (LookupPart+MT).
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Figure 12: Scalability of the blockedBloomfilter on different
machines relative to a partitioned version; LookupMT uses
the non-partitioned version as baseline. (𝑛 = 100M)

Table 2: Throughput on Skylake-X [Keys/s (scale-up)].
Bloom Cuckoo Morton Xor

BuildPart+MT 381M (6.0x) 341M (6.9x) 235M (7.2x) 197M (6.9x)
LookupMT 165M (9.2x) 255M (9.5x) 113M (9.6x) 287M (9.4x)
LookupPart+MT 480M (7.1x) 574M (6.6x) 368M (7.6x) 657M (6.3x)
LookupMT+Part 565M (8.4x) 662M (7.7x) 342M (7.1x) 725M (7.0x)
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Figure 13: Comparison to related work. Our filters use the
same configuration and disable partitioning (𝑘 = 8, 𝑛 = 1M).

Table 2 lists the throughput for all four filters using the available
hardware threads. Although partitioned filters achieve only sublin-
ear speedup, they are still at least twice as fast as the non-partitioned
versions and offer a decent scale-up for construction.

4.6 Comparison against State of the Art
Our implementations can enable each of the presented optimiza-
tions independently of each other. We use this feature to compare
against the state-of-the-art. For a fair comparison, we do not use
partitioning. Instead, we ensure that the filter size is less than the
LLC and enable only the optimizations supported by related work:
Lang et al. [28]: Register-blocked, sectorized, and cache-sectorized
Bloom filters using the magic number-based addressing approach
and multiplicative hashing; supports vectorized lookups (AVX512)
and operates, unlike other filters, on 32-bit values.
Kornacker et al. [27]: Vectorized implementation of the sector-
ized Bloom filter using AVX2 instructions and 256-bit blocks.
Fan et al. [21]: Initial Cuckoo filter implementation with power-
of-two sized hash tables.
Breslow et al. [11]: Support batched lookups in their Morton
filter but provide no handwritten vectorized implementation; in-
stead, they rely on the compiler’s auto-vectorization capabilities.
Therefore, we disable batching and use the scalar versions.
Graf et al. [24]: Provide the first practical implementation of Xor
filters. Their construction algorithm allocates 1.23-times more space
and does not use the fuse graph optimization.

As shown in Figure 13, we achieve better performance for all
filters and significantly improve construction time for some filters.

5 EVALUATION
We now present an experimental evaluation of our filter implemen-
tations, in which we vary all the parameters relevant to the filters.
The goal is to identify which filter to use when optimizing for space
consumption, throughput, or false-positive rate.

5.1 Experimental Setup
We ran all experiments on the Skylake-X machine and used the
following filter configurations.

◦ Bloom: All experiments evaluate the naïve, register-blocked,
cache-blocked, sectorized, and cache-sectorized variants of
our Bloom filter implementation.

∨ Cuckoo: We use a performance-optimized configuration that
chooses the fingerprints per bucket 𝑏 depending on 𝑘 .

∧Morton: The number of buckets per block bpb and the OTA
size 𝑜 are powers of two whenever possible and correspond
to the configurations used in Section 3.2.4.

× Xor: We include both the original and the fuse graph-based
method to build the Xor filter.

Parameters & Methodology — We first evaluate Lang et al.’s perfor-
mance-optimal metric that finds the optimal filter which minimizes
the per-tuple work: 𝑡𝑙 + 𝜀 ⋅ 𝑡𝑤 [28]. It combines the lookup time 𝑡𝑙
with the false-positive rate 𝜀 (FPR) to find the best-performing filter
for a certain workload7. The parameter 𝑡𝑤 describes the workload’s
estimated extra work time for a false positive. We evaluated this
metric for exponentially growing datasets between 10 K and a 100M
million keys on random data generated by the Mersenne Twister
engine from the C++ STL. We also varied the memory scale factor
𝑠 from 4–26 and the fingerprint size 𝑘 from 1–258.

Next, we performed an in-depth analysis of the filters’ lookup
and build performance for 10 K, 1M, and 100M keys by clustering
the data by filter size𝑚 and false-positive rate. This benchmark
finds the filter with the highest throughput for a given FPR and filter
size and examines the effects of tailoring one parameter. Besides
scaling the parameters 𝑠 and 𝑘 , we used all valid combinations of
vectorization and partitioning enabled or disabled and varied the
number of partitions (2𝑖 partitions, 5 ≤ 𝑖 ≤ 12). For every cluster,
we report the filter with the maximum throughput.

In both experiments, we measure the performance on ten hard-
ware threads and report the average of five repetitions. Unless
stated otherwise, we show the best-performing results from all
combinations of vectorization and partitioning enabled or disabled.

5.2 Lookup Performance
The skyline plot in Figure 14a shows the optimal filter according to
the performance-optimal metric. The white line divides the mea-
surements into two parts where either Bloom filter variants or
fingerprint filters dominate. Our results show strong similarities to
those of Lang et al. [28]: for small work times 𝑡𝑤 , Bloom filters are
optimal. As soon as 𝑡𝑤 , the extra work time for a false-positive, is
larger than 104 ns, low false-positive rates are more critical than
the lookup time (cf. Figure 14b), and the fingerprint filters perform
better. For roughly half a million keys, the Xor filter briefly outper-
forms the Bloom filters for low 𝑡𝑤 (left of the white line). While all
Bloom variants with comparable FPRs exceed the L2 cache, the Xor
filter still fits into the cache, as it uses the space more efficiently.
7We assume that positive and negative lookups in filters take the same time on average.
8The sectorized and cache-sectorized Bloom filter variants restrict the parameter 𝑘
and thus have respectively fewer data points.
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Figure 15: Lookup performance and best-performing filter.
The white line separates Bloom from fingerprint variants.

The Xor filter dominates most of the fingerprint filters’ area for
less than 105 elements. For more elements, the filters exceed the L1
cache and the Cuckoo filter takes over as it accesses at most two
cache lines. With three random memory accesses, the Xor filter
can outperform the Cuckoo filter only for small datasets or high
work times 𝑡𝑤 that require very low FPRs. In the remainder of this
section, we analyze the filters’ false-positive rate and throughput
in more detail for 10 K, 1M, and 100M elements and evaluate the
impact of partitioning. We choose the filter sizes to see how big
the difference in performance is when the filter resides in different
levels of the cache hierarchy.

5.2.1 Optimal filter variant. Figure 15 and Figure 17 show the filter
with the highest throughput for the given memory budget and the
measured false-positive rate. The white line separates Bloom and
fingerprint filters with both partitioning and vectorization enabled.
Since no filter can reach arbitrary low FPRs, there are no data points
in the graphs’ lower-left halves.

The filters with 10 K elements are smaller than the L1 cache, so
we obtain the highest throughput. For 1M elements, the filters only
fit into the last-level cache, except for the smallest ones in the top
left corner, which still operate in the L2 cache.

We investigate the filters in more detail in a horizontal and verti-
cal slice from the lookup measurements in Figure 15 (1M elements).
In the FPR slice (Figure 16a), the Bloom filter dominates the per-
formance except for small sizes, where the (partitioned) Xor filter
performs best. Only the naïve Bloom filter can attain the false-
positive rate using the given space but suffers substantial L1 cache
misses even for small sizes due to high 𝑘 . For a higher memory
budget, first the sectorized and then the register-blocked variants
take over. In conclusion, larger filters can improve the throughput
to some degree using optimized variants that increase locality.

When looking at a constant filter size (e.g., 3.0MB in Figure 16b),
we see that the fingerprint and Bloom filters perform differently.
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(a) FPR slice (b) Filter size slice
Figure 16: Slice from 1M elements for constant size or FPR
(dashed lines show the throughput without partitioning).

While Bloom filters can trade a worse FPR for performance, the
fingerprint filters’ throughput does not improve for high FPRs.
Bloom filters offer more possibilities for performance optimization
by clustering the memory loads or reducing the number of hash
functions 𝑘 and, thereby, the computational effort at the cost of
significantly increasing the FPR. Fingerprint filters, in contrast, can
only scale the fingerprint size, which slightly improves performance
if a higher FPR is acceptable. Nonetheless, fingerprint filters achieve
lower false-positive rates for the given memory budget than the
Bloom filters at a modest throughput reduction. This is an attractive
trade-off if false positives are expensive, like accessing data on disk
or over the network.

Figure 16 also shows the maximum throughput without parti-
tioning. For the Bloom filter, the dashed line is most of the time not
visible, i.e., partitioning does not pay off. The Xor filter’s throughput
significantly decreases if partitioning is not available, and it falls
behind the Cuckoo filter. This matches the results from Figure 14:
non-partitioned Xor filters are only optimal once very low FPRs
are required that the Cuckoo filter cannot attain.
Recap — Bloom filters offer the highest throughputs but cannot
reach low FPRs on a size budget. Fingerprint filters, most notably
Cuckoo and Xor, can reach very low FPRs while being a bit slower.

5.2.2 Optimal Bloom filter variant. If opting for performance, we
next break down which Bloom filter variant performs best in Fig-
ure 18. Register-blocked filters dominate most of the areas where
the Bloom filter performs better than fingerprint filters. Register-
blocking trades FPR and size for maximum throughput by reducing
memory accesses to a minimum. Consequently, they are the filter of
choice for high throughput scenarios like semi-join reducers where
false-positives are inexpensive.

The other variants do not achieve such high throughputs but
offer a better trade-off between filter size and false-positive rate.
Sectorized and cache-sectorized filters perform second best as they
use the entire cache line to reduce the FPR and specialized access
patterns to improve performance. The cache-blocked filter offers a
slightly better FPR since it does not restrict the set bits’ placement.
Naïve bloom filters are not competitive in performance but offer
by far the lowest possible FPRs at the cost of having a complete
random access pattern.
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Figure 17: Lookup performance for 100M elements.
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Figure 18: Best-performing Bloom filter variant for lookup.

Recap — Bloom filters gradually trade high throughput for better
FPRs by decreasing the spatial locality. The range goes from the
register-blocked filters that offer the highest throughput to the
naïve Bloom filter with the lowest FPR.

5.2.3 Optimal 𝑘 . Although all filters support arbitrary 𝑘 for the
fingerprint size or the number of hash functions, this flexibility
mostly benefits the Bloom filter variants. It directly improves the
performance as fewer memory loads occur and the hash function is
evaluated less often. The register-blocked filter typically uses very
low 𝑘 (≤ 4) for maximum performance throughout most of our
measurements. For the naïve Bloom filter, this number can increase
to 20 when aiming for very low FPRs, resulting in approximately 20
cache misses (without partitioning). When using the Xor or Cuckoo
filters, powers of two for 𝑘 perform best and 16-bit fingerprints, in
particular, offer a good trade-off. These sizes simplify fingerprint
comparison in the vectorized implementations and allow for aligned
loads, reducing LLC misses.

5.2.4 Vectorization. The vectorized lookup implementations im-
prove the performance of all filters, as shown in Figure 19, which
compares the best-performing vectorized and non-vectorized filters.
We included the same dividing line as in Figure 17 for reference. As
expected, we observe the biggest performance boost for small filter
sizes that fit into the L2 cache (cf. Section 4.4).

In general, the register-blocked Bloom filter (cf. Figure 18) bene-
fits the most from vectorized lookups since it performs only one
memory load while the other variants require multiple loads. The
Xor filter performs the most random memory accesses and thus,
is at most 50% faster. The performance of the Cuckoo filter, which
accesses at most two random memory words, almost doubles. With-
out vectorization, the Xor filters dominate large areas for 100M (cf.
Figure 17). However, the difference in throughput is mostly less
than 20%, and vectorized Bloom and Cuckoo filters take over.
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Figure 19: Vectorized vs. non-vectorized filters.

Recap — Vectorization pays off without impacting the FPR. It boosts
all filter implementations and should be applied in any setting that
allows concurrent probing of multiple elements.

5.2.5 Partitioning. Since we observed substantial performance im-
provements with partitioning in Section 4.3, we now compare the
lookup performance of the fastest partitioned and non-partitioned
filters, as shown in Figure 21. However, this time the baseline has
vectorization and multi-threading enabled, which partly amortizes
the achieved speed-up. The two right-hand plots in Figure 17 show
the fastest filter implementation for 100M partitions. We included
the same dividing line for reference.

The tipping point at which partitioning begins to provide ben-
efits is at 1M elements. The filter that dominates performance in
most cases — the register-blocked Bloom filter (cf. Figure 18) — ben-
efits the least from partitioning since it already minimizes memory
accesses. Furthermore, we hide the cache miss latencies by building
a mask for set bits in the (SIMD) registers while loading the block
from memory. When fingerprint filters dominate the performance,
they can get up to a third faster, and in a sense, partitioning narrows
the gap between the two filter families.9
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Figure 20: Partitioned per-
formance-optimal filters.

For 100M elements, partition-
ing can almost triple the maxi-
mum performance of some finger-
print filters, while the peak Bloom
performance remains about the
same. Even though not visible in
the figure, the naïve Bloom filter’s
throughput improves, as partition-
ing reduces the number of cache
misses, closing the performance
gap to register-blocked and sectorized variants. Overall, partition-
ing closes the performance gap between the fingerprint filters and
the (register-blocked) Bloom filter. In particular, the Xor filter bene-
fits from the optimization and even closes in on the Cuckoo filter (cf.
Figure 17). This is also evident in the performance-optimal analysis
with partitioning in Figure 20: the Xor filter takes over large parts
formerly dominated by the Cuckoo and the Bloom filters (left of
the white line).
Recap — The larger the number of elements gets, the more partition-
ing pays off. Most notably, the optimization boosts the Xor filter,
narrowing the gap to the Bloom and Cuckoo filters.

9In some cases, small partitions hinder the Xor filter from being built, which is the
reason for the missing data points in the lower right corner.
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Figure 21: Partitioned vs. Non-Partitioned variant.
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Figure 22: Best-performing filter for construction.

5.3 Build Performance
The only effective way to parallelize the filter’s construction process
is first to partition and then to build one filter per partition. Hence,
we always use partitioning, which scales well, as shown in Table 2.

Figure 22 shows the filter with the best construction time. We
include the white line from Figure 15 to compare how the divider
changes from lookup to build performance. While, once again,
register-blocking dominates most of the upper area, the sectorized
Bloom filter benefits from vectorized inserts and is now the optimal
choice for FPRs smaller than 1%. For small FPRs, even the naïve
Bloom filter overtakes some of the fingerprint filters.

The Cuckoo filter builds slightly more slowly than the Bloom
filters. For small load factors, relocations are rare and insert opera-
tions ideally access only the primary and alternate bucket. The Xor
filter achieves higher load factors and lower FPRs, but its construc-
tion is more involved and thus takes longer. It only outperforms
the Cuckoo filter for very low FPRs that hash table-based filters
cannot attain or for high load factors.
Recap— If the focus lies on performance, the register-blocked Bloom
filter builds the fastest. Other Bloom variants or the Cuckoo filter
also offer lower FPRs for the same space consumption at the cost
of slightly lower build and lookup throughputs. If the filter is not
rebuilt regularly, the Xor filter is an option. It builds the slowest and
does not support updates but offers even higher lookup performance
and lower FPRs.

6 LESSONS LEARNED
Each of the filter variants and optimizations offers different perfor-
mance characteristics that lead to different use-cases.
Optimizations For Bloom and Xor filters, specialized addressing
schemes improve throughput and reduce space overhead. Hash
table-based filters, however, should rather use the power-of-two
sized tables if the available space is not limited. When solely opti-
mizing for build or lookup performance, multiplicative hashing is
the fastest option. However, for skewed data, the computed hash
values are not uniformly distributed, and we recommend using
MurmurHash3’s finalizer.

Vectorization improves the lookup performance of all four fil-
ters irrespective of their size when batching the operations, most
notably the (blocked) Bloom filter and the Cuckoo filter. Although
it is also possible to vectorize the inserts, we only noticed a sta-
ble performance boost for the sectorized Bloom filter. Partitioned
filters need to compensate for the radix partitioning and are thus
of benefit when the filters exceed the LLC. Even though unparti-
tioned filters scale better in multi-threaded lookups, partitioning

still provides a significant performance boost and decent scalability.
Furthermore, it allows for trivial multi-threaded construction of
all variants by building a filter per partition. The Xor filter prof-
its the most from partitioning, which narrows the gap between
Bloom and fingerprinting filters. Where batching is possible, both
optimizations improve the throughput manifold (cf. Figure 1).
Filter Variants As expected, Bloom filters dominate both build
and lookup performance when high FPRs are acceptable. Most
variants, like register-blocking, optimize for better performance
at the cost of higher FPRs. Other variants are not as fast but offer
better FPRs for the same memory budget.

When focusing on space consumption and low false-positive
rates, the Xor filter using our new construction algorithm achieves
the lowest FPR for the given space and still provides decent lookup
throughput. However, the filter has the longest construction time
and is immutable. The Cuckoo filter cannot compete with the Xor
filter’s FPR but instead offers more functionality with similar lookup
performance. This filter should be considered particularly with
workloads that insert or delete keys after construction. Morton
filters effectively improve the Cuckoo filters’ space usage and false-
positive rate at the cost of decreased lookup and build throughput.

Ultimately, tuning the performance of each filter is still a trade-
off. By spending more time on the filter’s construction, we can
use the space more efficiently and reach lower FPRs for the same
memory budget. Similarly, when granting slightly more time for
lookups, fingerprint filters like the Xor filter pay off because their
FPR is lower. When increasing the filter size, preference can be
given to either lower false-positive rates or higher performance,
using locality-optimized Bloom filter variants or register-friendly
fingerprint sizes.

7 CONCLUSION
Our work focuses on optimizing the four most promising approx-
imate filters (Bloom, Cuckoo, Morton, and Xor) and identifying
the optimal filter for the four key dimensions: false-positive rate,
memory footprint, build, and lookup throughput. To allow a fair
comparison, we reimplemented the filters, applied all existing opti-
mizations, and moreover, evaluated radix partitioning, which sig-
nificantly boosts the performance for large filters without affecting
the false-positive rate.

Each of the optimizations and filter variants has performance
characteristics (outlined in Section 6) that are beneficial in differ-
ent use-cases. Bloom filters are the most reasonable choice for
in-memory query processing, as high throughput is crucial and
high FPRs are acceptable. Fingerprint filters offer a better trade-off
when focusing on space consumption and achieving low FPRs. Most
notably, Xor filters are attractive for applications like LSM trees,
which currently rely on sub-optimal Bloom filters [17]. However,
if applications need more functionality with comparable FPR, the
Cuckoo filter is the next best choice, as the Xor filter is immutable.
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