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Abstract:

In database systems, join enumeration is a critical but NP-hard problem, especially challenging for
queries with a large number of joins, as often found in graph workloads. To manage this complexity,
some state-of-the-art methods reduce the search space by employing query graph linearization.
However, even after linearization, join enumeration still has cubic runtime, which can be inefficient
for very large queries. We propose an improved enumeration algorithm that dynamically adapts to the
query graph structure, avoiding the generation of invalid or redundant plans. This reduces the time
complexity for star queries from O(n?) to O(nlogn) and enables the optimization of general tree
queries of thousands of joins within seconds.
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1 Introduction

In database systems, information is stored across multiple relations to avoid redundancy
and ensure data integrity. Graph workloads take this to the extreme by normalizing the
schema to the highest possible degree, by expressing each “attribute” as a separate “edge”.
This results in a large number of relations that need to be joined back together to answer
various queries. The order in which these joins are executed can have a significant impact on
the query performance. However, finding the optimal join order is NP-hard [TK84], which
makes it impractical to find optimal orders for queries with more than 20 relations in the
general case, necessitating an effective fallback strategy.

In real-world scenarios, this challenge is evident in queries involving hundreds or even
thousands of relations. For example, the recently published Redset dataset, which provides
a sample of user queries from Amazon Redshift, includes a query that accesses 2,296
relations [Re24]. Similarly, operational BI reporting applications can have “mega queries”
with possibly 1,000 relations in their FROM clause [Di09]. Additionally, in SAP HANA’s
workloads, certain complex database views, after unfolding all referenced views, contain
up to 4,598 relations, with 161 views referencing more than 100 relations each [MBL17].
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These examples underscore the necessity of finding efficient join orders in polynomial time,
as optimal solutions are infeasible for such large queries.

Current state-of-the-art approaches like Linearized Dynamic Programming (LinDP) at-
tempt to reduce this complexity by linearizing the query graph. After the linearization,
commutativity of joins are disallowed, and only associativity is considered, i.e., the optimal
parenthesization is constructed. The parenthesization step, as described by Neumann and
Radke [NR18], takes @(n?) time, regardless of the query’s structure, producing many
parenthesizations with invalid joins. Most queries are not cliques, and the number of valid
joins can often be significantly smaller. Queries with a star schema, for example, have
only O(n) valid join pairs after linearization. This implies that there is significant room for
improvement in adapting the parenthesization step to the query graph structure.

Contribution. In this work, we propose a dynamic programming (DP) parenthesization
algorithm that adapts itself to the query graph structure and generates exactly the set
of all valid plans. Our approach enumerates valid joins pairs optimally up to a single
log factor, reducing the time complexity from O(n?) to O(nlogn) for star queries. We
evaluate our algorithm on a set of synthetic query shapes and show that it outperforms
state-of-the-art LinDP by orders of magnitude in terms of runtime. We additionally propose
linearization transfer, a novel technique to further reduce redundant work by reusing shared
parts of linearizations across parenthesizations. These two approaches combined are able to
adaptively exploit the query structure and scale to finding optimal join orders for thousands
of relations under a second for a large class of queries.

2 Related Work

The goal of join enumeration is to efficiently explore the problem’s search space while
ensuring the optimal solution is found. This is particularly important for large join queries
since ensuring optimality is known to be NP-hard [IK84]. This led to the development
of several exact, exponential-time algorithms for small-size queries [Ch95; DT07; FM11;
FM12; HD23; Ma22; MNO6; Se79; SK24; TK17; VM96], and of heuristics-based algorithms
for medium-size and large-size queries [Ch09; Di09; Fe98; KS00; NR18; Sw89]. A new line
of research uses quantum solvers due to the increasing effectiveness of quantum annealears
in recent years [Fr24; SSM23; STM23; Wi23]. In the following, we only detail on related
work that inspired our new enumeration algorithm.

Exact Algorithms. We will start with the exact algorithms, since they went through a similar
transformation as LinDP will undergo in this work. In a seminal paper, Selinger et al. [Se79]
introduced the join enumeration problem and the first exact, exponential-time algorithm,
DPsize. The main drawback: the algorithm ran in time O(4"). Vance and Maier [VM96]
observed this limitation and proposed DPsub that runs in time O(3") in the worst case.
The inherent limitation of DPsub is that its runtime is exponential regardless of the query
structure. To this end, Ono and Lohman [OL90] analyzed the minimum number of subplan



pairs, referred to as connected complemented pairs (ccp), that have to be iterated by any
dynamic program. Motivated by this, Moerkotte and Neumann [MNO6] introduced DPccp,
which matches the time-bound proposed by the previous work. Their key insight is that one
can modify DPsub so that it adapts to the query structure. Namely, DPccp will enumerate
only those subplans that are actually needed, i.e., it avoids generating invalid plans. Our
work takes its inspiration from this very fact.

Linearized Dynamic Programming. The NP-hardness of the problem has led researchers
to consider non-exact algorithms. After a long line of research [BGJ10; Ch09; Di09; Fe98;
SMK97; Sw89], the state of the art is to use search space linearization [NR18]. The key
idea is to exploit two prominent algorithms in the literature: (a) The optimal algorithm
for acyclic queries, restricted to the setting of left-deep join trees [IK84; KBZ86], and (b)
the ad-hoc optimal algorithm for chain queries. Neumann and Radke [NR18] proposed
LinDP as a two-stage algorithm: First run (a), which returns a chain-like arrangement of the
relations—this is what linearization refers to—and then run (b), which builds the optimal
bushy join tree on top of the given, fixed linearization.

The main advantage of this method is that if the linearization happens to be the order of
the leaf nodes of an optimal join tree, then this algorithm is indeed optimal. The main
disadvantage is that LinDP runs in cubic time per linearization, making it prohibitively
expensive for large queries. Instead, the standard greedy algorithm, GOO [BGJ10; Fe98],
optimizes arbitrarily large queries in O(n? log n)-time. To obtain better plans, one can use
IDP [KSO00], which refines the greedy plan by running the exact algorithm on subplans of
size up to k. Naturally, this limits k to a handful of relations. Given the effectiveness of
LinDP, Neumann and Radke [NR18] suggested replacing the exact algorithm in IDP by
LinDP, thus being able to increase k to 100 and further refine the initial plan. Our work
suggests that the greedy step is no longer necessary for a large class of queries.

3 Background

In this section, we introduce the necessary notation and concepts used throughout the paper.
In Sec. 3.1, we define the join enumeration problem and then outline the IKKBZ algorithm
in Sec. 3.2, which is used to compute the linearizations used in LinDP. We also provide an
overview of the parenthesization problem in Sec. 3.3, which is utilized to build join trees
from linearizations. Finally, we outline LinDP [NR18] in Sec. 3.4, which combines the
linearization and parenthesization steps to find good join orders in polynomial time.

3.1 Join Enumeration

Basic Notation. In this work, we consider SPJ queries, where the only relational operators al-
lowed are o (selection), IT (projection), and X (join) [Co70] and ignore aggregations [FBN23].



Consequently, the predicates can either be join predicates, e.g., Ry.a = R,.b, or selection
predicates, e.g., Ri.a = const, where {R;};c[,] is the set of the n relations considered in
the query. To express how large a relation is, we employ the cardinality function | - |. For
instance, |R;| = 103 specifies that R has 10° tuples. We use the cardinality function also for
joins or cross products, e.g., |R1™R;| represents the cardinality of the (natural) join RjXR;.

Query Graph. A SQL query is modeled as a query graph G = (V, E), where the relations
are represented by vertices and the join predicates as the edges between these. The most
common query graph classes are stars, chains, snowflakes, arbitrary trees, cycles, and cliques,
each incurring different runtime complexities for the join enumeration problem [HD23;
MNO06; Ne09; NR18]. For instance, while chains can be optimized exactly in polynomial
time, it is NP-hard to optimize cliques exactly [MS96].

We visualize a query graph corresponding to a SQL query in Fig. 1. The original query
consists of four relations, {R1, Ry, R3, R4}, and three join predicates, forming a chain query.

select * Ry Ry
from R1, R2, R3, R4
where Rl.a = R2.b

and R2.c R3.d

and R3.e = R4.f Ry R3

Fig. 1: A SQL query (left) and its corresponding query graph (right). The vertices represent the
relations and the edges the corresponding joins between them.

Join Tree. The output of join enumeration can be concisely represented as a join tree (or,
alternatively, a query plan). A join tree is a rooted binary tree where the leaf nodes are the
relations, and the inner nodes are the join operators. The classes of join trees we will be
dealing with are left-deep and bushy. Similar to the query graph shape, the join tree shape
also has an influence on the time complexity of the problem, i.e., the optimal left-deep tree
can be found in polynomial time using the IKKBZ algorithm.

3.2 Computing Linearizations via IKKBZ

The current state-of-the-art algorithm, LinDP, uses the notion of linearizations. We next
describe how these are computed (later, in Sec. 4.6, our linearization transfer technique will
exploit this very construction). Namely, the linearizations are given by the IKKBZ algorithm
which guarantees optimal left-deep join trees for acyclic queries [IK84; KBZ86].

Precedence Graph. The key idea behind IKKBZ is that, indeed, an acyclic query induces a
partial order on the relations, by rooting the graph in one of the vertices. This is what a
precedence graph refers to. This perspective makes the ordering problem easier, since the
algorithm can solve the (local) problem on all n possible precedence graphs. The global
optimum is then the best of all local solutions.
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Fig. 2: (a) Precedence graph of r. (b) Linearization of the precedence graph of r. (¢) The precedence
graph of ¢, a child of r: We simply need to rotate the edge {r, c}, promoting c to the root. (d) The
linearization of the subtree of r can be obtained from that in step (b) by splitting the nodes in the
original subtree of c. (e) The linearization of the precedence graph of ¢ is obtained by finally merging
the two chains in the previous step.
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Algorithm. Once the precedence graph has been obtained for a given relation R, i.e., the
query graph has been rooted in R;, we can linearize it and obtain the optimal left-deep
solution for the respective relation. This is done in a bottom-up strategy, namely: Recursively
linearize the subtrees and merge them based on a certain rank function. The original
algorithm [IK84] has been subsequently improved in [KBZ86], by lowering the runtime
from O(n?logn) to O(n?). In this work, we will use this version. For completeness, we
outline its main steps in the following.

The main idea is that, instead of independently building the precedence graphs for all n
relations, one can reuse solutions across them. Let 7 be the root of the current precedence
graph and c one of its children, as shown in Fig. 2(a); its linearization is shown in Fig. 2(b).
Then, the precedence graph of ¢, visualized in Fig. 2(c), can be constructed by rotating the
edge {r, c}, promoting node c to be the root of the new precedence graph. This is done in
two phases, outlined in Fig. 2(d) and Fig. 2(e), respectively: To linearize the subtree of r
(the gray-colored chains), we reuse the old linearization in Fig. 2(b) by splitting the nodes
in the original subtree of ¢ (the red-colored nodes). Finally, we merge the two remaining
chains according to the ranks and obtain the linearization of the precedence graph of c.

3.3 Parenthesization

In this subsection, we introduce the parenthesization problem, which is a key component of
the LinDP algorithm. Given a fixed order of relations, such as the linearization produced by
IKKBZ, finding an optimal join tree corresponds to the optimal parenthesization, i.e., the



optimal order in which to execute operations that are associative but not commutative. This
problem can be expressed as the following cost minimization:

c(i,i) =0, (1)
c(i,j)=w(i,j)+ n}(in.{c(i, ky+c(k+1,))}, 2)
I<k<j

where c(i, j) is the cost of parenthesizing the query R;X . .. XR;, and w(i, j) is the cardinality
of the join R;XR;1X. . . XR;.

This optimization problem admits a dynamic programming solution, where the cost of
parenthesizing the query R;X...XR; is computed by selecting an optimal split point
k € [i, j) corresponding to the query plan (R;X...XRx)X(Ry M. .. XR;), and computing
the optimal plan for the corresponding subranges recursively. The pseudocode for this
algorithm is shown in Fig. 3 with both top-down and bottom-up variants. While the top-
down variant is a more direct translation of the recursive definition, the bottom-up variant
is more efficient, as it avoids redundant computations and checks by always computing
the intermediate results before they are needed. Unlike the original implementation of
LinDP [NR18], the bottom-up variant we show iterates from right to left with i fromn —1 to
0. For every i it iterates over all adjacent valid range pairs [Z, k] and [k + 1, j] with increasing
k and increasing j. By the time we consider a new plan for range [, j] in Line 24, the
optimal plans for the required subranges [i, k] and [k + 1, j] have already been computed.

The parenthesization problem is well studied, and allows for various optimization for
different w(i, j) functions, assuming w (i, j) has certain exploitable properties and can
be computed in constant time [Ya80]. In the context of matrix chain multiplication, the
parenthesization problem is known to be solvable in O(n log n) time, where n is the number
of matrices [HS82; HS84]. However, in the context of join enumeration, no improvement to
the naive O (n’) enumeration algorithm is known. Additionally, computing w (i, j) does not
take constant time, as even checking connectivity of a set of relations is nontrivial. We will
address these limitations in Sec. 4.

3.4 Linearized Dynamic Programming

We have discussed how IKKBZ [IK84; KBZ86] computes the optimal left-deep join trees
for acyclic queries. We have also introduced the parenthesization problem, which is used
to build bushy join trees for a given relation order. Dynamic programming can be used to
compute the optimal parenthesization for a given order of relations in polynomial time,
which for a chain query corresponds to the optimal bushy tree. The LinDP algorithm
combines these two steps to find good join orders in polynomial time for a large class
of queries, whereby the order of the relations produced by IKKBZ is used as the input
linearization to the parenthesization step.

The IKKBZ algorithm produces one left-deep tree for each start relation. Among these trees,
the one with the lowest cost is selected as the optimal left-deep tree. The LinDP algorithm



1 def topDown(i =0, j =n - 1):

2 if i == j:

3 return 0

4 result = infty

5 for k in range(i, j):

6 if not linked(i, k, j):

7 continue

8 result = min(result, topDown(i, k) + topDown(k + 1, j) + w(i, j))
9 return result

10

11 def bottomUp():

12 c = [[infty for _ in range(n)] for _ in range(n)]
13 for i in range(n):

14 c[i][i]l = ®

15 for i in range(n - 1, -1, -1):

16 for k in range(i + 1, n):

17 if c[i][k] == infty:

18 continue

19 for j in range(k + 1, n):

20 if c[k + 1][j] == infty:

21 continue

22 if not linked(i, k, j):

23 continue

24 c[i][j] = min(c[i1[j], c[illk] + c[k + 11[3] + w(d, j))
25 return c[0][n - 1]

Fig. 3: Top-down recursive and bottom-up dynamic programming solution for the parenthesization
problem. The linked function checks whether the ranges [i, k] and [k + 1, j] are connected over an
edge in between those ranges. The bottomUp approach is more efficient, as it executes the operations
in an order where required intermediate results are always available when they are needed. This
efficiently avoids redundant computations. Note that, if naively implemented, each individual call to
linked can take O (n?) time raising the total cost of computation to O(rn’).

T

Fig. 4: Example of a chain query graph where the linearization is not a linear chain.



as described by Neumann and Radke [NR 18] then computes the optimal parenthesization
for the linearization of the optimal left-deep tree. However, this resulting algorithm may
produce suboptimal plans for chain queries, as the optimal linearization of a chain query
may not be a linear chain as shown in Fig. 4.

To fix this issue, the existing implementation of LinDP in the Umbra database system [NF20]
computes the optimal parenthesization for each linearization produced by IKKBZ. The
algorithm then selects the join tree with the lowest cost among all the computed parenthe-
sizations. We will call this variant of the algorithm extended LinDP. The resulting algorithm
produces optimal join trees for star and chain queries, and is a good heuristic for general tree
or cyclic queries. The relationships between different graph types are visualized in Fig. 5.

Star graph increasing diameter Chain graph
_—
Q(nlogn) Q(n%)

Clique graph
Q(3")
Fig. 5: Diagram of graph types and their respective time complexities of best-known algorithms for
join enumeration. The star graph has a time complexity of n log n using IKKBZ, the chain graph has
a time complexity of n3 using parenthesization, and the clique graph has a time complexity of 3"
using dynamic programming. Extended LinDP produces optimal plans for stars and chains, but not
necessarily for arbitrary trees in between.

4 Approach

In this section, we describe our adaptive LinDP algorithm, with two key optimizations over
extended LinDP:

1.  How to modify parenthesization to avoid generating invalid plans.

2. How to use shared suffixes in linearizations to avoid redundant computations.

In Sec. 4.1 we will discuss invalid plans and why they exists. Then, in Sec. 4.2, we will prove
Lemma 1 which leads to a more efficient computation of linked(i, k, j) for the baseline DP
algorithm in Fig. 3. We will further build upon that in Sec. 4.3 and 4.4, by describing our
efficient algorithm which avoids iterating over invalid plans, by using a data structure we
describe in Sec. 4.5. Finally, in Sec. 4.6, we describe linearization transfer, our second key



optimization. The resulting algorithm is a strict improvement over LinDP. We find the same
query plan as LinDP, but often orders of magnitude faster.

4.1 Valid and Invalid Parenthesizations

Among parenthesization problems, what is unique about the join ordering setting is that
many ranges [i, j] are invalid, i.e., they have w(i, j) = +co. Consider the join query given
in Fig. 6. If we are to only allow associativity and not commutativity, the parenthesization
R1X(R2XR3) is invalid, as it would require a join predicate between R2 and R3. Since there
is no such predicate, only the parenthesization (R1XR2)XR3 is valid.?> Taken to the extreme,
a star query graph of n relations has ®(n) valid parenthesizations,* while the best-known
algorithm?® for determining the optimal parenthesization has runtime ©(n?).

select *
from R1, R2, R3
where Rl.a = R2.a and R1.b = R3.b

Fig. 6: Example of a star query graph with invalid parenthesizations. Relations R, and Rj3 are
neighboring, but are not connected over a predicate.

To this end, we define a range of relations [i,j] corresponding to the relations
RiXR; 11X ... XR; to be valid if it can be decomposed into two adjacent subranges that are
themselves valid and can be joined together using an existing predicate. More formally:

linked(i, k, j) =3a € [i,k],b € [k + 1, j]: edge(a, b), Vi<k<j,
valid(i, i) = true, Vi,
valid(i, j) = 3k € [i, j]: valid(i, k) A valid(k + 1, j) A linked(i, k, j), Vi<j,

where edge(a, b) indicates whether there is a predicate between relations R, and Rp. Note
that a range may be connected but invalid as in Fig. 7. We do not consider such ranges,
as only those ranges that can be recursively decomposed into valid ranges can be used to
build a valid join tree. Additionally, even though we assume that the full query itself is
connected, i.e., there is a path between any two relations following the join predicates, the
graph corresponding to a subrange may be arbitrarily complicated. This makes the problem
of finding valid parenthesizations non-trivial. To demonstrate that the graph can be made
arbitrarily complicated, we can simply take an arbitrary query, not necessarily connected,

3 R2 and R3 may be joined with a cross product. However, cross products are typically disabled in join optimizers
as they are rarely beneficial and often detrimental. Enabling them can mislead the optimizer due to cardinality
underestimations, causing costly mistakes [RN19]

Here, we assume that the hub relation, the relation connected to all other relations, is one of the first two relations
in the linearization. IKKBZ is guaranteed to produce such a linearization, as otherwise, the corresponding
left-deep tree would be invalid.

Here, we refer to the algorithm due to Neumann and Radke [NR18]. Note that our implementation of the
baseline DP algorithm in Fig. 3 would have time complexity O (n?) as it eagerly checks if subranges are valid.



R Ry R3 Ry

Fig. 7: Example of a connected but invalid range [1,4]. There is no split point k such that both [1, k]
and [k + 1, 4] are valid.

add a relation to the end, and connect it to every previous relation. This is demonstrated in
Fig. 8, where the range [1,4] corresponds to an arbitrary graph.

Fig. 8: Example of an arbitrary graph corresponding to the range [1,4]. The entire query is made
connected by the addition of Rs.

Our approach will be to dynamically adapt the parenthesization to the query structure by
only considering valid parenthesizations. This gives us a runtime of O((m + ¢) logn + p),
where c is the number of valid ranges of relations, and p is the number of valid consecutive
pairs of ranges. While the worst-case runtime will still be O(n?), e.g., when p itself is
Q(n?), many classes of queries, such as stars and trees, will benefit from this optimization.

4.2 Efficient Computation of Linked

Now that we have introduced the fundamentals of join parenthesization, we will discuss how
to efficiently compute the linked(i, &, j) function used in Fig. 3, which computes whether
the ranges (i, k] and [k + 1, j] are linked over an edge. We will compute this function once
per an (i, j) pair with the first valid &, and reuse this result for other k values. This will give
us an efficient baseline dynamic programming algorithm, which we will further improve in
Sec. 4.3.

Lemma 1 Fori < j, valid(i,j) = VY k € [i,]): linked(i, k, j).

Proof. We will prove by induction on the size n = j — i of the range [i, j] that if valid(i, j),
thenV k € [i, j): linked(i, k, j).

Base Case: For the base case n = 0, valid(i, j) = valid(i, f) holds by definition.



Inductive Step: Assume that for all ranges of size n’ < n, if valid(i’, j*) for any range
[,j],thenV k’ € [i’, j'): linked(¢’, k', j").

Now, consider a range [i, j] where n = j — i such that valid(i, j). By the definition of
valid(i, j), there exists a split point k € [i, j) such that:

valid(i, k) A valid(k + 1, j) A linked(i, k, j)

By the inductive hypothesis, since k —i < n and j — (k + 1) < n, the ranges [/, k] and
[k + 1, j] satisfy:

. YV k' € [i,k): linked(i, k', k) = linked(i, k', j)
. Vk'e[k+1,j): linked(k + 1,k’, j) = linked(i, k', j)
Since linked(i, &, j) also holds, V k&’ € [i, j): linked(i, k', j). O

Using Lemma 1, we can reduce redundant computations of linked(i, k, j). For a given
(i, ), for the first k we find that satisfies valid(i, k) A valid(k + 1, j), we can compute
linked(i, k, j) in O (m) time by naively iterating over edges in that given range, where m is
the number of edges. If linked (i, k, j) holds, this implies valid(i, j) and thus linked(i, k', j)
will hold for all &’ € [i, j), meaning that we do not need to recompute linked (i, k’, j) for
any other k’. If linked(i, k, j) does not hold, this implies that valid(i, j) = false, implying
that we can skip any further computation for this (i, j) pair. The optimized bottom-up
enumeration algorithm is listed in Fig. 9.

Note that one could further optimize the computation of linked(i, k, j) by utilizing binary
search over sorted edge lists, which would allow for a O(nlogn) time complexity per
linked(i, k, j) invocation. This would reduce the time complexity from O(n*) to O (1> log n)
for clique queries. However, this would not improve the overall time complexity for acyclic
query graphs, as the time complexity would remain O(n?).

4.3 Avoiding Invalid Plans

The LinDP algorithm iterates over a large number of potentially invalid ranges with
disconnected relations. We propose an algorithm that adapts itself to the query graph
structure and avoids generating invalid plans. This reduces the iteration time complexity
from O(n?) to O(nlogn) in star query graphs. Additionally, our approach can explicitly
produce a join edge connecting pairs of ranges at zero cost, which is particularly beneficial
for cardinality estimation computations that would otherwise increase the runtime.

We will first start with how we can iterate over all valid ranges efficiently, then we will
extend this approach to finding pairs adjacent valid ranges so that we can compute the
optimal plan using dynamic programming. Given a valid range [i, j] starting at i, we want
to find the smallest j* > j such that [, j’] is a valid range. If we can always find the next



1 def bottomUp():

2 # validity

3 v = [[0® for _ in range(n)] for _ in range(n)]

4 # cost

5 c = [[infty for _ in range(n)] for _ in range(n)]
6 for i in range(n):

7 c[il[i] = ©

8 for i in range(n - 1, -1, -1):

9 for k in range(i + 1, n):

10 if c[i][k] == infty:

11 continue

12 for j in range(k + 1, n):

13 if c[k + 1][j] == infty:

14 continue

15 # 0 = not computed, 1 = connected, 2 = not connected
16 if v[il[j] == 0:

17 if linked(i, k, j):

18 v[il[j]l =1

19 else:

20 v[il[j]l = 2

21 if v[i][j] == 1:

22 c[il[j] = min(c[i]1[j], c[il[k] + cl[k + 11[3]1 + w(d, j))
23 return c[0][n - 1]

Fig. 9: Bottom up dynamic programming solution for the parenthesization problem with efficient
computation of the linked(i, k, j) function. The linked function checks whether the ranges [, k] and
[k + 1, j] are linked over an edge in between those ranges.

I def produceValidRanges():

2 for i in range(n - 1, -1, -1):

3 j=1

4 while j < n:

5 yield (i, j)

6 j = nextValidRange(i, j)

Fig. 10: We produce all valid ranges incrementally by finding the next valid range after j. We make
sure to produce ranges with decreasing starting point and increasing ending point such that dynamic
programming can properly utilize the results of previous iterations.



valid range efficiently, then we can iterate over all valid ranges incrementally. This concept
is illustrated in Fig. 10.

We will now prove lemmas that will help us find the next valid range efficiently.

Lemma 2 Givena < b <c <d,
valid(a, c) A valid(b,d) = valid(a, d)
Proof. We will prove the lemma by induction on the sum of the sizes of the two sub ranges
(c—a)+(d-D>).
Base case: Given,c —a =0V d - b =0, valid(a, d) is trivially true.

Inductive step: Assume the lemma is true for all ranges with ¢ —a +d — b < n. We will
proveitforc—a+d—-b=n.

We arbitrarily pick one of [a, c] and [b, d]. Without loss of generality, we pick [a, c]. We can
pickasplitpointk € [a, c),asc—a > 0, suchthat valid(a, k) Avalid(k+1, c)Alinked(a, k, ¢).
There are two possibilities. If k < b, given our induction hypothesis, valid(k + 1,¢) A
valid(b, d) implies valid(k + 1, d). As valid(a, k) and linked(a, k, ¢) are known, valid(a, d)
isimplied. If k > b, given our induction hypothesis, valid(a, k) Avalid(b, d) directly implies
valid(a, d). O
Lemma 3 Giveni < j, valid(i, j), and j' > j,

linked(i, j, j'Y N (T k € [i+1,j+1]:valid(k, ")) = valid(i, j’)

Proof. There are two possibilities.
If k£ < j, according to Lemma 2:

valid(i, j) A valid(k, j/) = valid(i, j').

fk=j+1:
valid(i, j) A valid(j + 1, j') A linked(i, j, j') = valid(i, j'),

by definition. O

Lemma 4 Giveni < j, valid(i, j), and j’ > j,

valid(i, j)) A (# j" € (j,j'): valid(i, j))
= linked(i, j,j’Y A (k€ [i+1,j+1]:valid(k, "))



Proof. We need to show that if j’ is the smallest index after j such that a valid range [, j']
is formed, then there must be a k € [i + 1, j + 1] such that valid(k, j’) and linked(i, j, j’).
Lemma 1 states that valid(Z, j') implies linked(i, j, j*). Thus, we only need to show the rest.

valid(i, j) implies that there is a k” € [i, j’) such that valid(i, k") A valid(k’ + 1, j"). If k’
were greater than j, then j” would not be the smallest such index, leading to a contradiction.
Thus, k&’ € [i, j]. It follows that 3 k € [i + 1, j + 1]: valid(k, j’). O

Lemma 3 and Lemma 4 together indicate a way to find the next valid range efficiently.

According to Lemma 4, given valid(i, j), we need to find the first j” such that linked(i, j, j”)

and 3 k € [i +1,j+ 1]: valid(k, j/). And when we find such a j’, Lemma 3 guarantees

valid(i, j’).

We will compute the minimum j’ in two steps:

1. Find the smallest j”/ > j such that linked(i, j, j').

2. Find the smallest j* > j” such that 3 k € [i + 1, + 1]: valid(k, j'). For j’,
linked(i, j, j’) is implied by linked(i, j, j') as j/ > j”.

Our algorithm will iterate backwards over i, the starting points of the ranges. During the
iteration we will maintain two arrays:

1. firstEdge: firstEdge[j] stores the smallest k € [i, j) such that edge(k, j).
2. firstValid: firstValid[j] stores the smallest k € [i + 1, j] such that valid(k, j).

Given these two arrays, our two queries can be answered with similar operations:

1. Find the smallest j” > j + 1 such that firstEdge[j''] <= j. Note that finding this
edge can be used in cardinality estimation computations as well.

2. Find the smallest j* > j such that firstValid[j'] <= j + 1.

These queries can be answered in O (log n) time using a segment tree [WW19]. We will
describe an efficient implementation in Sec. 4.5. For now, we abstract away these “find first
less than” operations behind a FFLT data structure and provide the algorithm for iterating
over ranges in Fig. 11.

In Fig. 11, we further utilize the first connected edge to find connected range pairs starting
at j + 1, by maintaining a list of connected ranges for each starting point. Since this list is
sorted ascending, we can use binary search to find the first connected range containing the
end of our first edge.

4.4 Analysis

We will now analyze the time complexity of our algorithm. We assume that the number
of nodes in the query graph is n and the number of edges is m. We also define ¢ as the



1 def produceValidRangePairs():

2 firstEdge = FFLT(n)

3 firstValid = FFLT(n)

4 connected = [[] for _ in range(n)]
5 for i in range(n - 1, 0, -1):

6 for j in adjList[i] if j > i:
7 firstEdge[j] = i

8

9

j=1
while j < n:
10 # We have found valid range [i, j]
11 firstvValid[j] = i
12 connected[i].push(j)
13 jp = firstEdge.query(j + 1, j)
14 it = lower_bound(connected[j + 1], jp)
15 for j2 in connected[j + 1][it:]:
16 # We have found a connected range pair:
17 # [i, j] and [j + 1, j2]
18 yield (i, j, j2)
19 j = firstvValid.query(jp, j + 1)

Fig. 11: Producing valid ranges using the FFLT data structure: £f1t.query(a, b) returns the first
k > a such that £f1t[k] <= b. We maintain two FFLT arrays firstEdge and firstValid to find the
next valid range efficiently. firstEdge is updated once for every edge and firstValid is updated once
for every valid range. We additionally use the firstEdge array to find connected range pairs.

number of valid ranges and p as the number of connected adjacent valid range pairs. Note
that ¢ > n, as every node is a valid range of size 1. With this notation, our algorithm runs in
O((m+ c)logn+ p)-time since we perform 1 segment tree update per edge, 2 segment tree
queries and 1 binary search per valid range, and we iterate over all connected adjacent valid
range pairs in constant time.

4.5 “Find First Less Than” Data Structure

To efficiently search for valid ranges, we need a data structure on arrays that can support
“find first less than‘ operations on ranges. The FFLT data structure, based on segment
trees [WW19], represents an array that supports the following operations:

1. Initialization: Every value in the represented array starts with co.

2. f£f1t[i] = v: Update the value at index i to v.

3. fflt.query(a, b): Return the smallest £ > a such that ff1t[k] <= b.

We can run these operations efficiently using a minimum segment tree data structure. A

segment tree allows us to do point updates and range minimum queries in O (log n)-time. It
is structured as a binary tree where each leaf node represents a single element of the array,



and each internal nodes stores the minimum of all its children. We can update a value in
O(logn)-time by traversing the tree from the leaf to the root, recomputing the values on the
way using their immediate children. For the query(a, b) operation, we need one upwards
and one downwards traversal. While traversing upwards, we try to find the first range with
start point greater than equal to a such that the range’s minimum is less than or equal to
b. Then, we traverse downwards to find the first leaf node that corresponds to a value less
than or equal to . The pseudocode for the query operation is shown in Fig. 12. We further
visualize an example query operation in Fig. 13.

1 def query(n, tree, a, b):

2 # The start and length of the implicit range
3 st, length = a, 1

4 # Go up the tree

5 ind =a+n

6 while tree[ind] > b:

7 if st + length >= n:

8 # We could not find a value <= b

9 return n

10 if ind & 1:

11 # We are the right child, go to right neighbor of parent
12 st += length

13 ind += 1

14 ind //= 2

15 length *= 2

16 # Go down the tree

17 while ind < n:

18 # Go to left child

19 ind *= 2

20 if tree[ind] > b:

21 # Go to right child
22 ind += 1

23 return ind - n

Fig. 12: Query operation for the FFLT data structure. The operation finds the first index k£ > a such
that ££f1t[k] <= b in O(logn)-time. We assume the segment tree represents an array of size n where
n is a power of 2 and that this tree is stored implicitly in the tree array such that the root node is at
index 1 and the children of node i are at indices 2i and 2i + 1.

[0,7]: 0

[0,31: 0 [4,7]: 1
[0, 1]: 0 [2,31:0 [4,5]:2 [6,7]: 1
0:0 [ 1:1[2:0] 33 [42][55] 6:1][7:7

Fig. 13: The operation query(3, 1) is visualized on the segment tree. The blue-colored cells represent
the upward traversal, and the -colored cells represent the downward traversal. The operation
returns the index 6.



4.6 Linearization Transfer

The extended LinDP algorithm, as implemented in Umbra [NF20], produces linearizations
for each relation, and computes the optimal parenthesizations for each of these linearizations.
However, linearizations of different relations often share a common suffix. We introduce a
new technique called linearization transfer, which exploits this property to avoid redundant
computations. The key idea is that, when a linearization is to be parenthesized, one can
reuse the DP-state from the previous linearization.

Formally, let L,, and L,, be two linearizations output consecutively by IKKBZ (Sec. 3.2).
Let p be the position starting from which L, and L, coincide, i.e., Vi > p: L, (i) = L, (i).
This implies that, once the DP-algorithm ran on L,,, we can reuse the DP-state to L, for all
subranges of [ p, n]. Concretely, the outer iteration starting in Line 8 in Fig. 9 would directly
start at index p — 1 instead of n — 1. The DP table c[][] can be reused for larger indices
n—1...p and would need to be reset for the rest of the indices p — 1 ...0. We visualize
this in Fig. 14 for two linearizations L; and L;. In this case, p = 4, so we can reuse the
DP-subtable c[4:][:] computed for linearization L, in the DP-algorithm on L;.

Similarly, the outer iteration starting in Line 5 in Fig. 11 would directly start at index
p — linstead of n — 1. For all indices before p, the corresponding entries in the connected
arrays are completely cleared. For indices from p onward, all elements in the connected
arrays that are smaller than p are removed. This can be done efficiently using binary search
since the arrays are sorted. After this adjustment, the smallest remaining element in each
connected array is assigned to firstValid for that index. Finally, the firstEdge array is
recomputed for indices from p onward by iterating over the relevant edges. For indices
before p, firstEdge is reset to infinity.

Shared suffix

Linearization of Ri: | R1 | R4 | Ro> | Rs | Rg | Rs5

Reuse

cl4:1[:]

Linearization of Rs: | Ro | Rq | Ry | Rs3 | Rg | Rs

Fig. 14: Two linearizations that share a common suffix. We can reuse the DP-subtable c[4:][:].

Optimal Transfer Order. A natural question to ask is whether we could maximize the
effect of linearization transfer. Indeed, this is possible, by sorting the linearizations based
on the suffix. Intuitively, this is simply a lexicographic sorting on the reversed linearizations.
This order ensures that the length of the shared suffix is maximized across all pairs of
consecutive linearizations. As we show experimentally in Sec. 5, enabling linearization
transfer in the extended version of linearized dynamic programming further improves its
runtime bound across all query graph shapes.



5 Evaluation

In this section, we evaluate adaptive LinDP. In particular, we will analyze the impacts of
adaptive dynamic programming and linearization transfer on different query structures.
We will show that adaptive dynamic programming works especially well in sparse query
structures, while linearization transfer is beneficial for dense query structures. Thus, the
combination of both techniques is able to adapt to the query structure for a large class of
queries and significantly outperform the state of the art. For all the benchmarks, we use a
AMD Ryzen 9 5950X CPU. The source code is available [Bi25].

5.1 Query Structures

To test the performance of the various approaches, we generate random query graphs of
four different structures: star, chain, clique, and tree.

1. A star graph is generated by connecting all nodes to the first node.

2. A chain graph is generated by connecting each node to the next node.
3. A cligue graph is generated by connecting each node to all other nodes.
4.

A tree graph is generated with a diameter parameter in the range [0, 1]. A chain of
length n - diameter is generated from randomly picked nodes. Then, remaining nodes
are randomly picked, and connected to a random node in the chain. A tree with a
diameter of 0 is close to a star graph, while a tree with a diameter of 1 is equivalent
to a chain graph. For a given diameter, five different trees are generated.

All join selectivities within the query graphs are generated randomly between 0 and 1,
rerolled and measured five times.

5.2 DP Algorithms

We compare our improved DP algorithm that only produces valid range pairs with the
baseline DP algorithm in Fig. 15. Note that our baseline implementation contains the efficient
computation of linked(, k, j) as described in Sec. 4.2. With star queries, the baseline DP
algorithm is only able to compute the join order for around 20 thousand relations in one
second, while our improved DP algorithm from Sec. 4.3 is able compute the join order for
2.5 million relations in the same amount of time. This is due to the fact that the improved
DP algorithm has time complexity O(n logn) for stars, while the baseline DP algorithm
has time complexity O(n?). Tree queries (with diameter 0) demonstrate a similar behavior
to star queries where the improved DP algorithm is faster by orders of magnitude.

With chain queries, the baseline DP algorithm is only able to compute the join order for
around 1.4 thousand relations in one second, while the improved DP algorithm is able
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Fig. 15: DP parenthesization algorithms compared on various graph structures. The improved DP
algorithm can perform the join order optimization of 2 thousand relations for chains and cliques and
over a million relations for stars and trees in one second. For each graph type with a given number of
nodes, the median runtime across its variants is shown.

to compute the join order for 1.9 thousand relations in the same amount of time. Even
though both algorithms have the same time complexity for chain queries, the improved DP
algorithm benefits from the fact that it needs to do fewer checks for validity of range pairs.
Clique queries demonstrate a similar behavior to chain queries, but both algorithms are
slightly slower compared to chain queries due to the increased number of edges.

5.3 Adaptive LinDP

We evaluate the impact of various optimizations of our approach, adaptive LinDP, in Fig. 16.
We vary both the linearization transfer and the adaptive dynamic programming. Linearization
transfer is either off, using the original basic IKKBZ order, or sorts the linearizations before
applying DP. We also vary the dynamic programming algorithm used, either the baseline
DP algorithm or the improved DP algorithm. For all the combinations, we measured the
maximum number of nodes that can optimized under one second for trees of varying
diameters. If a tree has a diameter of 0, it is close to a star graph, while a tree with a diameter
of 1 is equivalent to a chain graph. We find that, with small diameters, the DP algorithm
has the most impact, as most ranges are not valid. The improved DP algorithm is able to
optimize around more than twice as many nodes in a second compared to the baseline.
With larger diameters, the linearization transfer has the most impact, as the number of valid
ranges increases. Turning on linearization transfer results in more than twice the number of
nodes optimized in a second. We also find that sorting the linearizations (as explained in
Sec. 4.6) has a modest but measurable improvement on the overall performance.
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Fig. 16: Maximum number of nodes LinDP can optimize under 1s for trees of varying diameters. These
measurements include the times for the linearization and the parenthesization of each linearization.
Linearization transfer has the highest relative impact for high diameters while the improved DP
algorithm has the highest relative impact for low diameters.

6 Conclusion

We have presented optimizations for the LinDP algorithm that improve its performance by
orders of magnitude for various queries by adapting its execution to the query structure.
The resulting algorithm can provide a high quality join order for millions of relations under
a second for all but the most complex queries. This makes our approach a robust candidate
for a fallback strategy in query optimizers for queries where exhaustive enumeration of all
possible join orders is not feasible.

Future Work. Our approach is currently limited to inner joins with simple predicates, and
does not support query graphs hyperedges as used in [MNO8; RN19]. In future work, we
plan to extend our approach to support such query graphs. Furthermore, since our approach
depends on the accuracy of cardinality estimates, we plan to explore integrating our algorithm
with techniques designed to improve robustness against estimation errors [BKN24].

Beyond Databases. Our work has implications beyond database join enumeration. Recently,
Blacher et al. [BI23] introduced a SQL-based view of Einstein summation, also known
as einsum, widely used as abstraction for tensor operations in deep learning and tensor
network frameworks. They ran the generated SQL queries—which could reach hundreds of
relations for the SAT expressions of the Anaconda package manager [An24]—on several
DBMSes, showing that, in such applications, the query optimizer is the bottleneck. Thus, it
is crucial to also scale to large queries appearing in non-database applications. Moreover,
LinDP has used in tensor contraction ordering, outperforming prior work on tree-shaped
tensor network contraction costs [SMM?24].
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