
What Works and What Does Not:
A Winning Strategy for Join Query Execution

Evaluation

Altan Birler, Tobias Schmidt, Stefan Lehner, Florian Drescher, Maximilian Rieger, Simon Ellmann, Maximilian Reif, Adrian Riedl
Team (No) SortMergeJoins

Goal
Execute a join query on columnar data as fast as possible.

Challenge
▶ α-acyclic equi-joins, PostgreSQL query plans
▶ Every query processes fresh input data, no statistics
▶ Bespoke input format
▶ Variable length text data
▶ IMDB dataset small for modern machines, overheads matter

Planning
▶ Statistics based on index-based join sampling [Leis et al. 2017]

▶ DP based join ordering [Moerkotte & Neumann 2006]

▶ Incremental query planing [Neumann & Galindo-Legaria 2013]

Table scan
▶ Fast scans and filtering using bitmaps and vectorization
▶ Bloom filters [Birler et al. 2024, Schmidt et al. 2021]

Join pipeline
▶ (Pre-)Compiled join pipelines [Neumann 2011]

▶ Chaining hash table with partitioned loads [Birler et al. 2024]

▶ Eager aggregation of duplicates [Birler et al. 2024]

Infrastructure
▶ Bump memory allocator
▶ Efficient scheduling of small and large tasks
▶ Continuous profiling with Perfetto
▶ Random test query generation for robustness

3 repeated executions of JOB queries on prefiltered base
tables measured on AMD EPYC 9454P (Linux 6.11.0-26).

Findings
▶ The general-purpose database system Umbra is roughly as
fast as the second-best solution, even when query-
compilation and data-decompression times are included.
▶ A simple yet efficient hash table combined with compiled
join pipelines already provides a strong baseline.
▶ The execution is memory bound. Early filtering helps as
reading less data makes us faster. SIMD does not make a
difference as we are not compute bound.
▶ PostgreSQL query plans are okay but not great.Adaptive
query optimization improves runtime by 2×.

Approach

R1.X = r2.X
R2.Y = R4.Y
R3.Z = R5.Z
R4.K = R5.k

Query
predicates & joins

Columnar Layout
integer & text

(1) Build Query Graph
predicates as a graph, relations as nodes

(3) Vectorized Table Scan
filter early, read and process less

(5) Build Join Filters
prepare for future scans

(6) Repeat
update statistics & continue with (1)

(2) Optimize Join Plan
pick the next cheapest pipeline

(4) Run Join Pipeline
probe joins and build next hash table

⨝

⨝

⨝

⨝

⋉

⨝Keep it simple, keep it fast

for tuple in table:

if not tuple.key in probeHt:

continue

for partner in probeHt[tuple.key]:

targetHt.insert(tuple + partner)

Source Code:
github.com/umbra-db/contest-sigmod2025

18.5× faster

1.6× faster 1× faster

1.7× faster 1× faster

1.7× faster
1.2× faster

22315 ms

1205 ms

768 ms 759 ms

455 ms 445 ms

267 ms
216 ms

DuckDB (6200 ms)

Umbra (1331 ms)
Kirara (1316 ms)

0.2s

0.4s

0.8s

1.6s

3.2s

6.4s

12.8s

Ba
sel
ine

+M
ult
ith
rea
din
g

+A
llo
cat
or

+E
qu
alit
y r
est
ric
tio
ns

+Jo
in
res
tri
cti
on
s

+S
IM
D

+C
ust
om

joi
n o
rde
rin
g

+A
da
pti
ve
joi
n o
rde
rin
g

Optimization Step

M
ed
ia
n
Ti
m
e(

lo
g
sc
al
e)

Competitor performance shown as reference lines
Each optimization step shows speedup vs. previous

Execution Time Improvement with Optimizations


