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ABSTRACT
Join ordering and join processing has a huge impact on query

execution and can easily affect the query response time by orders

of magnitude. In particular, when joins are potentially growing

n:m joins, execution can be very expensive. This can be seen by

examining the sizes of intermediate results: If a join query produces

many redundant tuples that are later eliminated, the query is likely

expensive, which is not justified by the query result. This gives the

query a diamond shape, with intermediate results larger than the

inputs and the output. This occurs frequently in various workloads,

particularly, in graph workloads, and also in benchmarks like JOB.

We call this issue the diamond problem, and to address it, we

propose the diamond hardened join framework, which splits join

operators into two suboperators: Lookup & Expand. By allowing

these suboperators to be freely reordered by the query optimizer,

we improve the runtime of queries that exhibit the diamond prob-

lem without sacrificing performance for the rest of the queries. Past

theoretical work such as worst-case optimal joins similarly try to

avoid huge intermediate results. However, these approaches have

significant overheads that impact all queries. We demonstrate that

our approach leads to excellent performance both in queries that

exhibit the diamond problem and in regular queries that can be

handled by traditional binary joins. This allows for a unified ap-

proach, offering excellent performance across the board. Compared

to traditional joins, queries’ performance is improved by up to 500x

in the CE benchmark and remains excellent in TPC-H and JOB.
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1 INTRODUCTION
The join operation is the cornerstone of relational data processing.

Its efficiency is crucial for the performance of analytical workloads.

In particular, when queries contain joins that are potentially grow-

ing n:m joins, execution can be very expensive. However, users

seldom write queries that produce large outputs; most tuples that

are produced as intermediate results in such queries are either fil-

tered out or aggregated before the end of the query. These queries’

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3681995

small inputtim
e

large intermediate result

small output

produced data

excess

Figure 1: The diamond problem: Queries with small inputs
and outputs may produce large intermediate results.

runtimes are therefore not justified by their results: The slowness

of query execution is often not intrinsic to queries themselves, but

rather a result of inefficiencies in how joins are performed and

optimized. We visualize this problem in Figure 1, where the in-

termediate results of a query have a diamond shape, with small

inputs coming in, growing into large intermediate results, and then

shrinking back to the actual output. Such queries occur in real life,

in relational benchmarks like JOB [26] and graph benchmarks such

as LDBC SNB BI [42], Graphalytics [23], and CE [9].

Let us give an example from healthcare informatics of a query

exhibiting the diamond problem. We want to find patients who

have been administered two drugs which have a known adverse

interaction. To compute the query, we might first find all pairs of

drugs that have been administered to the same patient, then filter

the pairs that have a known interaction. Or, we might find drugs

that have been administered to one patient, find all other drugs

that have known interactions, and then check if the patient has

also been administered the interacting drugs. Regardless of our

approach, the intermediate results may be quite large, potentially

quadratic in size, even though the final result is likely to be small.

Avoiding the diamond problem is intrinsically linked to tackling

robustness; if we can limit the sizes of intermediate results, we can

keep the query’s runtime bounded and predictable. There has been

much recent interest on tackling robustness by optimizing for the

worst-case. However, these approaches have significant overheads

that often makes them too expensive to replace traditional binary

join processing. In this work, we propose diamond hardened joins.

Through the decomposition of joins into two suboperators Lookup

& Expand, one shrinking and one growing, and reordering these

suboperators independently, we improve the runtime of queries that

exhibit the diamond problem by eliminating tuples as early as possi-

ble. This approach provides great worst-case performance without

sacrificing the average-case: Our framework not only provides best

in class performance for classical relational workloads, it is able

to handle graph workloads and cyclic queries that have histori-

cally been difficult for relational databases to optimize and process.

Compared to traditional joins, the Lookup & Expand framework

improves query performance by up to 500x in the CE benchmark,

while still delivering excellent performance in TPC-H and JOB.
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Our contributions are as follows: (1) We introduce Lookup &

Expand decomposition, and show that it can be used to process 𝛼-

acyclic queries optimally. (2) We prove that simple ternary joins are

enough to achieve worst-case optimality for a large class of cyclic

queries. We introduce a ternary Expand operator, which allows

the diamond hardened join framework to tackle cyclic predicates.

We empirically demonstrate that our approach is more efficient

compared to generic n-ary worst-case optimal joins. (3) We dis-

cuss a low risk approach to eager aggregation, and demonstrate its

effectiveness on graph pattern matching queries with count(*) ag-
gregates. (4) We show how Lookup & Expand decomposition, with

careful handling of NULL values, enables many more reorderings of

outer-join plans compared to binary joins. (5) We propose a strat-

egy for integrating Lookup & Expand plans into cost-based query

optimizers. Our strategy combines search with greedy heuristics to

balance cost optimization with robustness.

We present our work in five sections. In Section 2, we discuss

related research in addressing robustness and tackling the diamond

problem. In Section 3, we introduce Lookup & Expand (L&E) de-

composition, formalize its semantics, and demonstrate how it can

be used to tackle the diamond problem. We discuss how we are

able to tackle acyclic predicates, cyclic predicates, aggregations,

and outer-joins. In Section 4, we describe the integration of L&E

into cost-based query optimizers, while avoiding regressions and

maximizing the utility of L&E decomposition. Finally, in Section 5,

we present the results of our experiments, showing that L&E de-

composition provides excellent performance on both relational and

graph queries compared to binary and worst-case optimal joins.

Throughout this paper, we focus on hash joins in the in-memory

setting, leaving the exploration of other settings to future work.

2 BACKGROUND AND RELATEDWORK
In this section, we discusswhen the diamond problem can occur, and

how existing approaches try to alleviate it. The diamond problem

occurs when many tuples are generated as intermediate results,

only to be eliminated later in joins or aggregated together in a

group-by. Tuples that are generated and then eliminated are called

dangling tuples. How we can prevent dangling tuples depends on

the query’s predicate structure, specifically, its acyclicity or cyclicity

and the presence of reordering restrictions due to outer-joins. In

total, we have identified four cases of the diamond problem which

we will analyze and address.

(1) Acyclic predicates: When nonredundant predicates between

relations are acyclic, the diamond problem can be avoided by ag-

gressively pushing down additional semi-join filters [4, 41, 52].

(2) Cyclic predicates: When nonredundant predicates between

relations form cycles, any binary join plan, even with additional

semi-join filters, is suboptimal. Worst-case optimal joins (WCOJs)

replace many binary joins with a single black-box multiway join

that is able to exploit per tuple runtime adaptivity to bound inter-

mediate result sizes to the worst-case output size. As WCOJs have

unique cost characteristics that are hard to estimate, integrating

them into query plans remains a challenge.

(3) Queries with duplicate values: Queries may produce many du-

plicates that result in redundant work. Duplicates can be eliminated

early with eager aggregation or delayed with factorization.

(4) Reordering restrictions: Reordering operators is essential to

prevent large intermediate results, but the restrictions imposed by

outer-joins can make it difficult. Compensation based reordering

can allow for full reordering even with outer-joins, but at the cost of

converting inner-joins to outer-joins and expensive compensation.

In the following, we further detail the issues with each case, and

present how related work addresses the problems. We further dis-

cuss their limitations to motivate the alternative unified approach

we propose in Section 3.

2.1 Acyclic Queries & Full Semi-Join Reduction
When nonredundant predicates between relations do not form

cycles (i.e. the query is 𝛼-acyclic [14]), the diamond problem can

be avoided by aggressively prefiltering relations with the domains

of other relations. This filtering procedure is called full semi-join

reduction and was described by Bernstein and Chiu [4]. After the

prefiltering, Yannakakis describes a join order that guarantees no

dangling tuples [50], leading to plans with optimal runtime up to a

constant factor.

Acyclic queries are very common. All queries in JOB and almost

all queries in TPC-H are 𝛼-acyclic, implying that achieving a high

degree of robustness for a large set of relational queries is feasible.

The following is an example for an acyclic and a cyclic query:

1 -- Acyclic query:

2 select * from R, S, T

3 where R.a = S.a and S.a = T.a and R.a = T.a;

4 -- Join tree:

5 -- (R join S on (R.a = S.a)) join T on (R.a = T.a)

6 -- One predicate per join: acyclic.

7

8 -- Cyclic query:

9 select * from R, S, T

10 where R.b = S.b and S.c = T.c and T.a = R.a;

11 -- Join tree:

12 -- (R join S on (R.b = S.b)) join T

13 -- on (R.a = T.a and S.c = T.c)

14 -- The top join has two nonredundant predicates: cyclic

In full semi-join reduction, the base relations are filtered by the

contents of other relations in a specific order, which is given by

the GYO ear removal algorithm [2, 51]. After two waves of filters,

forwards and backwards, it is guaranteed that there is a join order

that produces no dangling tuples, tuples that are produced and later

eliminated by other joins. The second waves of filters can also be

merged with the final joins, resulting in a two-phase plan, which is

utilized in constant delay enumeration [22, 44]. While this filtering

procedure is optimal up to a constant factor, the constant factor due

to executing additional filters is significant. When running the CE

benchmark [9] with full semi-join reduction according to the imple-

mentation of Gottlob et al. [20], the benchmark takes around 5x as

long as running the queries without semi-join reduction. Naively

executing additional semi-joins between huge tables is often sig-

nificantly more costly than the optimal join order, as the optimal

join order can lead to quickly shrinking intermediate results. This

implies that a cost-based optimization strategy is needed to truly

achieve optimal performance. In Section 3.4, we will present how

the diamond hardened framework can achieve optimal performance

for acyclic queries without the need for additional semi-joins.



2.2 Cyclic Queries & Worst-Case Optimality
When predicates were acyclic, we could avoid dangling tuples by

applying semi-join reduction. Unfortunately, when predicates form

cycles, we cannot guarantee that such plans exist. In fact, binary

joins (even with additional semi-join filters and/or L&E decom-

position) are suboptimal for cyclic queries, as they can produce

intermediate results that are asymptotically larger in size compared

to both the inputs and output [35].

Worst-case optimal joins (WCOJs) [18, 25, 34, 35, 40, 43] guaran-

tee worst-case optimality, i.e. their runtime complexity is upper-

bounded by the how large the output could possibly be given the

worst possible input. While the worst-case result size can be sig-

nificantly higher than the result size of most queries, WCOJs can

empirically demonstrate better performance compared to binary

hash joins with skewed data. However, WCOJs process joins an

attribute at a time, while classical operators process joins a relation

at a time. This makes the integration of WCOJs into existing op-

timizers difficult [18]. They are also significantly more inefficient

compared to binary joins in queries with low skew [19]. When we

run the TPC-H SF 10 benchmark with our research system Um-

bra [33], we find that WCOJs slow down overall runtime 12 times

compared to binary joins. In Section 3, we will show that simple

relation based ternary joins can be sufficient and more efficient. We

will integrate ternary joins into the diamond hardened framework,

unifying the solutions for acyclic and cyclic queries.

In Section 1, we gave an example of a cyclic query involving

drugs and drug interactions, where we can demonstrate the ineffi-

ciency of binary joins. Consider the two relations 𝑅(patient, drug)
describing which drugs a patient is taking and 𝑆 (drug1, drug2) de-
scribing which pairs of drugs have known adverse interactions. We

start with a tuple in 𝑅, with a patient and a drug. We have two op-

tions. (1) We join back with 𝑅 to find all the other drugs the patient

is taking, then join with 𝑆 to find which of those pairs are actually

interacting. (2) We join with 𝑆 to find all the drugs that interact

with the drug the patient is taking, then join with 𝑅 to find if the

patient is also taking any of those interacting drugs. Either way, the

intermediate result size can be quadratic, as a patient may be taking

many drugs, or a drug may be interacting with many other drugs.

However, we can avoid quadratic time by adaptively choosing the

join order per tuple based on the number of join partners. Starting

with a tuple (𝑝, 𝑑) in 𝑅, we can check how many drugs the patient

𝑝 takes, and how many drugs 𝑑 interacts with. If the 𝑝 takes many

drugs, we join with 𝑆 first, and if the 𝑑 interacts with many other

drugs, we join with 𝑅 first. This is the fundamental advantage that

WCOJs bring. Rather than having one fixed plan, they allow for

per-tuple runtime adaptivity, choosing the execution strategy based

on the number of join partners a particular tuple has.

WCOJs are formally defined as attribute based joins, rather than

relation based. When computing a query with result attributes (a,

b, c), they first compute all the (a)s, then (a, b)s, and then (a, b, c)s,

extending the result one attribute at a time rather than one relation

at a time until they compute the full query result. The particular way

in which WCOJs extend their result sets gives them their runtime

adaptivity. Assume we have three relations R(a, b), S(b, c), and T(c,

a) which we want to join naturally (on attributes with the same

names). Also assume that we have available a superset of the result

projected onto attributes 𝑎 and 𝑏: 𝐼 (𝑎, 𝑏) ⊇ Π𝑎,𝑏 (𝑅 B 𝑆 B 𝑇 ). We

want to efficiently extend this result to contain the attribute 𝑐 . For

every tuple (𝑎,𝑏), we query the matching 𝑐 values in 𝑆 and the

matching 𝑐 values in𝑇 . The intersection of these two sets of 𝑐 gives

us all possible 𝑐 values corresponding to each tuple (𝑎,𝑏). There
are many strategies for computing intersections efficiently. The

key requirement is that, for worst-case optimality, the operation

must take time on the order of the size of the smaller set [35]. One

solution is to have hash tables on 𝑆 and 𝑇 with keys 𝑏 and 𝑎 and

values as hash sets of 𝑐 . We query the hash tables, iterate over the

smaller hash set and query the larger hash set, giving us constant

time per element in the smaller set.

1 def intersect(htR : Dict[a,c], htS : Dict[b,c], a, b):

2 cR = htR[a] # Join order R, S

3 cS = htS[b] # Join order S, R

4 if cR.length < cS.length:

5 # Join order R, S

6 for c in cR:

7 if cS.contains(c):

8 produce(a, b, c)

9 else:
10 # Join order S, R

11 for c in cS:

12 if cR.contains(c):

13 produce(a, b, c)

The logic in both branches is the same as hash join lookups,

the difference being that we can switch the join order based on

the number of elements contained in the corresponding sets. Such

runtime adaptivity does not exist in classical relational processing.

2.2.1 Theoretical Power of Worst-Case Optimal Joins. WCOJs not

only have empirical benefits when joining skewed data, they also

have better worst-case runtime complexity than binary hash joins.

Consider the extremely skewed symmetric relations𝑅(𝑎,𝑏) = 𝑆 (𝑏, 𝑐)
= 𝑇 (𝑐, 𝑎) = ((1) × [1, 𝑛]) ∪ ([1, 𝑛] × (1)). 𝑅 is a set of unidirectional

edges between 𝑛 nodes, the node 1 is connected to all 𝑛 nodes while

all the other nodes are only connected to themselves. The natural

join query 𝑄 (𝑎,𝑏, 𝑐) = 𝑅(𝑎,𝑏) B 𝑆 (𝑏, 𝑐) B 𝑇 (𝑐, 𝑎) has result size
O(𝑁 ). However, binary hash joins take O(𝑁 2) time, regardless of

the join order, as the size of any binary join is O(𝑁 2). WCOJs, in

contrast, guarantee O(𝑁 1.5) time for a query of this structure re-

gardless of the content of the relations. For this particular instance

of relations, many WCOJ algorithms can even compute the result

in O(𝑁 ) time [35].

For the cyclic join of three relations, WCOJs seem to be a clear

win. Nonetheless, WCOJs are not instance-optimal, their runtime

complexity is only guaranteed to be on the order of the worst-case

result size. Their advantages against binary hash joins weaken as

the number of relations and attributes increase and the difference

between actual output size and worst-case output size grows.

2.2.2 Upper Bounds for Join Result Size. A tight upper bound for

(set-semantics) join result sizes was discovered by Atserias, Grohe,

and Marx [1]. We will henceforth refer to this bound as the AGM

bound. Since we are only dealing with equality predicates, it is

more practical to refer to equivalence classes of attributes instead

of individual attributes from individual relations. For example, the

join query 𝑅B𝑅.𝑎=𝑆.𝑎𝑆B𝑆.𝑎=𝑇 .𝑎∧𝑆.𝑏=𝑇 .𝑏𝑇 is a join query with three

relations and two attributes (attribute equivalence classes) 𝑎 and



𝑏. Given a set of attributes A = {𝑎1, 𝑎2, ..., 𝑎𝑚}, a vector of domain

sizes corresponding to each attribute 𝑣 = (𝑣1, 𝑣2, ..., 𝑣𝑚), relations
R = {𝑅1, 𝑅2, ..., 𝑅𝑛}, their cardinalities 𝑐 = ( |𝑅1 |, |𝑅2 |, ..., |𝑅𝑛 |), and
a fractional edge cover weight to each relation𝑤 = (𝑤1,𝑤2, ...,𝑤𝑛),
the AGM bound is given by the following linear program [1, 35]:

AGM = minimize

𝑤

∏︂
𝑅𝑖 ∈R

|𝑅𝑖 |𝑤𝑖

subject to 1 ≤
∑︂

𝑖:𝑎 𝑗 ∈A(𝑅𝑖 )
𝑤𝑖 ∀𝑎 𝑗 ∈ A

Worst-case optimal joins guarantee, for a given query, a runtime

complexity on the order of the AGM bound. Binary hash-joins, in

contrast, can have runtime complexity on the order of the cross-

product of the input relations, potentially much higher than the

AGM bound. However, WCOJs tend to have higher constant over-

head as they materialize and build complex index structures on all

inputs, to enable efficient intersection operations. Nevertheless, it

is hard to guarantee that the diamond problem is not present, as

estimates can contain large errors. Thus, pessimistic optimizers

tend to prefer WCOJs over binary hash joins.

The Free Join algorithm [47] comes closest to bridging the gap,

as it can represent plans that combine worst-case optimality and

binary hash-joins. Nonetheless, the algorithm is single threaded,

can still involve complex index structures, and the described op-

timization strategy often cannot find optimal plans. Our Expand3

operator, which we will present in Section 3.5.3, is simpler, is worst-

case optimal for a large class of queries, and supports bushy plans.

On the first five queries of the LSQB benchmark [28] SF {0.1, 0.3, 1,

3} supported by Free Join, our approach outperforms it by over a

factor of 3x even when restricted to a single thread.

The worst-case query instance can be constructed by utilizing

the dual linear program of the AGM bound [1]. The dual computes

domain sizes for attributes, and every relation is assigned the cross-

product of the domains of its attributes. The worst-case instance

does not suffer from the diamond problem and produces no dangling

tuples; binary joins are worst-case optimal for the worst-case query

instance [35]. Thus, counterintuitively, worst-case optimal joins
should not be used with worst-case inputs. There are many such

surprising queries where WCOJs are not beneficial compared to

binary joins, which we will discuss in Section 3.5.1. Thus, similar

to acyclic queries, a simpler cost-based optimization strategy is

needed to truly achieve optimal performance in cyclic queries.

2.3 Queries with Duplicates & Factorization
Many queries produce intermediate results with lots of duplicate

attribute values. This is inherent in how joins work; they build

cross-products out of matching pairs of tuples. When we process

duplicate values, we essentially do repeated work that could have

been avoided. However, duplicate removal itself can be a very ex-

pensive operation. Thus, a balance needs to be struck between

avoiding duplicates and not taking on too much additional cost.

There are multiple approaches to dealing with duplicate val-

ues. Factorization [36] avoids duplicate values caused by implicit

cross-products. The factorized representation is denormalized; an

attribute may contain a multiset of values. Such a denormalized

tuple represents all tuples resulting from the cross-products of the

attribute multisets. For example, we can represent the tuples (1, 3),
(1, 4), (2, 3), (2, 4) with a single factorized tuple ({1, 2}, {3, 4}). For
the result, the factorized tuples are flattened (normalized). If the

query contains a group-by, the aggregation can be performed di-

rectly on the factorized representation, avoiding the flattening step.

Duplicate values are often produced as a result of n:m joins.

A join hash table build factorizes its build input on the join key.

However, most query execution engines do not benefit from this

factorization, as they directly materialize all join partners, flattening

the factorization. In Section 3, we will present how the diamond

hardened framework can utilize the factorization already present

in hash joins to avoid duplicate values in intermediate result.

2.3.1 Eager Aggreation. Join and aggregate queries that produce

intermediate results with duplicate values are amenable to eager ag-

gregation. Eager aggregation refers to computing partial aggregates

before some joins are executed to reduce the cost of all proceeding

joins. For example, the query Γ𝑏;sum(𝑐 ) (𝑅(𝑎,𝑏) B 𝑆 (𝑏, 𝑐)) might be

eagerly aggregated as Γ𝑏;sum(𝑐′ )
(︂
𝑅 B Γ𝑏;sum(𝑐 ) :𝑐′ (𝑆)

)︂
.

Eager aggregation can be done by applying transformative rules

that push the top group-by down a join tree [48]. Alternatively,

one can find the intermediate results that contain a lot of dupli-

cates and place group-by operators at exactly those positions with

corresponding keys and aggregates as proposed by Fent et al. [16].

The group-by operator is a costly operator, thus relying on car-

dinality estimation to decide where to place additional group-bys

leads to issues. In contrast, a group-join operator merges a join and

a group-by in one operator, avoiding high costs. Inspired by the

group-join [16], a robust and low-risk approach to eager aggrega-

tion is to extend the hash table build of Joins to support efficient

non-strict eager aggregation
1
. This avoids extra materialization

costs and in turn reduces the risk of introducing an expensive

group-by operator with questionable benefit.

2.3.2 Factorization vs. Semi-Join Reduction and Eager Aggregation.
Factorization and full semi-join reduction address the diamond

problem in similar ways even though the techniques themselves

are quite different. Semi-join reduction eliminates dangling tuples

eagerly by executing filters. Factorization (and Lookup & Expand

plans described in Section 3) delays the expansion (or flattening, in

factorization terminology) of dangling tuples, allowing them to be

eliminated in the plan before they lead to large intermediate results.

And if the query contains a group-by on top, the join result, in many

cases, does not need to be expanded, thus avoiding large interme-

diate results. Eager aggregation, in contrast, eagerly pushes down

the aggregation, eliminating duplicate values as soon as possible.

Factorization represents a lazy alternative to the eager optimiza-

tions of semi-join reduction and eager aggregation. In Section 3,

we will present how the diamond hardened framework represents

a practical middle ground between laziness and eagerness.

1
Non-strict eager aggregation refers to the fact that duplicates may still remain after

eager aggregation without sacrificing correctness, as the final group-by at the top

of the join tree is guaranteed eliminate all duplicates in the end. Consider the query

‘select k, count(*) from R group by k;’ where relation 𝑅 contains the values 1, 2, 2, 2, 2.

A strict aggregation would produce the value-count pairs (1, 1) and (2, 4) , while a
non-strict eager aggregation would be allowed to produce (1, 1) , (2, 3) , (2, 1) where
the value 2 is still duplicated, but the total sum of the counts for 2 still adds up to 4.

Non-strictness allows for simple and efficient eager aggregation implementations.



2.4 Reordering Restrictions & Compensation
A query optimizer for SQL needs to deal with outer-, and anti-joins

as well as inner-joins. While inner-joins are both commutative and

associative, this does not hold for other join types. Thus, a query

optimizer needs to consider reordering restrictions when generat-

ing plans. Outer-joins are hard to reorder as they can produce null

values. Outer-joins can also result in the diamond problem, as they

may be growing as well as shrinking. Compensation based reorder-

ing [46] allows for full reordering, but at the cost of converting

inner-joins to outer-joins and expensive compensation oeprators.

3 APPROACH
In this section, we discuss the intuition behind Lookup & Expand

(L&E) decomposition and how this technique leads to more robust

query plans. We start by discussing the difficulty of ordering joins

and then describe how L&E decomposition addresses this difficulty.

3.1 Making Join Ordering Robust
In a first approximation, query optimizers minimize total data move-

ment, which can be approximated by the sum of intermediate result

sizes of operator (a.k.a. the 𝐶𝑜𝑢𝑡 cost function [11]). If a highly

selective filter is executed at the end of a query (top of the query

plan), the optimizer tries to push the filter down as far as possi-

ble, so that fewer tuples are propagated all the way up the plan.

In essence, the optimizer pushes down shrinking operators that

produce a smaller output than their input and pushes up growing

operators that produce a larger output than their input. This gives

us the following rule of thumb: An optimizer tries to push down
cheap shrinking operators and push up growing operators.

Binary hash joins build a hash table on one input and probe the

hash table with the other input, producing all matching pairs
2
.

The hash table build is expensive. The probe is relatively cheap.

However, the probe may be growing or shrinking; each tuple may

find zero, one, or many matches in the hash table. Thus, it is hard

to know when to push down a join; pushing a join down might

speed up the plan significantly or make it slower. The following

code demonstrates a typical binary hash join in pseudocode:

1 # Hash table build

2 ht = {}

3 for k, v in buildInput:

4 ht[k] = v

5

6 # Hash table probe

7 for k, v in probeInput:

8 iterator = ht.find(k) # Lookup

9 if not iterator.done ():

10 do: # Expand

11 produce(k, *iterator)

12 iterator.step()

13 while not iterator.done()

We propose to split binary hash join probes into two subopera-

tors, Lookup and Expand. Lookup finds the first match in the hash

table. Expand iterates over the rest of the matches. Now, we have

two operators that are easy to categorize. Lookups are cheap shrink-

ing operators. Expands are growing operators. Lookups should be

pushed down while Expands should be pushed up.

2
There are, of course, many variants to the binary hash join. We focus on the build &

probe variant, commonly preferred in modern relational systems for its performance.

3.2 Lookup & Expand Decomposition
In this section, we start with descriptions and pseudocode for the

L&E operators. Then, we will formalize the semantics of a L&E plan

by introducing a new notation.

In a join query, if a tuple is ever going to be filtered out, we

want it to be filtered out as soon as possible. Thus, we propose

to decompose joins in such a way that the operation of "looking

for the first match if it exists" is separated into a distinct operator

Lookup, which can be independently reordered. The remaining

operation "iterating over all matches (given a reference to the first

match)" is designated as the Expand operator. Lookup and Expand

combined together make up a single binary join.

We present the operators in produce/consume [31] pseudocode:

1 def lookup_consume(produce , tuple , hashTable ):

2 # Look for the key in the hash table

3 iterator = hashTable.find(tuple.key)

4 if iterator.done ():

5 return
6 # Return tuple and iterator over matches

7 produce(tuple , iterator)

8

9 def expand_consume(produce , tuple):

10 # Extract the iterator from the tuple

11 currentMatch = tuple.iterator

12 do: # Loop over all matches

13 produce(tuple , *currentMatch)

14 currentMatch.step()

15 while not currentMatch.done()

⨝
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Figure 2: Binary hash join and equivalent Lookup & Expand.

The Lookup operator checks for a match and produces a single

iterator for all matches. The Expand operator uses the iterator from

the input to iterate over all matches. When using an in-memory

hash-table, the iterator is analogous to a memory span pointing to

matching hash table entries. In a pipelined query engine [32], this

attribute is often not copied to main memory; it is simply passed

from Lookup to Expand in a register or cache. The machine code

executed in the end will be exactly equivalent to that of a binary

hash join. In Figure 2 we show a binary join and the equivalent

L&E decomposition. The left side of the join is designated as the

probe side.
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Figure 3: Threeway join, equivalent Lookup & Expand, and
Lookup pushdown.



Since we now have two distinct operators, the query optimizer

can reorder them independently, leading to more interesting plans.

Consider the leftmost join plan in Figure 3 where we build hash

tables on 𝑅2 (𝑎) and 𝑅3 (𝑏) and probe these hash tables with 𝑅1 (𝑎,𝑏)
on 𝑅1 .𝑎 = 𝑅2 .𝑎 and 𝑅1 .𝑏 = 𝑅3 .𝑏. L&E decomposition results in the

middle plan. After the decomposition, we can freely push down the

Lookups through the Expands, leading to the rightmost plan. This

change can be illustrated in the following pseudocode:

1 # Join pipeline before push -down

2 for t in R1:

3 iterator2 = ht2.find(t.a)

4 if not iterator2.done ():

5 do:
6 iterator3 = ht3.find(t.b)

7 if not iterator3.done ():

8 do:
9 produce(t, *iterator2 , *iterator3)

10 iterator3.step()

11 while not iterator3.done()

12 iterator2.step()

13 while not iterator2.done()

14

15 # Join pipeline after push -down

16 for t in R1:

17 iterator2 = ht2.find(t.a)

18 if not iterator2.done ():

19 iterator3 = ht3.find(t.b)

20 if not iterator3.done ():

21 do:
22 do:
23 produce(t, *iterator2 , *iterator3)

24 iterator3.step()

25 while not iterator3.done()

26 iterator2.step()

27 while not iterator2.done()

After the Lookups are pushed down, it is guaranteed that the

diamond problem is prevented. The execution starts with shrinking

operators (Lookups) and ends with growing operators (Expands).
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Figure 4: Threeway join, equivalent Lookup & Expand, and
Expand pullup.

We want to show a second example that demonstrates the full

power of L&E decomposition. Consider the leftmost join plan in

Figure 4.We first join𝑅2 (𝑎,𝑏) and𝑅3 (𝑏) on𝑅2 .𝑏 = 𝑅3 .𝑏, build a hash

table on this result, and probe it with 𝑅1 (𝑎) on 𝑅1 .𝑎 = 𝑅2 .𝑎. After

decomposition, we are left with the middle plan. Here, we cannot

push Lookups down as we did before, but we can pull Expands up

through a hash table build! The resulting plan is the rightmost plan.

𝑅2 probes 𝑅3, remembers an iterator on 𝑅3, which is stored in the

hash table on 𝑅2 aside the tuples in-place of actual tuples from 𝑅3.

Later, we probe this hash table with 𝑅1, extract this iterator which

we then Expand at the very end. Notice how we have successfully

partitioned the plan, we have Lookups below and Expands above,

cheap shrinking operators below, growing operators above. Thus,

we have avoided a potentially very expensive hash table build on a

growing intermediate result and prevented the diamond problem.

3.3 Semantics
To more easily refer to Lookup & Expand plans, we introduce a new

notation. In particular, this notation needs to be able to encode the

intermediary state after a Lookup has been executed. Consider the

state after 𝑅2 probes 𝑅3 in Figure 4. We possess an iterator on 𝑅3,

but we do not have the actual tuples at hand. We need an Expand

operator to actually access attributes from 𝑅3. We denote this state

as 𝑅2 → 𝑅3 (pronounced as 𝑅2 looks-up 𝑅3)
3
. We refer to 𝑅2 as the

head. We are able to access attributes of the relations in the head

as they have been expanded. The outgoing arrows correspond to

iterators. After an expansion 𝑒𝑅3
(𝑅2 → 𝑅3) ≡ 𝑅2B𝑅3 we can access

all attributes in 𝑅2 and 𝑅3. We will often omit trivial subscripts and

the join sign B when using our notation 𝑒 (𝑅2 → 𝑅3) ≡ 𝑅2𝑅3.

We will also directly refer to sets of relations with joins implicit

𝑒 (R1 → R2) ≡ R1 ∪ R2.

An L&E expression S is a relation; the operations Lookup &

Expand can be seen as extensions to relational algebra, they input

and output relations. The grammar for L&E expressions can be

stated as (→ has right-to-left precedence):

R := any set of relations including ∅ (1)

S := R | (S) | S → S | 𝑒 (S) | ℎ𝑒𝑎𝑑 (S) (2)

The following are result equivalences of L&E expressions:

R → ∅ ≡ R (3)

ℎ𝑒𝑎𝑑 (R → S) ≡ R (4)

𝑒R2
((R1 → (R2 → S2)) → S3) ≡ ((R1 ∪ R2) → S2) → S3 (5)

S1 → S2 → S3 ≡ S1 → (S2 → S3) (6)

(S1 → S2) → S3 ≢ S1 → (S2 → S3) (7)

(S1 → S2) → S3 ≡ (S1 → S3) → S2 (8)

The Equations 3-5 are definitions, Equations 6 and 7 describe op-

erator precedence and Equation 8 demonstrates Lookup reordering.

We also use the shorthand 𝑒∗ (S) to refer to expanding 𝑆 entirely

with a sequence of expands such that all the contained relations

are in the head. The plans for Figure 3 and Figure 4 can be stated

as 𝑒∗ ((𝑅1 → 𝑅2) → 𝑅3) and 𝑒∗ (𝑅1 → 𝑅2 → 𝑅3) respectively.
Lookups & Expands bridge the gap between relational query

processing and factorized query processing
4
. If your database does

binary hash joins, you are already factorizing when you build a

hash table, you simply are not benefitting from it, as the benefits

come from allowing the query optimizer to reorder Lookups.

In the following, we will analyze the capabilities of L&E decom-

position, demonstrating that, with simple extensions, all four cases

of the diamond problem identified in Section 2 can be addressed.

3
A lookup R2 → R3 is only valid iff. there is at least one join edge between the two

sets of relations, i.e. R2 → R3 is only valid if R2 B R3 is not cross-product.

4
Note that an L&E expression corresponds to a factorized d-representation [37] of the

query, with the main difference being that L&E expressions only factorize the build

sides on the join predicates.



3.4 Acyclic Queries
L&E decomposition can provide the same guarantees as the Yan-

nakakis algorithm without requiring additional semi-joins. This

can be achieved with two-phase plans, where the first phase of

execution exclusively consists of pushed down Lookups and the

second phase exclusively consists of Expands. The Lookup phase is

exclusively shrinking, and the Expand phase is exclusively growing,

but bounded by the query’s output size. As no dangling tuples could

remain after the Lookup phase, such a plan is instance optimal. Two

examples of two-phase plans can be seen in Figures 3 and 4. In both

examples, we were able to find a join order in which all the Lookups

could be pushed down below Expands. In fact, if a query is 𝛼-acyclic,

we will show that we can always find such a two-phase plan.

Similar to semi-join reduction, we can utilize the GYO ear re-

moval algorithm to determine an order for the first phase of Lookup

operators. A relation is an ear if all its join attributes (with remain-

ing relations) are contained in another relation. Every time an ear

is removed, we draw an edge from the containing relation to the re-

moved relation. We repeat this process until there are no remaining

relations
5
. The resulting graph is a tree, and the edges represent

Lookups of an L&E expression. We follow with a sequence of Ex-

pand (𝑒∗) operations to compute the join result. The resulting plan

is two-phase, and thus, instance optimal up to a constant factor.
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Figure 5: Relations and join attributes, possible ear removal
order, and resulting two-phase L&E plan

In Figure 5, we demonstrate a possible execution of the algorithm

on the query from Figure 4. We start by removing 𝑅3 (𝑏), whose join
attribute 𝑏 is contained in 𝑅2 (𝑎,𝑏). We can then remove 𝑅2 (𝑎,𝑏),
as its remaining join attribute 𝑎 is contained within 𝑅1 (𝑎). 𝑅1, as
the only remaining relation, becomes the head of Lookup sequence,

resulting in the L&E expression 𝑒∗ (𝑅1 → 𝑅2 → 𝑅3).
The advantages of L&E over the Yannakakis algorithm are twofold.

First, eliminating semi-joins can directly lead to a factor of two

improvement in query performance. Second, instead of requiring

semi-join filters, we extend the search space of join optimizers with

two-phase plans. The optimizer can then pick the best plan among

all possible plans, including two-phase and non-two-phase plans.

In this work we focus on equi-joins and do not consider inequal-

ity predicates neither from an execution perspective [39] nor from

an optimization perspective [45].

3.5 Cyclic Queries & Worst-Case Optimality
When predicates were acyclic, we guarantee that we can always

find an L&E plan where all Lookup were pushed down below Ex-

pands. Such two-phase plans guarantee that no dangling tuples

5
A query is 𝛼-acyclic iff. only a single relation remains after all ears are removed [2].

remain after the first phase, implying that they are instance optimal.

Unfortunately, when predicates form cycles, we cannot guarantee

that such plans exist, and must rely on WCOJs for better runtime

guarantees. However, as discussed in Section 2.2, WCOJs are ineffi-

cient and hard to integrate into existing optimizers. We also find

that generic WCOJs are often not necessary. In the following, we

will first demonstrate that ternary joins with 3 inputs can replace

WCOJs in a large class of queries. Then, we will introduce the Ex-

pand3 operator, that extends L&E plans with per tuple adaptivity

and worst-case optimality.

3.5.1 When Achieving Worst-Case Optimality is Easy. We would

like to demonstrate a few examples where WCOJs produce little

or no benefit over binary joins. Based on these examples, we will

propose ternary joins, which, combined with binary joins, can

produce worst-case optimal plans for a large class of queries.

Consider the triangle query 𝑅(𝑎,𝑏) B 𝑆 (𝑏, 𝑐) B𝑇 (𝑐, 𝑎). For sim-

plicity, assume that all relations have size 𝑁 . If we optimize the

AGM minimization linear program, we will find that the optimal

fractional edge cover is 0.5 for all relations resulting in the worst-

case result size of 𝑁 1.5
. Binary join, in contrast, takes O(𝑁 2) time

in the worst case, as any join of two relations may have quadratic

size. WCOJs are clearly beneficial.

Now consider the quadrangle query 𝑅(𝑎,𝑏)B𝑆 (𝑏, 𝑐)B𝑇 (𝑐, 𝑑)B
𝑈 (𝑑, 𝑎). The optimal fractional edge cover is either 0.5 for all rela-

tions or (1, 0, 1, 0) (symmetric covers are omitted). Regardless, the

worst-case result size is 𝑁 2
. The runtime complexity for binary

joins is also 𝑁 2
; we first join two relations each 𝑅 B 𝑆 and 𝑇 B𝑈 .

Each takes O(𝑁 2) time. Then we join these intermediate results

together, where both the input and output are O(𝑁 2). Thus the
total runtime is O(𝑁 2). There is a worst-case optimal binary join

plan for quadrangle queries.
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Figure 6: Pentagon query transformed into a triangle query

Finally consider the pentagon query 𝑅(𝑎,𝑏)B𝑆 (𝑏, 𝑐)B𝑇 (𝑐, 𝑑)B
𝑈 (𝑑, 𝑒) B 𝑉 (𝑒, 𝑎). The worst-case result size is 𝑁 2.5

. All binary

join plans might take O(𝑁 3) time for a query; they are not worst-

case optimal. Ternary joins can be worst-case optimal. We can join

together 𝑆 B𝑇 and𝑈 B𝑉 , which leaves us with three relations 𝑅,

(𝑆 B𝑇 ), and (𝑈 B𝑉 ), which we can join with a ternary join. This

idea is illustrated in Figure 6. If we can assume that the ternary join

is worst-case optimal, the entire query runs in O(𝑁 2.5) time, same

as a 5-way worst-case optimal join. There is a combined binary &

ternary join plan that is worst-case optimal
6
.

Binary joins are worst-case optimal for all n-gon queries where 𝑛

is even. Binary joins combinedwith a final ternary join is worst-case

6
For the ternary join to be strictly worst-case optimal as we have described here,

it needs to carefully manage duplicates in all inputs and the attributes 𝑐 and 𝑒 , the

attributes used by the initial joins. The intermediate results can be projected onto

their remaining edges Π𝑏,𝑑𝑆 B𝑇 and Π𝑑,𝑒𝑆 B𝑇 and the attributes 𝑐 and 𝑒 can be

joined in after the ternary join is executed. It is hard to determine when additional

projections are beneficial in practice; ternary joins have some overhead even without

it. Our implementation of Expand3 ignores these issues.



optimal for all n-gon queries. In the upcoming section, we show

that, allowing for arbitrary combinations of binary and ternary

joins, a large class of queries can be answered with worst-case

optimal runtime, without the need for larger multiway joins.

3.5.2 Ternary Joins are Enough for Many Queries. In the examples

of the previous subsection, the fractional edge cover weight𝑤 was

0.5 for all relations. In fact, the query graphs where 𝑤 is one of

{0, 0.5, 1} are exactly the query graphs where binary and ternary

joins are worst-case optimal (with an additional restriction to be

elaborated later). We have empirically verified all queries in the CE

benchmark [9] to possess this condition. Nonetheless, this property

is quite abstract. To give a better intuition of queries possessing

this property, we also prove that all queries with binary edges in

fact result in fractional edge cover weights in {0, 0.5, 1}.

Lemma 3.1. If all attributes are present in at most 2 relations, there
is an optimal fractional edge cover with weights in {0, 0.5, 1}.

We give the proof for Lemma 3.1 in our technical report [5]. The

underlying idea is that, whenever we have weights larger or smaller

than 0.5, we can always round them to 0 or 1 without increasing the

objective. Note that Lemma 3.1 is sufficient but not necessary for

amenable weights. While queries tend to have transitive predicates

such as 𝑅.𝑎 = 𝑆.𝑎 = 𝑇 .𝑎, we observe that such predicates in real

queries often lead to acyclic structures and rarely to complex cyclic

structures. A counterexample cyclic query where attributes occur 3

times is 𝑅(𝑎,𝑏, 𝑐)B𝑆 (𝑎,𝑏, 𝑑)B𝑇 (𝑎, 𝑐, 𝑑)B𝑈 (𝑏, 𝑐, 𝑑). If user queries
have such structures, fractional edge cover weights may be distinct

from {0, 0.5, 1}, and full multiway joins may have better runtime.

Lemma 3.2. If there is an optimal fractional edge cover with weights
𝑤 in {0, 0.5, 1}, there is a plan with binary/ternary joins and semi-join
reductions that computes the query result in worst-case optimal time,
as long as the |𝑅max | ≤ |𝑅min |2 where 𝑅max is the largest and 𝑅min
the smallest relations with fractional cover weights 0.5.

We give a constructive proof for Lemma 3.2 in our technical

report [5]. In summary, we recursively decompose the query into

three partitions, where the sizes of the partitions do not exceed

the query result size. These partitions are computed recursively

and joined together using ternary joins. We essentially show that

we can choose such partitions by starting with the largest relation,

and iteratively growing that partition until it grows too large, at

which point we decompose the query into the partition containing

the largest relation, a partition containing the most recently added

relations that took us over the size limit, and the remaining relations.

There are certain additional cases in the full proof that result in the

|𝑅max | ≤ |𝑅min |2 condition. It is rare for the relation sizes to be

so significantly different. Additionally, it becomes less likely that

the fractional cover values for 𝑅max and 𝑅min are both 0.5 as their

difference grows. We have empirically verified that every query in

the CE benchmark fulfills the conditions of Lemma 3.2.

In summary, we have shown for a large class of queries that

a combination of ternary and binary joins is worst-case optimal.

Queries can be constructed where ternary joins are not worst-case

optimal. Still, for WCOJs to be beneficial, both the query structure

and input data must be quite peculiar. We believe that only using

binary and ternary joins will lead to more robust performance,

as the optimizer can more easily reason about these operators. In

Section 5, we show that exclusively usingWCOJs can leads to orders

of magnitude slowdowns, demonstrating that choosing them over

ternary joins is a risky trade-off for the optimizer.

3.5.3 Ternary Expand (Expand3). Wehave shown that ternary joins

are often good enough for worst-case optimality. They are also

easier to understand and simple to implement in the framework

of Lookup & Expand operators. In the following, we will describe

the ternary Expand (Expand3) operator that, combined with two

Lookups, implements a ternary worst-case optimal join. We base

ternary-join on Algorithm-2 from Ngo et al. [35], opting to do

intersections based on hashing.

Consider the cyclic query 𝑅(𝑎,𝑏)B𝑆 (𝑏, 𝑐)B𝑇 (𝑐, 𝑎). The Lookup
& Expand plan for this query might look like 𝑒𝑇 (𝑒𝑆 (𝑅 → 𝑆) → 𝑇 ).
Note howwe expand before the second lookup as both𝑅 and 𝑆 share

predicates with 𝑇 . If we avoid the inner expansion (𝑅 → 𝑆) → 𝑇 ,

our intermediate result contains 𝑅 with two iterators, one for 𝑆 and

one for 𝑇 . Expand3 takes these two iterators, and computes their

intersection on the predicate 𝑆.𝑐 = 𝑇 .𝑐 . The resulting plan looks

like 𝑒3𝑆,𝑇 ((𝑅 → 𝑆) → 𝑇 ).
Ngo et al. [35] show that, for this plan to be worst-case optimal,

the intersection must be computed in time in the order of minimum

iterator length. Expand3 picks the iterator referring to the smallest

number of tuples, and makes hash-lookups into the tuples referred

to by the other iterator. To facilitate these lookups, we build two

hash tables on 𝑆 and𝑇 each, primary hash tables on 𝑆.𝑏 and𝑇 .𝑎 and

secondary hash tables on 𝑆.{𝑏, 𝑐} and𝑇 .{𝑎, 𝑐}. The primary hash ta-

bles are used within the Lookup operators while the secondary hash

tables are used within Expand3 for the intersection. The operation

of Expand3 is illustrated in the following pseudocode:

1 def expand3(r, iteratorS , iteratorT ,

2 secondaryTableS , secondaryTableT , produce ):

3 if iteratorS.length < iteratorT.length:

4 iteratorSmall = iteratorS

5 secondaryTable = secondaryTableT

6 primaryKey = r.a

7 else:
8 iteratorSmall = iteratorT

9 secondaryTable = secondaryTableS

10 primaryKey = r.b

11 for v in iteratorSmall:

12 secondaryKey = v.c

13 for vp in secondaryTable [(primaryKey ,secondaryKey )]:

14 produce(v, vp)

The Expand3 operator (and its preceding Lookups) are not pipeline

breakers. Large inputs can be streamed through without material-

izing tuples. For example, consider the quadrangle query 𝑅(𝑎,𝑏) B
𝑆 (𝑏, 𝑐) B𝑇 (𝑐, 𝑑) B𝑈 (𝑑, 𝑎). We can join 𝑅 and 𝑆 and subsequently

perform a ternary join: 𝑒3𝑇,𝑈 ((𝑒𝑆 (𝑅 → 𝑆) → 𝑇 ) → 𝑈 ). The result
size of 𝑒 (𝑅 → 𝑆) might be large, but since we can pipeline the

result without materializing it, its impact on performance will be

low. For some input data, it might be further beneficial to reduce

the size of 𝑆 before executing the Lookup 𝑅 → 𝑆 . L&E decomposi-

tion allows for such an optimization without any additional semi

joins: 𝑒3𝑇,𝑈 (𝑒𝑆 (𝑅 → (𝑆 → 𝑇 )) → 𝑈 ). Note how 𝑒3 is able to use

the iterator to 𝑇 from the Lookup 𝑆 → 𝑇 . Such optimizations are

not possible without decomposing joins.



3.6 Queries with Duplicates
Queries may produce many duplicates in intermediate results, re-

sulting in redundant work. In the diamond hardened join frame-

work, we eagerly aggregate tuples when building hash tables, by

evaluating available aggregations at that point in the plan as de-

scribed by Fent et al. [16]. This results in no additional materializa-

tions, thus improving robustness at very little cost. Nonetheless,

eager aggregation is mainly beneficial for free-connex
7
queries.

If the projection contains attributes from multiple relations, but

the join keys of those relations are not projected as in the query

𝜋𝑎,𝑐 (𝑅(𝑎,𝑏)B 𝑆 (𝑏, 𝑐)), more advanced techniques are needed [12].

3.7 Reordering Restrictions & Compensation
Reordering restrictions are a common problem in query optimiza-

tion. The worst offender for reordering restrictions are outer-joins.

They are hard to reorder as they can produce null values. With L&E

decomposition, Expands can be pushed above outer-joins without

changing the query result, as Lookups produce exactly the match-

ing tuples. Note that the same decomposition cannot be made with

Bloom filters (probabilistic semi-joins):

(𝑅 B 𝑆) H𝑇 ≡ 𝑒 ((𝑅 → 𝑆) H𝑇 ) ≢ ((𝑅 ˜︁N 𝑆) H𝑇 ) B 𝑆

Outer-joins can also result in the diamond problem, as they may

be growing as well as shrinking. Thus, we would like to apply

Lookup & Expand decomposition for outer-joins. Interestingly, if

we make Lookup the null-producing operator, and keep Expand

simple, this allows us to freely push Expands up join trees. Even

though we do not have full reorderability for all operations
8
, we

are able to produce plans with many more orderings for Expands.

We define two additional parameters for Lookup, whether it

“produces-nulls” and/or “produces-all”. (1) A produce-null Lookup,

after finding matches for all tuples in the left side, produces null

tuples with iterators to unmatched tuples on the right. The hash

table build reserves space in the tuple storage for markers to mark

matched tuples. (2) A produce-all Lookup does not filter out un-

matched tuples on the left, but instead, produces themwith iterators

pointing to null right-side tuples.

The following pseudocode illustrates these new parameters:

1 for left in tuplesLeft:

2 it = htRight.find(left.key)

3 if it.done ():

4 if produceAll:

5 produce(left , NULL)

6 else:
7 produce(left , it)

8 if produceNulls and not iterator ->matchMarker:

9 # First time , mark all matches

10 it2 = it.copy()

11 while not it2.done ():

12 it2 ->matchMarker = True
13

14 if produceNulls:

15 for right in tuplesRight:

16 if not right.matchMarker:

17 produce(NULL , right)

7
A query is free-connex if it is 𝛼-acyclic and remains 𝛼-acyclic after joining with an

arbitrary relation that contains the projection attributes [8].

8
For full reorderability, expensive compensation operators are needed [46].

A left-outer join is decomposed into a produce-all Lookup and

an Expand. A right-outer join is decomposed into a produce-null

Lookup and an Expand. A full-outer join is decomposed into a

produce-null & produce-all Lookup and an Expand. The Expand

needs to handle NULL iterators by producing a right-side consisting

of NULL values. Under these definitions, Expands can be pushed

through produce-all and/or produce-null Lookups freely, thus the

optimizer can focus on reordering Lookups and execute the danger-

ous (for the diamond problem) Expands as late as possible (before

the attributes produced by the right side of the Expand are used).

L&E decomposition significantly increases the possible reorder-

ings compared to binary hash joins. For example, for star queries,

all possible orderings for Expands can be generated. However, com-

pensation operators [46] are still needed for full reorderability.

3.8 Summary
If the query plan is acyclic, there is an instance optimal L&E plan. If

the query plan is cyclic there is (most likely) a worst-case optimal

L&E plan. If the query contains duplicates, there aremany factorized

and/or eagerly aggregated L&E plans. If the query contains outer-

joins, there are L&E plans that allow for many reorderings not

possible with binary joins.

The search space for L&E plans contains many very powerful

plans and all their combinations. This is the search space in which

we will attempt to find the best plan, the plan we want to execute.

The upcoming Section 4 will describe how we conduct this search.

4 COST-BASED OPTIMIZATION
In this section, we review the principles of join order optimization

and propose an optimization strategy for finding an efficient or-

dering for Lookup, Expand, and Expand3 operations for arbitrary

queries. To achieve this, we demonstrate an encoding for Lookup

& Expand operator trees that makes it easy to integrate them into

an existing query optimizer.

We are proponents of constructive (bottom-up) dynamic pro-

gramming optimizers [29] due to their efficiency, and base our

ideas on extending such optimizers with physical properties such

as groupings and orderings [13]. In principle, there is nothing that

prevents a top-down [15] or transformative optimizer [21] from

supporting Lookup & Expand queries. Regardless, we base our fol-

lowing discussions on the DPhyp algorithm [30] for its efficiency

and ability to handle reordering restrictions.

A query optimizer constructs many execution plans and tries to

find the plan that will most efficiently compute the query. Given a

cost function that determines the efficiency of a plan, an optimizer

tries to find the optimal plan of minimum cost.

Relational algebra queries exhibit the Bellman principle of op-

timality [3]: There is an optimal plan where all its subtrees are

optimal. Constructive (bottom-up) optimizers exploit the principle

of optimality by first finding optimal plans for subqueries, which

are gradually combined together to build up the full optimal plan

that will compute the full query. We say that two plans with equiv-

alent output have equivalent state. Constructive optimizers avoid

generating too many plans by only storing one plan per unique

state, the plan with the lowest cost. For binary joins, this would

imply one plan per each set of relations.



The state of a L&E operator tree must also uniquely determine

its output. This state can be encoded using L&E expressions, which

were introduced in Section 3. To make sure that there is a bijection

between possible states and encodings, we can restrict ourselves

to only using minimized L&E expressions only consisting of sets

of relations and Lookups. An arbitrary L&E expression can be

minimized by combining matching Lookups and Expands.

𝑒𝑆 (𝑅 → 𝑆) → 𝑇 ⇒ 𝑅𝑆 → 𝑇

The resulting expression forms a tree of sets of relations. The nodes

are sets of relations and the edges are the Lookups.

As we now have a definition and an encoding for state, we can

easily extend a constructive optimization algorithm to support L&E.

A possibility is to generate all possible L&E plans. However, this

results in a huge search space with many suboptimal plans. In

situations where cardinality estimates are unreliable, a large search

space can work against the optimizer similar to the "fleeing from

knowledge to ignorance" problem [27]; the optimizer would pick

the most underestimated plan rather than the best plan. We instead

only allow the optimizer to reorder Lookups, and place Expands

based on two fundamental heuristics: (1) To prevent the diamond

problem, Expands should happen as late as possible
9
. (2) Too many

delayed Expands, especially ones with low multiplicity, lead to

pointer chasing and thus bad cache utilization. Thus, we allow

certain Expands to happen early based on cardinality estimates.

In the following, we start with a simple exhaustive enumeration

of all possible L&E plans, and further refine it with the two heuris-

tics. The following pseudocode generates all L&E plans by iterating

over all connected component pairs of relations [30]:

1 for s1 , s2 in connectedComponentPairs(query):

2 for p1 in plans[s1]:

3 for p2 in plans[s2]:

4 lookupPlan = p1 -> p2

5 plans[s1 + s2]. insert(lookupPlan)

6 for p in generateExpandPlans(lookupPlans ):

7 plans[s1 + s2]. insert(p)

For every set of relations, we have a corresponding set of plans.

For every connected pair of sets of relations (in an order corre-

sponding to the principle of optimality), we iterate over all plan

pairs, connect them via a Lookup, and then generate all possible

expansions on top of those plans. Within the insert function, we

take care to only preserve the smallest plan if a plan of the same

state already exists.

We improve exhaustive enumeration by only reordering Lookups,

and greedily placing expands as in the following:

1 for s1 , s2 in connectedComponentPairs(query):

2 for p1 in plans[s1]:

3 for p2 in plans[s2]:

4 req1 = computeBoundary(s1, s2)

5 req2 = computeBoundary(s2, s1)

6 lookupPlan = e(p1, req1) -> e(p2, req2)

7 plans[s1 + s2]. insert(lookupPlan)

Using computeBoundary, we compute all relations (boundary

nodes) in a first set that are connected to a second set over join con-

ditions. Before forming the lookupPlan, we make sure all boundary

nodes are available in the heads of both sides of the Lookup. In

9
To facilitate this, the cost function needs to underestimate the potential cost of

Expands. Our full cost function is given in our technical report [5].

other words, we delay expansions until the first moment they are

referenced by a join predicate, at which point they are required.

This generates safer plans, as the dangerous growing Expand op-

erators are executed as late as possible while Lookups filter on all

available join conditions.

To improve plan runtime, we further refine the optimizer with

the ability to execute expands early before they are needed:

1 for s1, s2 in connectedComponentPairs(query ):

2 for p1 in plans[s1]:

3 for p2 in plans[s2]:

4 req1 = computeBoundary(s1, s2)

5 req2 = computeBoundary(s2, s1)

6 left = e(p1, req1)

7 right = e(p1, req2)

8 left = earlyExpand(left , |left|, |right |)

9 right = earlyExpand(right , |right|, |left|)

10 lookupPlan = left -> right

11 plans[s1 + s2]. insert(lookupPlan)

earlyExpand greedily decides whether to eagerly place Expands
on subplans. This decision is based on cardinality estimates. While

there are cases where cardinality estimates can contain great errors,

there are also cases where a system can partially guarantee its esti-

mates are reliable. In such cases, we can allow for certain Expands

to happen early, greatly increasing average case performance.

We have discussed how to encode the state of Lookup & Expand

plans, how to integrate them into an existing constructive optimizer,

and discussed how we can intelligently restrict the search space of

the optimizer to generate plans with better robustness by reducing

the impact of cardinality estimation errors. In the following, we will

further detail the cost function we utilize for our operators. Finally,

we will take a look at how we support the Expand3 operator.

We have omitted implementation details such as removing re-

dundant predicates in cases where two join predicates might imply

a third. To eliminate redundant predicates, the optimizer should

keep track of the equivalence class of attributes, and make sure

the utilized equality predicates between equivalent attributes never

form a cycle. This is essential to prevent unnecessary expansion

resulting from our requirement that all relevant predicates are uti-

lized as early as possible. Consider 𝑅(𝑎) B 𝑆 (𝑎) B𝑇 (𝑎) with three

join predicates 𝑅.𝑎 = 𝑆.𝑎, 𝑅.𝑎 = 𝑇 .𝑎, and 𝑆.𝑎 = 𝑇 .𝑎. If we want

to lookup from 𝑅 to 𝑆 → 𝑇 , the right side does not need to be ex-

panded to be able to apply the predicate 𝑅.𝑎 = 𝑇 .𝑎. Simply doing the

Lookup 𝑅 → (𝑆 → 𝑇 ) is enough as both 𝑅.𝑎 = 𝑆.𝑎 and 𝑆.𝑎 = 𝑇 .𝑎

will have been applied, making 𝑅.𝑎 = 𝑇 .𝑎 redundant. Note that, by

considering redundant predicates, we have implicitly ascertained

that this query is 𝛼-acyclic and not cyclic, in contrast to the query

𝑅(𝑎,𝑏) B 𝑆 (𝑏, 𝑐) B𝑇 (𝑎, 𝑐), where we would need an Expand on the

right side, which could be replaced by a Ternary-Expand as will be

discussed in Subsection 4.2.

4.1 Sideways Information Passing
Simply reordering Lookups does not eliminate the diamond prob-

lem, unless a two-phase plan is picked as described in Section 3.4. To

minimize the diamond problem in general, we can apply semi-join

filters across the plan using sideways information passing [10, 24].

When constructing a hash table, we can build additional Bloom

filters on different sets of attributes, which can then be used to

eagerly filter other intermediate results. Instead of following the



reverse GYO [51] order as in full semi-join reduction, we order the

hash table build operators by input cardinality and build filters on

the inputs of smaller tables first, which are then employed to filter

the inputs of larger tables, similar to how Yang et al. [49] determine

the topology of a predicate transfer graph. In a sense, by ordering

hash tables by size, we minimize the size of the largest hash table.

4.2 Supporting Ternary Expansion
The optimizer needs to be able to place Expand3 operators to

support worst-case optimal cyclic plans. As Expand3 operators

are only useful for cyclic queries, we must take care to only con-

sider them when a Lookup closes a cycle. We can detect this by

checking whether the input to the Lookup contains boundary re-

lations that we needed to expand. Consider the triangle query

𝑅(𝑎,𝑏) B 𝑆 (𝑏, 𝑐) B𝑇 (𝑐, 𝑎). We have two subplans 𝑅 → 𝑆 and 𝑇 . If

we proceed to do a Lookup from 𝑅 → 𝑆 to 𝑇 , we need to expand

𝑅 and 𝑆 to be able to apply the join predicate 𝑅.𝑎 = 𝑇 .𝑎, result-

ing in the plan 𝑒𝑆 (𝑅 → 𝑆) → 𝑇 . This indicates that this Lookup

closes a cycle. In such cases, we can remove the expansion and

introduce an Expand3 operator that expands on both the Lookups:

𝑒3𝑆,𝑇 ((𝑅 → 𝑆) → 𝑇 ). Note that 𝑒3 corresponds to two separate

Expands; the binary plan would have been: 𝑒𝑇 (𝑒𝑆 (𝑅 → 𝑆) → 𝑇 ).

5 EVALUATION
In this section we evaluate the effectiveness of Lookup & Expand

decomposition and show that Lookup & Expand (1) results in dra-

matic improvements up to 500x in n:m queries, (2) causes minimal

regressions in even the most benign queries. This demonstrates that

Lookup & Expand decomposition is a simple and effective approach

to improving the robustness of in-memory join processing.

We have implemented Lookup & Expand decomposition in the

compiling in-memory database Umbra [33] and compare it with

baseline Umbra, WCOJs due to Freitag et al. [18], and DuckDB [38]

v0.9.2 on a microbenchmark, the relational benchmarks TPC-H

Scale Factor 10, and JOB [26], and the CE graph benchmark [9]. The

TPC-H benchmark mainly consists of key-foreign key joins with

little to no skew in the data, thus we do not expect our optimiza-

tions to result in significant improvements. The JOB benchmark

exclusively consists of 𝛼-acyclic queries, meaning that semi-join

filters and Lookup & Expand decomposition are partially useful

in queries demonstrating the diamond problem, while WCOJs and

Expand3 will not be. The CE benchmark was designed to stress

test the cardinality estimators for graph databases and contains

a wide range of complex pattern matching queries, both acyclic

and cyclic. We have translated the queries to SQL to evaluate them

on relational databases
10
. We only evaluate the queries from CE

that have result size smaller than 10
9
. The queries in the original

benchmark can go up to 10
16
, and such large result sizes are not

feasible to compute without eager aggregation. We expect all our

optimizations to be useful on this benchmark, as it contains many

queries with complex structures and large intermediate results.

We have 4 aspects of our implementation that we individually

evaluate: (1) ht: Using a hash table with dense collision lists (adja-

cency array) [6] instead of a chaining hash table (the Umbra default).

Optimizing the hash table is fundamental for robustness against

10
Our reproducibility package contains all queries and datasets for all benchmarks.

skew [17]. This optimization will improve most queries. (2) lookup:
Lookup & Expand decomposition and Expand3 optimization. These

optimizations target the diamond problem in acyclic and cyclic

queries. (3) SIP : Using additional Bloom filters [7] as in Section 4.1.

Bloom filters both increase the robustness of join ordering through

sideway information passing. Additionally, Bloom filters are more

amenable to high performance vectorized filtering and lead to con-

stant factor improvements in selective joins. (4) agg: Using eager
aggregation. This optimization mainly targets the CE benchmark,

which exclusively consists of count(*) graph pattern matching

queries with sometimes large result sizes. Eager aggregation also

makes it feasible for Umbra to run through the entire CE bench-

mark, including the queries with extremely large result sizes (which

we omit here to focus on the other optimizations).

All benchmarks have been evaluated on a Ryzen 5950X system

with 16 cores and 32 threads with 64GB of RAM. The databases

are allowed to use 50GB of RAM for queries. All queries are forced

to run in-memory. We repeat all query executions 10 times (upto

an hour) and show the minimum execution time. We disable index

nested loop join in Umbra and its variants to avoid that some queries

are dominated by index access costs instead of join costs.

5.1 Microbenchmark
L&E decomposition results in asymptotic improvements over binary

joins, meaning that we can construct queries where an L&E plan is

arbitrarily faster than any possible binary join plan. To demonstrate

this, we have constructed one acyclic and one cyclic query where

base table have sizes 𝜃 (𝑁 ), L&E requires 𝜃 (𝑁 ) time to execute, and

binary joins require 𝜃 (𝑁 2) time to execute. With 𝑁 = 5 · 104, we
find that lookup is around 730x and 15x faster than ht andWCOJ
respectively on the acyclic query. On the cyclic query, the speedup

over ht andWCOJ is around 200x and 8x respectively.

[𝑎,𝑏] is the range of integers from 𝑎 to 𝑏 inclusive. The acyclic

query is 𝑋 (𝑎,𝑏) B 𝑌 (𝑏, 𝑐) B 𝑍 (𝑐, 𝑑) for the relations 𝑋 = (1, 1) ∪
([1, 𝑁 ] × (2)), 𝑌 = (1, 1) ∪ ((2) × [4, 𝑁 ]) ∪ ([3, 𝑁 ] × (3)), 𝑍 =

(1, 1) ∪ ((3) × [1, 𝑁 ]). The cyclic query is 𝑅(𝑎,𝑏)B𝑆 (𝑏, 𝑐)B𝑇 (𝑐, 𝑎)
for the relations 𝑅 = 𝑆 = 𝑇 = ((1) × [1, 𝑁 ]) ∪ ([1, 𝑁 ] × (1)).

5.2 Relational & Graph Benchmarks
In the TPC-H Scale Factor 10 benchmark, we observed the hash

table with dense collision lists results in a significant improvement

of around 5% over the default chaining hash table, while the rest

of the optimizations do not result in significant improvements or

regressions. WCOJs, in contrast, result in around a 12x slowdown

on total benchmark runtime.

Figure 7: Runtime improvement of different optimizations
over baseline Umbra on the JOB benchmark.



Figure 8: Runtime improvement of individual queries with different optimizations on the CE benchmark.

In Figure 7, we show the runtime improvement of each optimiza-

tion over the baseline Umbra implementation on the JOB bench-

mark. We observed that the ht optimization results in noticeable

improvements, while the rest of the optimizations do not result in

significant improvements or regressions. We found similar results

for LDBC SNB BI [42] SF 10: ht results in some improvements, while

the performance with the rest of the optimizations remains similar.

In these benchmarks, simple pushdowns of join filters suffice to

achieve good performance. We also observed that WCOJs result in

around 25x slowdown in JOB. As the JOB benchmark consists of

𝛼-acyclic queries, we do not expect WCOJs to be beneficial, still,

the slowdown demonstrates the difficulty of integrating worst-case

optimal joins into a general-purpose query optimizer.

Figure 9: Runtime improvement of different optimizations
over baseline in the CE benchmark.

In Figure 9, we show the runtime improvement of each optimiza-

tion over the baseline Umbra implementation on the CE benchmark.

In this benchmark we find that baseline Umbra is significantly faster

than DuckDB and WCOJs and that our optimizations make Umbra

even faster. In Figure 8, we show the runtime improvement of each

optimization over the previous optimization. We find that simply

replacing the hash table with a skew optimized one results in the

biggest improvements overall. Lookup, Expand, and Expand3 sig-

nificantly improve performance for certain pathological queries.

The biggest wins are for cyclic queries, where dblp_cyclic_q9_06

improves by a factor of over 500x from 2s to 4ms. However, some

queries have also slowed down, watdiv_cyclic_q10_00 went from

4ms to 40ms, a slowdown of around 10x, due to bad plan choices

resulting from estimation errors. Such impacts are often more sig-

nificant on queries that utilize Expand3. Even though Expand3 has

a smaller constant factor overhead compared to WCOJs, it is still

slower than normal Expands. We also found that the total runtimes

of ht + SIP and ht + lookup + SIP differ only by around 1%, even

including the 500x improved cyclic query. This implies that the

techniques we utilize, while improving pathological queries, have

constant overheads that are small but not insignificant. After all

optimizations are applied, the total runtime of CE is around 100x

as fast as DuckDB
11
, around 230x as fast as WCOJs

12
, and around

2.4x as fast as baseline Umbra.

The CE benchmark contains 1839 𝛼-acyclic and 1165 cyclic

queries, and we find that the cyclicity of the query impacts the

effectiveness of the optimizations. ht improves queries across the

board. lookup and SIP primarily improve cyclic queries and have

little impact on acyclic queries. Finally, agg is primarily useful for

acyclic queries, with little impact on cyclic queries.

Overall, we find that all our optimizations significantly improve

the performance of some of the slowest queries, resulting in more

predictable performance for all queries. Among the optimizations,

Lookup presents the hardest trade-off. The theoretical strength of

L&E is observable in some queries, but not all. Nevertheless, it is

not hard to find or construct queries where L&E with Expand3 is

exceptionally useful due to their runtime complexity. For example,

only WCOJs and Expand3 are able to execute the Graphalytics [23]

LCC query on the dota-league graph without running out of mem-

ory. We are also optimistic there is further room to optimize the

newly proposed operators.

6 CONCLUSION
We have proposed a simple and effective approach to improving

the robustness of in-memory join processing by decomposing joins

into two suboperators, Lookup & Expand. In contrast to existing

techniques for tackling robustness, our technique is able to im-

prove the performance of pathological queries by many orders of

magnitude while not regressing the performance of well behaved

queries. We have given a theoretical foundation for our approach,

by analyzing four categories of pathological queries and showing

that our approach is able to tackle each category. To further support

this theoretical foundation, we have demonstrated the strength of

our approach on a variety of benchmarks.

11
We exclude the 29 queries out of 3004 where DuckDB runs out of memory.

12
We exclude the 6 queries out of 3004 where WCOJs take over an hour.
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