Introduction to FPSO

Master Data Engineering and Analytics

Alexander Beischl
Who? Where? What?

Academic Student Advisors
• Vivija Simić
• Dr. Sandra Kemler
• Sibylle Roden-Kinghorst
• Imme Proske

International Student Advisor
• Lena Krone

Secretary of the Examination Board
• Dr. Anna-Lisa Fuchs

Program Coordinator
• Alexander Beischl
Links all relevant information

- Curriculum structure
- FPSO (examination regulations)
- APSO (TUM general regulations)
- Guided research
- Application project
- Thesis information

Curriculum Structure

Mandatory and Elective Modules

Listed on our website

Current Students
→ Master’s Programs
→ Data Engineering and Analytics
→ Compulsory-, Elective-, … Modules
→ FPSO 2018
Curriculum Structure

Overview

A: Modules are mandatory

B: Catalog of elective modules from different areas
 ➜ Choose modules (with small constraints)
 • Columns have a different focus

C: Interdisciplinary modules

Master's Thesis
Curriculum Structure

Mandatory Modules

• Foundations in Data Engineering (IN2326, 8 ECTS)
• Foundations in Data Analysis (MA4800, 8 ECTS)
• Master’s Seminar (IN 2107, 5 ECTS)
• Master’s Practical Course (IN2106, 10 ECTS)

• Listed in the FPSO in: A Mandatory Modules
Curriculum Structure

Elective Modules - Electives 1

• Earn at least 15 ECTS in core groups

• Complete at least one module in each group

Listed in the FPSO in: B Elective Modules
Curriculum Structure

Elective Modules - Electives 2

• Earn at least 25 ECTS in advanced/special groups

• Includes Guided Research or Application Project

• Complete at least Guided Research or Application Project

Listed in the FPSO in: B Elective Modules
Curriculum Structure

Elective Modules - Electives 3

For the remaining 13 ECTS of B: Elective Modules

- Additional modules from B1.1, B1.2, B2.1, B2.2, B3
- Elective modules of the Master Informatics

Sum of taken modules from:
B1.1, B1.2, B2.1, B2.2, B3, Elective modules of the Master Informatics ≥ **53 ECTS**

Listed in the FPSO in: B Elective Modules
Curriculum Structure

Electives Interdisciplinary Modules

Earn at least 6 Credits:

- **3 ECTS** Support Electives Master Informatics
 - Module catalogue of Master Informatics or
 - Language courses or
 - Courses from the Carl-von-Linde-Academy

- **3 ECTS** Social and Political Aspects of Data Science

Listed in the FPSO in: *C Interdisciplinary Elective Modules*
Curriculum Structure

Module Catalog - Website

B Elective Modules:

B1.1 "DATA ENGINEERING":

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Term</th>
<th>Contact Hours</th>
<th>Credits</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN2219</td>
<td>Query Optimization</td>
<td>WS</td>
<td>3V+2Ü</td>
<td>6</td>
<td>EN</td>
</tr>
<tr>
<td>IN2073</td>
<td>Cloud Computing</td>
<td>WS</td>
<td>2V+10</td>
<td>4</td>
<td>EN</td>
</tr>
<tr>
<td>IN2118</td>
<td>Database Systems on Modern CPU Architectures</td>
<td>SS</td>
<td>3V+2Ü</td>
<td>6</td>
<td>EN</td>
</tr>
<tr>
<td>IN2140</td>
<td>Advanced Concepts of Distributed Databases - Programming</td>
<td>WS</td>
<td>1V+2P</td>
<td>4</td>
<td>DE/EN</td>
</tr>
<tr>
<td>IN2013</td>
<td>High Performance Computing - Programming Paradigms and Scalability</td>
<td>SS</td>
<td>2V+10</td>
<td>4</td>
<td>DE/EN</td>
</tr>
<tr>
<td>IN2209</td>
<td>IT Security</td>
<td>WS</td>
<td>4V+10</td>
<td>7</td>
<td>DE</td>
</tr>
<tr>
<td>IN2147</td>
<td>Parallel Programming</td>
<td>SS</td>
<td>2V+2Ü</td>
<td>5</td>
<td>EN</td>
</tr>
<tr>
<td>IN2259</td>
<td>Distributed Systems</td>
<td>WS</td>
<td>3V+10</td>
<td>5</td>
<td>EN</td>
</tr>
</tbody>
</table>

B1.2 "ADVANCED TOPICS IN DATA ENGINEERING":

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Term</th>
<th>Contact Hours</th>
<th>Credits</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN2328</td>
<td>Application Project</td>
<td>WS/SS</td>
<td>10</td>
<td>DE/EN</td>
<td></td>
</tr>
<tr>
<td>IN2018</td>
<td>Augmented Reality</td>
<td>SS</td>
<td>3V+2Ü</td>
<td>6</td>
<td>EN</td>
</tr>
<tr>
<td>IN2169</td>
<td>Guided Research</td>
<td>WS/SS</td>
<td>10</td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>IN2158</td>
<td>Advanced Network and Graph Algorithms</td>
<td>WS</td>
<td>4V+2Ü</td>
<td>8</td>
<td>DE/EN</td>
</tr>
<tr>
<td>IN2097</td>
<td>Advanced Computer Networking</td>
<td>WS</td>
<td>3V+10</td>
<td>5</td>
<td>EN</td>
</tr>
<tr>
<td>IN2190</td>
<td>Programming of Supercomputers</td>
<td>WS</td>
<td>3P</td>
<td>5</td>
<td>EN</td>
</tr>
</tbody>
</table>

A: Mandatory Modules (31 Credits)

Computer Science

- Foundations in Data Engineering
- Foundations in Data Analysis
- Master's Seminar
- Master's Practical Course

Mathematics

- Master's Seminar
- Master's Practical Course

B: Elective Modules (53 ECTS)

Computer Science

- B1.1 Data Engineering
- B1.2 Advanced Topics in Data Engineering
- B2.1 Data Analytics
- B2.2 Special Topics in Data Analytics

Mathematics

- B3 Data Analysis
- Elective Modules of the Master Informatics

C: Elective Interdisciplinary Modules (6 ECTS)

C1 Support Electives Master Informatics

C2 Social and Political Aspects of Data Science

Master's Thesis (30 ECTS)
Curriculum Structure

Module Catalog - Website

A: Mandatory Modules (31 Credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Term</th>
<th>Contact Hours</th>
<th>Credits</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>Mathematics</td>
<td>Master's Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundations in Data Engineering</td>
<td>Foundations in Data Analysis</td>
<td>Master's Practical Course</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B: Elective Modules (53 ECTS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Term</th>
<th>Contact Hours</th>
<th>Credits</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>Mathematics</td>
<td>Elective Modules of the Master Informatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1.1 Data Engineering</td>
<td>B2.1 Data Analytics</td>
<td>B3 Data Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1.2 Advanced Topics in Data Engineering</td>
<td>B2.2 Special Topics in Data Analytics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C: Elective Interdisciplinary Modules (6 ECTS)

<table>
<thead>
<tr>
<th>Course</th>
<th>Term</th>
<th>Contact Hours</th>
<th>Credits</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>Mathematics</td>
<td>C1 Support Electives Master Informatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2 Social and Political Aspects of Data Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master's Thesis (30 ECTS)

Notes

1. **B2.1 “DATA ANALYTICS”:**
 - ID: IN2023, Title: Image Understanding I: Machine Vision Algorithms, Term: SS, Contact Hours: 2V, Credits: 3, Language: DE
 - ID: IN2062, Title: Techniques in Artificial Intelligence, Term: WS, Contact Hours: 3V+1U, Credits: 5, Language: DE/EN
 - ID: IN2133, Title: Principles of Computer Vision, Term: WS, Contact Hours: 3V, Credits: 4, Language: EN
 - ID: IN2124, Title: Basic Mathematical Methods for Imaging and Visualization, Term: WS, Contact Hours: 2V+2U, Credits: 5, Language: EN
 - ID: IN2026, Title: Visual Data Analytics, Term: WS, Contact Hours: 3V+1U, Credits: 5, Language: EN
 - ID: IN2071, Title: Knowledge-based Systems for Industrial Applications, Term: WS, Contact Hours: 3V, Credits: 4, Language: EN

2. Additionally you can elect ONE (not more) of the following modules in Data Analytics:
 - ID: IN2028, Title: Business Analytics, Term: WS, Contact Hours: 2V+2U, Credits: 5, Language: EN
 - ID: IN2330, Title: Data Analysis and Visualization in R, Term: WS, Contact Hours: 2V+4U, Credits: 6, Language: EN
 - ID: IN2030, Title: Data Mining and Knowledge Discovery, Term: WS, Contact Hours: 2V, Credits: 3, Language: EN

3. Furthermore you can elect ONE (not more) of the following modules in Data Analytics:
 - ID: IN2064, Title: Machine Learning, Term: WS, Contact Hours: 4V+2U, Credits: 8, Language: EN
 - ID: IN2332, Title: Statistical Modeling and Machine Learning, Term: SS, Contact Hours: 4V+6U, Credits: 8, Language: EN

4. If you started your studies BEFORE October 2019 (but NOT afterwards) you can elect IN2323 in B2.1 too.
Credit Requirements over Time

- Until the end of the 2nd semester: at least one module from section A and B
- Until the end of the 3rd semester ≥ 30 ECTS Credits
- Until the end of the 4th semester ≥ 60 ECTS Credits
- Until the end of the 5th semester ≥ 90 ECTS Credits
- Until the end of the 6th semester 120 ECTS Credits

If You are about to fail one of the requirement deadlines:

Please talk to the academic student advisors. In coordination with them, contact the chairman of the examination committee in written form and state the reasons.

If such a failure can be foreseen: contact one of the academic student advisors immediately.
Bridging Courses

Non-computer-science and non-mathematics bachelors:
• Please note that the bridging courses **MUST ALL** be passed in your first year of study!

Be careful:
• Some courses and exams are only offered in either winter or summer semester.
• Please take bridge courses seriously: Plan your schedule so that you have enough time for bridge courses. Reduce load in the rest of the curriculum.

Please note, that those of you that **did not provide proof** of basic german skills:
• This obligation is automatically lifted after you complete the **first module at TUM**.
Student Code of Conduct

Compilation of TUM rules on

• **Plagiarism** and
• **Cheating**

Meant as

• good advice and
• help to avoid mistakes

Please read the full document on your own on our website: http://www.in.tum.de/en/current-students/administrative-matters/student-code-of-conduct.html
Student Code of Conduct

Quick Overview

Course achievements and examinations have to be performed self-reliantly and on the basis of allowed resources only.

Short text passages may be cited, but
• clearly marked
• literal citations must be quoted

Non-literal paraphrases must be quoted clearly, immediately, and reproducibly.

Use a full bibliography and primary sources.

Cheating leads to failing with only one possibility of retake.

1. Short text passages of another’s work may be cited.
 • Citations must be clearly marked. Complete and comprehensible documentation of all sources is required.
 • Literal citations of text passages, parts of a sentence, or terms and definitions must be quoted. The respective source must be stated directly before or after a citation.
 • An unreflected concatenation of citations is not considered a personal contribution.

2. Non-literal paraphrases, e.g. explanations or essays in own words, must also be marked as someone else’s contribution by stating the original sources directly before or after the respective text passages.
 • Additional references might be necessary although the respective source has previously been cited, e.g. referring to somebody else’s contributions and results.
 • The same rules apply to source code that is self-written but based on existing implementations.

3. Using materials of someone else such as images, data, tables, source code etc., requires special attention. This also applies to content retrieved from the internet:
 • The authorship of all material must be completely documented and traceable, e.g. by listing original source inline in source code.
 • Ideas, outlines etc. that are based on contributions of another person must be clearly marked and documented.
 • Usage of images or graphics require citations. In certain cases, an explicit permission of the original’s author may be required.
 • This also applies to graphics that are “re-drawn”.

4. List all sources in a bibliography at the end of your written work and refer to specific entries in your text when used (§18 (9) APSO).

5. Try to cite scientific sources only and refer to primary sources whenever possible.

6. If explicitly allowed by the lecturer, coursework may be provided in collaborative team effort. In this case the individual contributions must be visible and assessable (§18 (9) APSO).
Examination

You can pass each module **only once**, no retake for grade improvement.

Most modules are only offered in summer or winter term
- Regular exam period
- Retake exam period

If you are caught cheating:
- Exam is graded "5.0 U"
- Only one attempt to pass the exam remaining
Staying Abroad

Please read all about it on http://www.in.tum.de/goabroad
Then, talk to Martina v. Imhoff for guidance.

For each module from abroad that you want to use towards your degree:
• For modules that have sufficient similarities with an existing module from TUM: contact the respective TUM Professor.
• Or, if it is in the spirit of the catalogue, try a free recognition.

For non-TUM Bachelors:
• You need to complete one full semester before going abroad.
Tips from Guidance Counselors

www.in.tum.de/en/tips

Please talk to the academic advisors for

- Advice on your study plan
- Internships or thesis abroad
- Examination Regulations
- Learning Methods
- Any issues you may have here at TUM

Contact: advising@in.tum.de
COVID-19 Specific Topics

• Pending enrollment

• Masks not mandatory, but recommended
• If you feel sick, stay home and test yourself

• Lectures and Exams planned on-site
Welcome at TUM and Successful Studies!