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Why can’t we just keep going as usual?
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CPU Performance vs Data Expanse
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End of Dennard Scaling Increasing Data Generation

CPU-Performance

Generated Data

2010 202520202015

John Hennessy and David Patterson Deliver Turing Lecture at ISCA 2018 Data Age 2025,IDC Global DataSphere, May 2020 (sponsored by Seagate)
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Data Expanse vs CPU Performance
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The gap increases

CPU-Performance

Generated Data

2010 202520202015

Getting all data to compute is getting challenging
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Cloud Evolution impacts our Decisions
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Separation of Data and computation

Trend to separate Compute & Data

=> Cloud Vendors are driving hardware innovation

Accelerators & Disaggregated HW

J
a
n
a
 G

ic
e
va

: 
B

u
ild

in
g
 C

lo
u
d
-n

a
tiv

e
 D

a
ta

 S
ys

te
m

s
  
fo

r 
th

e
 P

o
s
t-

M
o
o
re

 E
ra

mailto:bandle@in.tum.de


6

How should a cloud-native data system  

for the post-Moore era look like?
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Make sub-operators first class citizens
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Split relational operators into more flexible sub-operators

1

Logical functions that perform basic 

data transformation and  

management tasks.

2
Construct classic relational algebra 


operators for SQL when combining.

3
Flexible for composing to map to 

arbitrary other dataflows.

4

Granularity allows efficient compilation  

to heterogenous hardware and  

offloading to where data sits or moves.
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Sub-Operator based system architecture
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Transform the DBMS into an executor for the sub-operator ISA

Query Optimizer 

What pays off to be offloaded?


Capture the device’s 

capabilities.


Query Compiler


Codegen the accelerator’s ISA 

Execution engine


Co-design with device drivers


Co-design with data-center 

scheduler
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Build complex dataflows from simple components
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Use simple operators to build a hash join

Example Categories for  

Sub-Operator ISA Operations 

Sequential Access  

Materialize, Scan


Random Access  

Scatter, Gather


Compute  

Map, Fold


Control Flow  

Loop
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Build complex dataflows from simple components
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Use simple operators to build a hash join

Example Categories for  

Sub-Operator ISA Operations 

Sequential Access  

Materialize, Scan


Random Access  

Scatter, Gather


Compute  

Map, Fold


Control Flow  

Loop
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Build complex dataflows from simple components
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Use simple operators to build a hash join

Example Categories for  

Sub-Operator ISA Operations 

Sequential Access  

Materialize, Scan


Random Access  

Scatter, Gather


Compute  

Map, Fold


Control Flow  

Loop

mailto:bandle@in.tum.de


bandle@in.tum.de Database Technology for the Masses: Sub-Operators as First-Class Entities 

Build complex dataflows from simple components
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Use simple operators to build a hash join

Example Categories for  

Sub-Operator ISA Operations 

Sequential Access  

Materialize, Scan


Random Access  

Scatter, Gather


Compute  

Map, Fold


Control Flow  

Loop
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Radix Partitioned Join 

Materializing Pipeline Breaker


Morsel-Driven Partitioning

build

probe result

partition

!lter partition probe

HT
hashtable insert

General Purpose Radix Join Implementation

13

Compare Hash Joins Variants using TPC-H

Morsel-Driven Execution


Efficient non-partitioned Hash Join

Code Generating Database
Microbenchmarks
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When does radix partitioning pay off?

As expected, small joins don’t need partitioning


But, a large build side does not always profit 

from partitioning


In fact, only one join in one query benefits from 

using Bloom Radix Partitioned Join

When does radix partitioning pay off?

TPC-H SF100

?
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Detailed TPC-H Analysis with Query 5 as example

Single Join dominates the runtime difference


Build side is larger than the LLC


Probe side is 100x bigger build side size


Large Partitioning Overhead


Sizes should be the same order of magnitude
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Factors Workable Bene!cial

Selectivity handled by Bloom !lter

Build Size > LLC ≫LLC

Size Di"erence < ×50 < ×10

Payload Size ≤ 32B ≤ 16B

Pipeline Depth < 8 Joins < 2 Joins

Skew (Zipf) ≤ 1 ≤ 0.5

Suitable workloads for partitioned join

When does radix partitioning pay off?

Several factors decide when partitioning pays off


Radix-Partitioned joins are very sensitive to any deviation 

from near-optimal workload characteristic


Non-partitioned joins perform better in TPC-H and most 

realistic workloads

Should you use partitioning in a real system?
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Hardware-accelerated partitioner or  

Smart NIC  between storage and compute layer

Build complex dataflows from simple components

17

Use simple operators to build a hash join
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Best-Performing Filter
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Baseline without partitioning or vectorization
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Impact of the Vectorization & Partitioning 

19

Fingerprint-based filters profit much more
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Best-performing Filter

20

Throughput vs. Versatility

Bloom filter provides 

highest throughput 

Fingerprint filters are smaller  

and more versatile 
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Offload dataflows to different targets and accelerators

21

Use the fine granularity to offload in chunks
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Optimize queries on different layers

22

Reuse existing query optimizer input and extend to disaggregated resources
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Offload dataflows to different targets and accelerators

23

Use the fine granularity to offload in chunks

Storage layer (e.g., ARM/FPGAs)

Compute layer (e.g., x86/ARM/GPUs)

Parallel high-bandwidth scan of relation S,  

and  

a semi-join reducer (filter) 

on computational storage device

(Radix-/Range-) partition the data on the  

Smart NIC before reaching the compute layer

Probe the HT on the compute host layer
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Take-Away Messages

24

Fine-Granular Building Blocks

=> Offload to Modern Hardware Targets

Notion of Materialization Points

=> Future Proof for Resource Disaggregation

Filtering alone is already tricky too optimize

=> Multi-Level Optimizer

CPU-Partitioning very sensitive to workload

=> Use HW partitioner or trust CPU caches

RJ BRJ HJ

0 s

20 s

Benefits of sub-operators
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Read more in the papers: db.in.tum.de/~bandle
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ABSTRACT

With today’s data deluge, approximate �lters are particularly attrac-

tive to avoid expensive operations like remote data/disk accesses.

Among the many �lter variants available, it is non-trivial to �nd

the most suitable one and its optimal con�guration for a speci�c

use-case. We provide open-source implementations for the most

relevant �lters (Bloom, Cuckoo, Morton, and Xor �lters) and com-

pare them in four key dimensions: the false-positive rate, space

consumption, build, and lookup throughput.

We improve upon existing state-of-the-art implementations with

a new optimization, radix partitioning, which boosts the build and

lookup throughput for large �lters by up to 9x and 5x. Our in-depth

evaluation �rst studies the impact of all available optimizations

separately before combining them to determine the optimal �lter

for speci�c use-cases. While register-blocked Bloom �lters o�er

the highest throughput, the new Xor �lters are best suited when

optimizing for small �lter sizes or low false-positive rates.

PVLDB Reference Format:

Tobias Schmidt, Maximilian Bandle, and Jana Giceva. A four-dimensional

Analysis of Partitioned Approximate Filters. PVLDB, 14(11): 2355 - 2368,

2021.

doi:10.14778/3476249.3476286

PVLDB Artifact Availability:
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https://github.com/tum-db/partitioned-�lters.

1 INTRODUCTION

As the volume of generated and processed data increases [41], e�-

cient access to only the relevant items is necessary. The goal is both

to achieve good performance for the executing workload and to

reduce overall pressure on data movement channels by only loading

necessary data from storage or over the network.

In this context, approximate �lters are particularly useful as they

compactly represent the membership of elements in a set, however,

at the cost of having false positives. More speci�cally, the �lter

always reports contained items as members, i.e., there are no false

negatives. For items that are not in the set, the �lter returns incorrect

results with a certain probability, the false-positive rate Y. Small

�lters can �t in a higher level of the storage (memory) hierarchy,

leading to faster access times and lower bandwidth consumption,

putting less pressure on the rest of the system’s resources.

∗
Both authors contributed equally to this research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
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Figure 1: Speedup gained by optimizing insert and lookup

operations for 100M keys.

It is therefore not a surprise that �lters are often used to speed

up applications. Log-structured merge (LSM) trees, for instance,

check the �lter before fetching a page from disk [31]. In databases,

�lters improve query execution through selective join pushdown,

which drops tuples not needed for probing early in the pipeline [28].

Other applications include distributed joins or network applications,

where �lters reduce the amount of transferred data [13, 27].

We distinguish between two �lter families: Bloom �lter variants

and �ngerprint �lters. The Bloom �lter accesses several bits in

a bitmap on lookup or insert [6] and is the most popular �lter

today [32]. However, �ngerprint �lters have recently emerged,

which store small signatures of the key in a hash table-like structure.

They are smaller in size and have lower false-positive rates than

Bloom �lters, at the cost of higher access latencies. Some of themore

notable �ngerprint �lters are the Quotient [5], the Cuckoo [21], the

Morton �lter [11], and more recently, the Xor �lter [24].

With this plethora of available alternatives, it is unclearwhich �l-

ter to usewhen. Very often, one has to consider multiple dimensions

that are relevant to the use-case in mind. Thus, in this paper, we

evaluate the four most promising �lters — Bloom, Cuckoo, Morton,

and Xor �lters — on the following four key dimensions:

False-positive rate (FPR): it a�ects the application’s perfor-

mance and hints at the extra bandwidth overhead on shared

I/O resources.

Space consumption: we want to minimize the precious space

in caches/DRAM to store auxiliary data structures.

Lookup performance: it directly a�ects the performance of

the application.

Build performance: the time it takes to construct the �lter.

All four aspects are closely interlinked, and improving one di-

mension may result in a decline in another (e.g., reducing the FPR

may necessitate an increase in size). Which dimension to prioritize

when choosing the most suitable �lter is application-speci�c. On

the one hand, LSM-Trees primarily aim to reduce the FPR to avoid

unnecessary expensive I/O operations while limiting the memory
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Abstract

A wealth of technology has evolved around relational databases

over decades that has been successfully tried and tested in many

settings and use cases. Yet, the majority of it remains overlooked in

the pursuit of performance (e.g., NoSQL) or new functionality (e.g.,

graph data or machine learning). In this paper, we argue that a wide

range of techniques readily available in databases are crucial to

tackling the challenges the IT industry faces in terms of hardware

trendsmanagement, growingworkloads, and the overall complexity

of a rapidly changing application and platform landscape.

However, to be truly useful, these techniques must be freed

from the legacy component of database engines: relational opera-

tors. Therefore, we argue that to make databases more �exible as

platforms and to extend their functionality to new data types and

operations requires exposing a lower level of abstraction: instead

of working with SQL it would be desirable for database engines to

compile, optimize, and run a collection of sub-operators for manipu-

lating and managing data, o�ering them as an external interface. In

this paper, we discuss the advantages of this, provide an initial list

of such sub-operators, and show how they can be used in practice.

PVLDB Reference Format:

Maximilian Bandle and Jana Giceva. Database Technology for the Masses:

Sub-Operators as First-Class Entities. PVLDB, 14(11): 2483 - 2490, 2021.
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1 Introduction

Databases have been a cornerstone of enterprise computing for

decades. As is often pointed out, they o�er what very few other sys-

tems, if any, provide: a powerful declarative language, a model and

algebra to enable reasoning about programs, sophisticated compi-

lation and optimization technologies, and a wealth of fundamental

techniques to support very high throughput rates. All this while

providing consistency, availability, and strong recoverability guar-

antees. Nevertheless, more and more users have been turning their

backs on databases in the pursuit of �exibility and performance,

willingly giving up the enumerated guarantees. For example, build-

ing directly upon intermediate formats like Apache Arrow has

grown in popularity, o�ering more �exibility for storing and pro-

cessing data. While this simpli�es things in the short run, it makes

management more complicated in the long run, for instance, when

synchronizing data. The same holds for big data frameworks like

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
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A-G
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Di�erent hardware platform im-
plementations of sub-operator C

C

C CC4

1
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Figure 1: Sub-operators 1 build more complex data oper-

ations 2 or data�ows 3 , where each sub-operator can be

implemented on multiple hardware platforms 4 .

Spark, which demonstrate the expressivity of o�ering �ner granular

operations for constructing various data�ows. This supports many

use-cases but lacks some advanced features such as an optimizer.

We argue that there is no reason why traditional databases cannot

support more �exible ways of accessing and working with data.

Currently, both big data processing and hardware advancements

are driving the community to develop a variety of techniques. These

include domain-speci�c languages (DSLs) tailored to particular ap-

plications [11, 28], cross-compilation techniques to enable execu-

tion on di�erent platforms [75, 78], automatic parallelization plat-

forms for running at large scale [30, 84], and connecting di�erent

frameworks for cross-optimization [61]. Some of these mirror devel-

opments in the database world: new compilation techniques [36, 42],

new data types and languages for dealing with them [49], optimiza-

tions for multicore [88], designs for GPUs [25, 64] and FPGAs [59].

In this paper, we argue that the most concrete starting points

for such innovations are the concepts developed around database

engines. Moreover, a great deal of existing technology can be reused,

such as operator models [46], compilation techniques [38, 41, 53],

composability and orthogonality of operators [19, 39], optimization

and scheduling techniques [44], etc. However, the only way to

enable more �exibility is to change the explicit abstraction level of

the database engine interface. Thus, the system should also expose

sub-operators and provide them as an intermediate representation

to other applications and compilers (Figure 1).

By sub-operators, we mean logical functions that perform funda-

mental data transformations and management tasks. We call them

sub-operators because instead of implementing a full relational

operation (e.g., a join), they implement relatively basic functions,

for example, hashing, �ltering, sorting, scattering, or gathering

data. Obviously, some of these are already used within database

engines (for optimization or compilation [9, 17, 36, 39, 71]), and
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ABSTRACT

An e�cient implementation of a hash join has been a highly re-

searched problem for decades. Recently, the radix join has been

shown to have superior performance over the alternatives (e.g., the

non-partitioned hash join), albeit on synthetic microbenchmarks.

Therefore, it is unclear whether one can simply replace the hash

join in an RDBMS or use the radix join as a performance booster for

selected queries. If the latter, it is still unknown when one should

rely on the radix join to improve performance.

In this paper, we address these questions, show how to inte-

grate the radix join in Umbra, a code-generating DBMS, and make

it competitive for selective queries by introducing a Bloom-�lter

based semi-join reducer. We have evaluated how well it runs when

used in queries from more representative workloads like TPC-H.

Surprisingly, the radix join brings a noticeable improvement in

only one out of all 59 joins in TPC-H. Thus, with an extensive

range of microbenchmarks, we have isolated the e�ects of the most

important workload factors and synthesized the range of values

where partitioning the data for the radix join pays o�. Our analysis

shows that the bene�t of data partitioning quickly diminishes as

soon as we deviate from the optimal parameters, and even late

materialization rarely helps in real workloads. We thus, conclude

that integrating the radix join within a code-generating database

rarely justi�es the increase in code and optimizer complexity and

advise against it for processing real-world workloads.
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Figure 1: Relative performance of Bloom-�ltered parti-

tioned and non-partitioned hash join for every join of TPC-

H SF 100 labeled as Qh83i-Jh>A34A i

1 INTRODUCTION

Architectural changes in modern processors have inspired a signi�-

cant amount of research on �nding the optimal join implementa-

tion. Over the years, the community has reached the conclusion

that hash joins are better than sort-merge joins [3, 17], and that

in general algorithm implementations should be tuned to the un-

derlying hardware (i.e., be hardware conscious rather than oblivi-

ous) [4, 27, 32, 40].

Recent comprehensive studies have advised that the partitioned

radix join performs better than the non-partitioned hash join [4, 40].

What is unclear, however, is if the radix join should completely

replace the hash join as amajorworkhorse in the database engine, or

if it should be used as a performance booster. The former is unlikely,

as the radix-partitioning phase is only needed when the build side

does not naturally �t into the caches; otherwise, the extra pass

over the data and the necessary data materialization comes with

a non-negligible overhead. The latter is a more di�cult question.

Using the radix-join as a booster implies that we should know when

to use it. Unfortunately, existing research has only evaluated the

performance of the two on synthetic microbenchmarks, which are

not representative of what we typically get in real workloads.

In this work, we investigate how to best integrate the state-of-the-

art radix join algorithm in a compiling main-memory DBMS and

when to use it instead of the non-partitioned hash join. Our radix

join performance is comparable to prior work’s stand-alone imple-

mentations while also supporting all variants of equi-joins, includ-

ing outer-, mark-, semi-, and anti-joins [33]. All query plans can use

it as a drop-in replacement for the non-partitioned hash join used

otherwise. Our system does data-centric query compilation [32]

and applies relaxed operator fusion, which enables software-based
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