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Goal
Execute a join query on columnar data as fast as possible.

Challenge
▶ α-acyclic equi-joins, PostgreSQL query plans
▶ Every query processes fresh input data, no statistics
▶ Bespoke input format
▶ Variable length text data
▶ IMDB dataset small for modern machines, overheads matter

Planning
▶ Statistics based on index-based join sampling [Leis et al. 2017]

▶ DP based join ordering [Moerkotte & Neumann 2006]

▶ Incremental query planing [Neumann & Galindo-Legaria 2013]

Table scan
▶ Fast scans and filtering using bitmaps and vectorization
▶ Bloom filters [Birler et al. 2024, Schmidt et al. 2021]

Join pipeline
▶ (Pre-)Compiled join pipelines [Neumann 2011]

▶ Chaining hash table with partitioned loads [Birler et al. 2024]

▶ Eager aggregation of duplicates [Birler et al. 2024]

Infrastructure
▶ Bump memory allocator
▶ Efficient scheduling of small and large tasks
▶ Continuous profiling with Perfetto
▶ Random test query generation for robustness

3 repeated executions of JOB queries on prefiltered base
tables measured on AMD EPYC 9454P (Linux 6.11.0-26).

Findings
▶ The general-purpose database system Umbra is roughly as
fast as the second-best solution, even when query-
compilation and data-decompression times are included.
▶ A simple yet efficient hash table combined with compiled
join pipelines already provides a strong baseline.
▶ The execution is memory bound. Early filtering helps as
reading less data makes us faster. SIMD does not make a
difference as we are not compute bound.
▶ PostgreSQL query plans are okay but not great.Adaptive
query optimization improves runtime by 2×.

Approach

R1.X = r2.X
R2.Y = R4.Y
R3.Z = R5.Z
R4.K = R5.k

Query
predicates & joins

Columnar Layout
integer & text

(1) Build Query Graph
predicates as a graph, relations as nodes

(3) Vectorized Table Scan
filter early, read and process less

(5) Build Join Filters
prepare for future scans

(6) Repeat
update statistics & continue with (1)

(2) Optimize Join Plan
pick the next cheapest pipeline

(4) Run Join Pipeline
probe joins and build next hash table
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⨝Keep it simple, keep it fast

for tuple in table:

if not tuple.key in probeHt:

continue

for partner in probeHt[tuple.key]:

targetHt.insert(tuple + partner)

Source Code:
github.com/umbra-db/contest-sigmod2025
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Competitor performance shown as reference lines
Each optimization step shows speedup vs. previous

Execution Time Improvement with Optimizations


