
Simple, Efficient, and Robust Hash Tables for Join Processing
Altan Birler

altan.birler@tum.de

Technische Universität München

Tobias Schmidt

tobias.schmidt@in.tum.de

Technische Universität München

Philipp Fent

philipp@cedardb.com

CedarDB

Thomas Neumann

neumann@in.tum.de

Technische Universität München

ABSTRACT

Hash joins play a critical role in relational data processing and their

performance is crucial for the overall performance of a database

system. Due to the hard to predict nature of intermediate results,

an ideal hash join implementation has to be both fast for typical

queries and robust against unusual data distributions. In this paper,

we present our simple, yet effective unchained in-memory hash

table design. Unchained tables combine the techniques of build

side partitioning, adjacency array layout, pipelined probes, Bloom

filters, and software write-combine buffers to achieve significant

improvements in 𝑛 :𝑚 joins with skew, while preserving top-notch

performance in 1 : 𝑛 joins. Our hash table outperforms open ad-

dressing by 2× on average in relational queries and both chaining

and open addressing by up to 20× in graph processing queries.

ACM Reference Format:

Altan Birler, Tobias Schmidt, Philipp Fent, and Thomas Neumann. 2024.

Simple, Efficient, and Robust Hash Tables for Join Processing. In 20th In-
ternational Workshop on Data Management on New Hardware (DaMoN ’24),
June 10, 2024, Santiago, AA, Chile. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3662010.3663442

1 INTRODUCTION

Relational database systems rely on hash joins to efficiently process

join queries, and the runtime of most queries is dominated by join

processing. The underlying hash tables have a huge design space,

with considerable research focusing on partitioning [2, 20, 26], par-

allelization [1, 17], and skew handling [10]. In the following, we

formulate goals that a good join hash table should strive for and

present some simple but carefully tailored implementation tech-

niques to achieve efficient and robust hash tables for join processing.

A hash table optimized for join processing should be:

• efficient with memory and cache usage,

• efficient in executed CPU instructions,

• highly scalable for parallel execution, and

• robust against a wide variety data distributions.

These high-level criteria are often in conflict with each other. For

example, memory could be traded for CPU cycles by adjusting the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DaMoN ’24, June 10, 2024, Santiago, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/10.1145/3662010.3663442

⋈

large
probe

small
build

efficient
selective
probes

duplicate
robustness1 4

2

3

Figure 1: Design criteria for join hash tables: Input sizes are

asymmetric and large, the join predicate is very selective,

and tuples may find many matches due to duplicates.

load factor of the hash table. Or data placement could be optimized,

but at the cost of requiring intricate locking techniques. In our

research DBMS Umbra, we experimented with a variety of different

hash table designs, many of which used promising tricks that sped

up certain cases. However, we found that a simple hash table design,

employing minimal instructions in the hot path, performed better

overall. In this paper, we present our in-memory hash table design,

which achieves significant improvements in difficult 𝑛 :𝑚 joins with

skew, while having top-notch performance in classical 1 : 𝑛 joins.

There is no optimal design for a hash table; every design is a

trade-off between different criteria. We base our design on the

observations we have made of join queries found in many bench-

marks and real-world workloads: 1 Joins are asymmetric, with

small build and large probe sides. 2 Joins are selective, with many

probes not finding a match in the hash table. 3 Join must be scal-

able, as inputs can be large, and CPU cores are plentiful. 4 Joins can

have duplicates, many tuples sharing few keys. These observations

guide our design choices: Our hash table combines the techniques

of build side partitioning, adjacency array layout, pipelined probes,

Bloom filters, and software write-combine buffers to achieve high

performance on a wide range of queries.

In the following, we first formulate basic design goals for hash

tables for join processing in Section 2. Afterward, we present our

hash table technique in Section 3, and evaluate it in Section 4. Then,

we discuss related work on hash tables in Section 5.

2 DESIGN CRITERIA

Based on our observations, we formulate four design criteria that a

good join hash table implementation needs to strive for. Figure 1

sketches our hash table design and the goals.

Joins are asymmetric. Most joins are asymmetric, with one side

often much smaller than the other. Hash joins exploit this asymme-

try by building a hash table on the smaller side and probing it using

https://doi.org/10.1145/3662010.3663442
https://doi.org/10.1145/3662010.3663442

DaMoN ’24, June 10, 2024, Santiago, Chile Birler et al.

Table 1: Comparison of join hash table implementations.

Hash Table Performant

Probe

Parallel

Build

Skew

Robust

Impl.

Effort

Open Addressing ~ é é ~

Radix-Join é Ë é é
Chaining Ë Ë ~ Ë
3D Chaining [10] Ë é Ë é
Unchained Ë Ë Ë ~

the larger side. As the sides are often orders of magnitude different

in size, the probing phase must be kept extraordinarily efficient.

Along these lines, we can afford to spend more CPU cycles on the

build side. The following design decisions, further detailed in Sec-

tion 3, exploit this asymmetry: (1) Our hash table’s size is a power

of two, to compute slot indexes with a single shift instruction at the

cost of increased memory consumption. (2) The build side is fully

materialized, partitioned, and copied. The probe side, in contrast,

avoids materialization and pushes the tuples into the following op-

erator [21]. (3) The tuples are stored in a compact adjacency array,

which makes iterating over matches highly efficient.

Joins are selective. The asymmetry of the sides also manifests

in terms of join selectivity: Many probe-side tuples will not find

matches. Therefore, it is crucial to efficiently eliminate tuples with-

out a join partner from the large probe side. Bloom filters are ideal

for this task: They offer minimal build overhead, high throughput,

and good selectivity [16, 25]. In Section 3.2, we propose optimized

register-blocked Bloom filters that minimize lookup times and can

be embedded into the hash table without space overhead.

Another important aspect of an efficient hash table is the em-

ployed hash functions. Before probing the table, the join side com-

putes the hash of the keys to determine the slot in the hash table.

Hash joins must weigh the cost of computing the hash against a

good distribution of the hash values. While fast hash functions are

susceptible to skew, general-purpose hash functions are often too

expensive. In Section 3.2, we discuss a cheap but well-distributed

hash function based on the crc32 CPU instruction.

Joins must be scalable. While the build side of a hash join is

usually small and fits into CPU caches, it can still grow large and

be expensive to build. In addition, recent hardware trends have

led to an increase in the number of cores; hence, parallelizing the

construction of hash tables is essential to exploit modern hardware.

Most general-purpose hash tables do not support efficient parallel

building, as they (1) rely on locks that limit scalability, and (2) resize

the hash table as more tuples are inserted. These issues can be

avoided with a multi-stage build process as described in Section 3.3.

Joins can have duplicates. Multiple tuples with the same key in

the build side is another hazard for join hash tables. For common

relational benchmarks like TPC-H, this is not a problem as joins

typically build hash tables on the duplicate-free primary-key side.

However, duplicates often occur in graph workloads and can then

be devastating for naïve hash tables. This is pronounced in open

addressing schemes, where duplicates are stored inline, colliding

with other entries of the hash table. Hash tables with a separate

directory (i.e., chaining) are more robust in this aspect because they

restrain the impact of duplicate entries to one slot in the directory.

directory

0

4

probing
hashes

tuples

…
…

higher
bits
(slots)

lower
bits

(filter)

Figure 2: Probing the hash table. Tuples are stored in a con-

tiguous buffer ordered by their hash prefixes. The directory

consists of entries representing ranges of tuples sharing hash

prefixes. Each entry contains a tiny Bloomfilter and a pointer

to the range. When probing, the hash prefix is used to index

into the directory, suffix is used to check the Bloom filter,

and the pointer is followed to the range of matching tuples.

Table 1 summarizes benefits of different hash table designs. We

do not consider hash tables that support mixed insert and lookup,

which would be needed, e.g., for streaming joins. As we will see in

Section 4, open addressing schemes handle skew poorly, since colli-

sions affect neighboring buckets, and they can not efficiently filter

selective probes. Chaining allows efficient probes using embedded

Bloom filters and are simple to build in parallel [17]. However, for

workloads with duplicates, long chains degrade performance as

they cannot be efficiently scanned, which degrades skew robustness.

In Section 3.1, we discuss our unchained table, which allows efficient

iteration over duplicate tuples. We further discuss the performance

characteristics of related work in Section 5.

3 APPROACH

We now describe the design and layout of our hash table. The design

follows the goals formulated in the previous section to allow per-

formant probes, parallel builds, and robustness against duplicates.

The microbenchmark results shown in this section in Figures 3, 5,

and 12 are further detailed in Section 4.

3.1 Layout

Open addressing schemes store all tuples in a single contiguous

array, which is efficient for probing with non-selective predicates

and no duplicate keys. When the join is selective, open addressing

schemes cannot efficiently filter out non-matching tuples. When

there are tuples with duplicate keys, these tuples collide with other

keys leading to high build and probe costs. In contrast, chaining

hash tables build a directory that is separate from the tuples. The

directory entries point to the tuples that share the same hash prefix,

which are then chained in linked lists, reducing collisions due to

duplicates. However, the linked list traversal is costly, especially for

long chains. To address these issues, we propose the unchained hash
table layout that combines the benefits of both open addressing and

chaining. Figure 2 illustrates the basic layout of our hash table with

a directory and tuple storage. As an alternative to chaining, we

use a dense adjacency array for collision resolution: The tuples are

stored in a contiguous buffer ordered by their hash prefixes. This

way, the tuples are stored in the same order as the pointers in the

directory. Adjacent directory entries give the range of tuples with

Simple, Efficient, and Robust Hash Tables for Join Processing DaMoN ’24, June 10, 2024, Santiago, Chile

Figure 3: Time in nanoseconds each probe takes with varying

multiplicity. The amount of time grows faster for chained

hash tables as opposed to unchained.

1 u64 shift; // Used to reduce a hash to a directory slot

2 u64 directory [1 << (64 - shift)];

3 void lookup(K key , u64 hash) {

4 u64 slot = hash >> shift; // shr

5 u64 entry = directory[slot]; // mov

6 if (! couldContain ((u16)entry , hash)) return; // Fig. 6

7 produceMatches(key , slot , entry);

8 }

9 void produceMatches(K key , u64 slot , u64 entry) {

10 T* start = directory[slot - 1] >> 16;

11 T* end = entry >> 16;

12 for (T* cur = start; cur != end; ++cur)

13 if (cur ->key == key)

14 produce(cur);

15 }

Figure 4: Lookup logic for tuples in the hash table: Directory

lookups compile to a few instructions.

the same hash prefix, and we can now perform a sequential scan to

access all those tuples. Compared to chained hash tables, unchaining

eliminates costly pointer chasing. Unlike open addressing schemes,

the entries in the directory only reference the buckets with the

values, and duplicates do not propagate to neighboring entries. We

have measured the cost of traversing linked lists as opposed to

compact arrays in our microbenchmark, as shown in Figure 3. As

expected, the cost of traversing linked lists grows faster than the

cost of scanning adjacency arrays.

Since joins are typically selective, only a fraction of the tuples

on the probe side are passed on. It is, therefore, crucial to eliminate

tuples without a join partner efficiently and early on. We embed

a register-blocked Bloom filter in every slot in the directory to

probabilistically discard tuples that definitively do not have a join

partner. Since current systems only use the lower 2
48

bytes of

address space, the upper 16 bits of the pointers are unused, and we

can use these store the filter. Hyper pioneered this technique [17],

and we extend it to our unchained hash table. For efficient access,

we store the pointer in the upper bits and the filter in the lower bits.

The Bloom filters are checked before accessing the tuple storage and

can also be pushed into other operators as semi-join reducers [25].

3.2 Efficient Probes

Probing the hash table is typically the most expensive part of join

execution. The probe side can be orders ofmagnitude larger than the

build side. Therefore, optimizing hash table lookups andminimizing

Figure 5: Time in nanoseconds each probe takes with vary-

ing selectivity. The amount of time increases as selectivity

increases. For selective joins, Bloom filters are advantageous.

For joins that are not selective, the overhead is low.

1 u16 tags[1 << 11]; // Precalculated 4 bit Bloom filter tags

2 bool couldContain(u16 entry , u64 hash) {

3 u16 slot = ((u32)hash) >> (32 - 11); // shr

4 u16 tag = tags[slot]; // mov

5 return !(tag & ~entry); // andn

6 }

Figure 6: Filtering logic to check if hash value is likely present

in the hash slot.We use 4 bit tags from a precalculated lookup

table to avoid calculating the tag on the fly.

the per-tuple work is paramount. In the following, we describe our

efficient probes for unchained hash tables. Figure 4 summarizes

the logic to probe for tuples in the hash table. We optimize several

aspects like hash functions, Bloom filters, and the layout of the

hash table to achieve this. As a result, filtering non-matching tuples

requires only a few instructions.

Due to join selectivity, the hottest path during join processing is

filtering out the tuples that do not find a join partner. For filtering,

we use a per-slot register blocked Bloom filters with 16 bits [16, 25].

To achieve a low false positive rate, we set 4 bits for each tuple in

the slot, which allows us to discard probe tuples where any of the

corresponding bits in the filter are not set.

Our implementation uses an optimization to calculate and sub-

sequently test all four bits of the tag at once. In a naïve implemen-

tation, calculating this tag requires over a dozen instructions to

calculate the positions of the bits. To avoid these in the hot path,

we instead use a precomputed lookup table [22] that stores the(
16

4

)
= 1820 distinct bit patterns and load them in a single instruc-

tion. Note that we pad this lookup table to 2
11 = 2048 entries with

uniformly random sampled tags to be able to calculate an index with

a single shift instruction. To test if all are set in the Bloom filter, we

bitwise complement the filter and bitwise and it with the computed

tag. This also functions as a null-pointer check and translates to

efficient instructions, i.e., on x86 to a single andn. Therefore, this

hot path that filters out tuples consists of only five instructions and

a branch. Figure 6 shows the logic for this containment check.

Using the precomputed lookup table has several desirable proper-

ties compared to computing tags on the fly: First, the precomputed

tags only require 4 KB of memory, at most consuming 1 TLB entry.

Thus, loading a tag is almost as cheap as computing a single bit tag

DaMoN ’24, June 10, 2024, Santiago, Chile Birler et al.

Figure 7: False positive rate of lookups for varying number of

Bloom filter bits per tuple. The hash table is assumed to have

size𝑚 = 2
⌈log

2
(1.125𝑛) ⌉

where 𝑛 is the number of tuples, which

leads to a fill rate of 𝑛/𝑚 ≈ 65%. The probability distribution

of the number of tuples in a slot can be approximated by

the Poisson distribution with 𝜆 = 𝑛/𝑚. Given the distribution,

the expected false positive rate of a lookup is computed. The

optimal number of bits per tuple is 4.

on the fly. Additionally, the 4 bit tag has a significantly lower false

positive rate. For a single hash within the list, the false positive

rate is ∼1/1820 instead of 1/16 with a single bit tag. We evaluated the

probe performance with and without filters in Figure 5. We find

that the overhead of the Bloom filter is low for non-selective joins,

and it is highly advantageous for selective joins.

The number of bits per tag influences the false positive rate. If

we use too few bits per tuple, hashes are assigned to fewer distinct

tags, leading to more tag collisions. If we use too many bits, unions

of tags (in slots with multiple tuples) lead to collisions with more

unrelated tags. Both cases increase the false positive rate. Thus,

given a load factor for the hash table, which determines the distri-

bution of number of tuples per slot, we can determine the optimal

number of bits per tuple. Figure 7 shows the false positive rate for

varying numbers of bits per tuple. For our hash table load factor of

65%, 4 bits per tuple with 1820 tags is optimal with false positive

rate 1/169. The padded lookup table with 2048 tags has a slightly

higher false positive rate of 1/168.
In comparison to probing, generating a well distributed hash

from an input key is surprisingly compute intensive. For example,

the xxh3 uses avalanche mixing that alone consists of more instruc-

tions than our probing logic, i.e., for the common case of 8 byte

keys, the full xxh3 hash needs about 4× the instructions of our filter

path. We use specialized functions designed for the common case

of hashing four or eight byte integer keys, shown in Figure 8.

To get few collisions in the directory slots, we need a well-

distributed hash function. We use a large amount of the bits from

the 64-bit hash values, since slot selection uses the upper bits and

the Bloom filter tags the lower bits. For efficient calculation of these

hashes, we use CRC instructions which are well supported and have

good properties for hash tables. As shown in Figure 8, for 32-bit

inputs, we use a single crc32 instruction and a multiplication with

a mixing constant. For 64-bit inputs, we require two crc32 instruc-

tions as the individual CRC digests are only 32-bits. The resulting

specialized hash functions allow efficient filtering of tuples in the

hash table, and only need about 10 instructions between loading the

value from its base table to a Bloom filter check. Afterwards, we can

produce all matches by iterating over the collision list. In chaining

1 u64 hash32(u32 key , u32 seed) {

2 u64 k = 0x8648DBDB; // Mixing constant

3 u32 crc = crc32(seed , key); // crc32

4 return crc * ((k << 32) + 1); // imul

5 }

6 u64 hash64(u64 key , u32 seed1 , u32 seed2) {

7 u64 k = 0x2545F4914F6CDD1D; // Mixing constant

8 u32 crc1 = crc32(seed1 , key); // crc32

9 u32 crc2 = crc32(seed2 , key); // crc32

10 u64 upper = crc2 << 32; // shl

11 u64 combined = crc1 | upper; // or

12 return combined * k; // imul

13 }

Figure 8: Specialized logic to compute hashes for integers.

We use hardware accelerated CRC instructions that allow to

cheaply compute well-distributed hashes.

hash tables, this requires traversing a linked list with expensive

dependent loads of the next pointers. In contrast, our unchained

table determines the range of collisions from a neighboring slot in

the directory, allowing efficient iteration over the collision list.

3.3 Parallel Build

For chaining hash tables, Leis et al. [17] describe a way to efficiently

build the hash directory in parallel. Our proposed duplicate storage

in an adjacency array, however, needs slightly more synchroniza-

tion, which we achieve through partitioning. In a first step to build

the hash table, we collect all tuples of the build side of the join

and hash partition them. Similar to Richter et al. [24], we use a

slab allocator for this initial tuple storage, which keeps them dense

in memory. However, for the adjacency array that we use as final

tuple storage, we use a contiguous block of memory. In the final

storage, the tuples are ordered based on their hash values; all tu-

ples that correspond to an entry in the directory are stored in a

contiguous block of memory, and adjacent entries in the directory

point to adjacent blocks of tuples, in hash order. To determine the

distribution of tuples onto the final storage, we count the number

of tuples per directory entry. Afterwards, the tuples are written to

the final storage, while simultaneously updating the directory.

3.3.1 Tuple Collection. Within the execution plan of a database

query, a hash join sits atop arbitrary operators that produce data

that is input into the join. This data is produced as a stream of tu-

ples from various threads. The total amount of tuples is not known

beforehand, and estimates thereof may not be accurate. Tuple col-

lection must deal with this uncertainty and be able to handle a

varying number of concurrently produced tuples, materialize them,

and hash partition them before the construction of the directory.

The tuple collection is often bottlenecked by the memory alloca-

tor as many individual tuples need to be allocated and materialized

concurrently. To avoid this bottleneck, we use a slab allocator that

allocates memory in large chunks and then hands out memory

from these chunks to individual tuples. This reduces the number of

system calls and the contention within the global memory allocator.

The memory is then freed in one go after the build is done.

The bump allocation strategy is complicated by the partitioning

of tuples, as we want tuples within the same partition to be mostly

Simple, Efficient, and Robust Hash Tables for Join Processing DaMoN ’24, June 10, 2024, Santiago, Chile

1 GlobalAllocator& level1;

2 BumpAlloc level2 , level3[numPartitions];

3 size_t counts[numPartitions];

4 void consume(T tuple) {

5 u64 part = tuple.hash >> (64 - log2(numPartitions));

6 if level3[part]. freeSpace () < sizeof(tuple):
7 if level2.freeSpace () < sizeof(BumpAlloc):
8 level2.addSpace(level1.allocate <LargeChunk >());

9 level3[part]. addSpace(level2.allocate <SmallChunk >());

10 *level3[part]->allocate <T>() = tuple;

11 counts[part] += 1;

12 }

Figure 9: Thread-local three-level bump allocation logic for

collecting tuples. The highest bits of the hash are used to

determine the partition. The counts array is used to keep

track of the number of tuples per partition.

contiguous in memory, to make later iterations over tuples within

individual partitions efficient. To achieve this, we use a three-level

bump allocator. The first level allocates memory in chunks for each

thread, the second level allocates smaller chunks per partitions, and

the third layer allocates individual tuples from the small chunks.

Pseudocode for this is shown in Figure 9.

If the number of partitions is too high, the tuple collection might

start incurring expensive TLB misses. Our multilevel allocation

scheme avoids this problem, as the small chunks often share the

same memory page, which becomes even more likely with 2MB or

1GB hugepages. This provides a similar effect as software write-

combine buffers [26] without additional costs.

After all the tuples are collected, the partitions need to be ex-

changed among the threads. This is done by utilizing the internal

structures of the bump allocators. The bump allocators store their

memory chunks in a linked list. Before a thread processes a par-

tition, it merges all linked lists of chunks corresponding to the

partition from all threads. Afterwards, the tuples can be iterated

over efficiently as a single chunked list.

3.3.2 Tuple Counting. After the tuple collection is done, we need

to construct the directory and copy the tuples over to the final

compact tuple storage. To copy tuples over to their final location,

we need to first determine the ranges in which tuples that share

the same hash prefix will be stored. This is done by counting the

number of tuples per directory entry. The counts in the directory

are then post-processed with an exclusive prefix sum to determine

the ranges in which tuples will be stored. The ranges are then used

to copy tuples to their corresponding location in the final storage.

3.3.3 Copies. The final step of the build process is to copy the

tuples to their final location in the tuple storage. After the counting,

each directory entry contains the start of the range of tuples that

share the same hash prefix. As we iterate over the tuples, we copy

the tuples to the start, and then increment the start pointer. At the

end, each directory entry will point to the end of the corresponding

range, and thus the pointer of the previous entry can be used to

determine the start. Additionally, a special entry directory[-1]
is used to point to the very beginning of the tuple storage. This

is accomplished by initially allocating an additional space for the

table, setting this first entry to the start of the tuple storage, and

1 T partitionTuples [][];

2 T* tupleStorage;

3 void postProcessBuild(u64 partition , u64 prevCount) {

4 for (T tuple : partitionTuples[partition]) {

5 u64 slot = tuple.hash >> shift;

6 directory[slot] += sizeof(T) << 16;

7 directory[slot] |= computeTag(tuple.hash);

8 }

9 // prevCount is the total tuple count of previous partitions

10 u64 cur = tupleStorage + prevCount;

11 u64 k = 64 - shift;

12 u64 start = (partition << k) / numPartitions;

13 u64 end = ((partition + 1) << k) / numPartitions;

14 for (u64 i = start; i < end; ++i) {

15 u64 val = directory[i] >> 16;

16 directory[i] = (cur << 16) | ((u16)directory[i]);

17 cur += val;

18 }

19 for (T tuple : partitionTuples[partition]) {

20 u64 slot = tuple.hash >> shift;

21 T* target = directory[slot] >> 16;

22 *target = tuple;

23 directory[slot] += sizeof(T) << 16;

24 }

25 }

Figure 10: Count, exclusive prefix sum, and copy. The direc-

tory is used to count the number of tuples per hash prefix,

then the counts are used to determine the ranges in which

tuples will be stored. Finally, the tuples are copied to their fi-

nal location. Care must be taken to handle the Bloom filters.

then shifting the pointer to the directory forward by one entry.

Using a special entry avoids a potential branch in the probe. The

pseudocode for the counting and copying is shown in Figure 10.

3.4 Handling Large Tuple Sizes

Copying the tuples remains relatively cheap as long as the tuples are

small enough to fit into a cache line. Note that all tuples with size

not greater than twice the CPU’s vector width can be copied with

just two load and two store instructions. This can be accomplished

by using the largest vector width not larger than the tuple’s size

and then using one load/store pair for the start of the tuple and one

load/store pair for the end. For example, if our tuple is 24 bytes, and

the CPU’s vector width is 16 bytes, our first load/store pair copies

the bytes 0–15 and the second pair copies the bytes 8–23.

If tuples are very large, we need an alternative approach for

build efficiency. In this case, we chain the tuples in a linked list

instead of copying them to contiguous storage. This makes the

build process somewhat more efficient, as we do not need to copy

the tuples. However, we have to update linked list pointers within

tuples, which, due to memory write amplification, result in entire

cache lines containing the pointers being written back to memory.

Still, for tuples larger than one cache line, linking can be worth it.

Linking tuples into directory entries is a relatively simple opera-

tion illustrated in Figure 11. The directory entry points to the last

linked tuple, which in turn points to the previous tuple, building a

linked list. This entry’s pointer can be updated with a single xchg,

and the tag can be updated with an additional or. These operations

can be made thread-safe by using their atomic counterparts. Due to

DaMoN ’24, June 10, 2024, Santiago, Chile Birler et al.

1 void linkTuple(T& tuple) {

2 u64 slot = tuple.hash >> (64 - k);

3 u64 prevEntry;

4 xchg(directory[slot], prevEntry);

5 tuple.next = prevEntry >> 16;

6 u16 tag = computeTag(tuple.hash);

7 directory[slot] |= ((u16)prevEntry) | tag;

8 }

Figure 11: Linking a tuple into the corresponding directory

entry. Replacing the xchg and the or with atomic counter-

parts would make the operation thread-safe.

Figure 12: Hash table build in bytes per second with varying

number of threads. Unchained scales better than chained

up to 8 threads, at which point it hits peak performance.

Chained scales worse but is able to better utilize hyper-

threads, reaching peak performance at 32 threads.

the simplicity of the atomic variants, the initial partitioning stage

can be avoided, increasing contention in the directory build but

reducing the cost of initial collection.

In Figure 12, we compare the time it takes to build the hash

table with varying numbers of threads using the unchained hash

table versus the chained hash table constructed with atomics and

no partitioning. We find that the unchained build almost hits peak

performance with 8 threads, while the chained build requires all

32 hyperthreads to reach the same level of performance.

3.5 Large Memory Allocation

In Section 3.3.1, we have discussed our memory allocation strategy

for tuple collection. Here, we discuss issues with memory allocation

for the hash table itself. As the hash table is a large contiguous block

of memory, its memory management essentially consists of a single

pair of malloc and free calls. However, as the allocated block can

be huge, many subtle issues can arise.

In Linux, the mmap system call is used to request a contiguous

block of virtual memory from the operating system. After the mmap

call, the virtual memory is not yet backed by any physical memory.

When the memory is accessed, the operating system will lazily

allocate physical memory pages on demand and fill them with

zeros. However, if the first access to a page is a read, the operating

system will map the virtual page to a read-only zero page. Any

subsequent writes will trigger the allocation of a new physical page,

and the virtual page will be remapped to the new page. As the

original mapping to the zero page might be cached in the TLBs of

various CPU cores, the OS has to then issue a TLB shootdown. TLB

shootdowns are very expensive [9], as they require the OS to send

inter-processor interrupts. To avoid expensive TLB shootdowns, all

initial operations with recently allocated pages should be writes. For

example, a chaining hash table should prefer the xchg instruction

instead of a load/cmpxch pair to link tuples in directory entries.

A similar issue arises when the memory is freed as munmap

similarly requires a TLB shootdown. Thus, it is beneficial to execute

munmap operations later asynchoronously to not slow down critical

queries. As Umbra is designed as a server database system, it can

avoid these issues by reserving the entire memory upfront with a

single mmap call which is then managed internally. No memory is

given back to the operating system until the database is shut down.

4 EVALUATION

We have implemented our unchained table in a microbenchmark

and in the relational database Umbra. We ran our benchmarks on

an AMD Ryzen Zen3 5950X machine with 16 cores, 32 threads, and

64GB of RAM. The microbenchmarks in Figures 3, 5, and 12 use

hash tables of 720720
1
tuples of size 32 bytes each. We addition-

ally evaluated Umbra using all hardware threads on the relational

benchmarks TPC-H SF {1, 10}, TPC-DS SF {1, 10}, and JOB [18];

graph benchmarks LDBC SNB BI [27] SF 10, and CE [7] (only the

queries that produce less than 10
9
result tuples). All queries are

repeated 10 times, and we report the median runtime.

We empirically evaluated the load factor of our hash tables, and

the corresponding false positive rate for couldContain (cf. Fig-

ure 4). Given uniformly distributed input size, our table has a load

factor of approximately 0.65 and, accounting for the distribution of

chain lengths, a false positive rate of 1/168.
To measure the relative performance of unchained (with build-

partitioning) and chained (without partitioning as in Hyper [17] and

DuckDB [23]) hash tables, we executed all 10312 queries from the

aforementioned benchmarks and report the speedup for unchained

for each query in Figure 13. For the vast majority of queries, both

hash tables perform similarly and no significant speedup or slow-

down can be observed. However, for tiny queries, the chained hash

table reduces runtime by up to 30%, as the tables are small enough to

fit into the caches for probing, and the build overhead of partition-

ing becomes visible. For large queries, in contrast, the unchained

hash table design is beneficial, as it avoids atomic instructions for

building the table and improves the memory access pattern for

probes. Especially, for the graph workloads, the unchained design

improves the performance by up to 20× on the expensive queries

which run for more than 100ms. For these queries, the hash tables

contain more tuples with duplicate keys and chaining leads to one

random memory access per tuple, which is expensive. Unchaining

solves this problem by storing the tuples contiguously in memory.

We find that the biggest regressions for the unchained hash table

are cases where the partition count is either too high or too low.

dblp_cyclic_q9_06 and hetio_cyclic_q9_12, the two graph queries

in the top left corner of Figure 13, are queries with huge build

sides where individual partitions do not fit into the L1 cache. When

individual partitions do not fit into lower level caches, this signifi-

cantly slows down the copying of tuples. These queries run faster

when the number of partitioned is increased, catching up to the

1
720720 is divisible by all numbers from 1 to 16, which helps with tests on multiplicity.

Simple, Efficient, and Robust Hash Tables for Join Processing DaMoN ’24, June 10, 2024, Santiago, Chile

Figure 13: Chained vs. unchained hash tables. We measure

the runtimes for executing all relational queries from TPC-H

SF {1, 10}, TPC-DS SF {1, 10}, JOB; and graph queries from

LDBC SNB BI SF 10, and CE and report the speedup of the

fastest algorithm for each query.

chained hash table. yago_acyclic_Star_6_{42, 43}, the two graph

queries in the bottom left corner of Figure 13, are queries with

very small build sides where the partition count is too high. The

fundamental problem is that our implementation sets the partition

count once at the very beginning of the build. This initial partition

count is based on heuristics such as cardinality estimates and the

number of threads. These heuristics are not perfect and can lead

to a suboptimal partition count. In the future, we plan to explore

adaptive partitioning schemes that start with a low partition count

and increase it as more tuples are collected.

To better demonstrate the individual impact of partitioned col-

lection and subsequent copying of tuples, we implemented build-

partitioned chaining in Umbra. We compare the performance of

partitioned to chained without partitioning in Figure 14. We see

that partitioning often improves locality by increasing the likeli-

hood that tuples in the same chains are closer together in memory.

Nonetheless, unchaining by copying tuples to contiguously storage

is even more effective. We compare the performance of unchained

to chained with build-partitioning in Figure 15. We find that un-

chaining improves the performance of graph queries by up to 10×.

Next, we measure how our hash tables perform on large work-

loads and compare them to state-of-the-art database systems. We

use TPC-H SF 100 and 1000 running on a larger machine with two

AMD EPYC 7713 CPUs with 128 cores, 256 threads and 256GB

of RAM. As competitors, we choose Hyper v0.0.18825 [13] and

DuckDB v0.10.1 [23], two high-performance analytical query en-

gines. Hyper and Umbra use query compilation, and DuckDB uses

vectorization [5]. All systems utilize morsel-driven parallelism [17].

Figure 14: Chainedwithout vs. with partitioning.Wemeasure

the runtimes for executing all relational queries from TPC-H

SF {1, 10}, TPC-DS SF {1, 10}, JOB; and graph queries from

LDBC SNB BI SF 10, and CE and report the speedup of the

fastest algorithm for each query. Partitioning the build has

a positive impact on performance.

Figure 16 shows the performance of the three hash table designs

for the TPC-H benchmark and the two competitors. We observe the

best performance for our chained and unchained hash tables, which

are 2× faster on average than a Robin Hood open addressing hash

table. Our efficient probes and construction give the two designs

a significant advantage over open addressing. Compared to the

other systems, Umbra is 2× faster than Hyper and 6× faster than

DuckDB at scale factor 100. Similarly, our design scales well to

larger workloads, and we efficiently parallelize building the tables.

5 RELATEDWORK

Join processing with hash tables is a core component of analytics

in database systems and has been studied extensively. We provide

a summary of selected techniques for hash tables in Table 1.

First parallel join implementations were based on radix partition-

ing [19], and later extended for hardware-consciousness [1, 2, 4].

Classical partitioning approaches, however, partition the probe side

as well, leading too high overhead on the hot path, and thus is only

useful in certain edge cases. In contrast, we only partition the build

side to construct a non-partitioned table in parallel.

For non-partitioned hash tables, there are several papers using

atomic instructions for chaining hash tables [15, 17, 24]. As we

found in Section 4, chaining hash tables work well for build sides

without duplicates and are decisively simple, however they are not

robust against skew. Iterating the linked collision lists is especially

costly, which makes low false-positive rate Bloom filters imperative.

For general-purpose hash tables, open addressing schemes are

the predominant implementation technique. Modern variants use

DaMoN ’24, June 10, 2024, Santiago, Chile Birler et al.

Figure 15: Build-partitioned chained vs. unchained. We mea-

sure the runtimes for executing all relational queries from

TPC-H SF {1, 10}, TPC-DS SF {1, 10}, JOB; and graph queries

from LDBC SNB BI SF 10, and CE and report the speedup

of the fastest algorithm for each query. Unchaining further

improves graph queries by improving locality.

Figure 16: TPC-H performance for open addressing, chained,

and unchained hash tables. We include the Hyper and

DuckDB systems as reference. Note that DuckDB failed to

execute the TPC-H SF 1000 workload within 24 hours.

cache-conscious schemes like hopscotch hashing [11], with similar

techniques being used in Google’s Swisstables [3], or Facebook’s

F14 Hash Table [6]. However, these implementations are not tuned

for the selectivity that is typically present in join processing, and

their more involved design results in a worse filtering fast path.

In addition, they are not well-suited for multiset semantics, since

storing duplicate values inline is prone to costly collisions, which

makes them unsuitable for skewed workloads.

The 3D hash join [10] attempts to reduce the cost of collisions in

probing the hash table. However, it incurs complexity and runtime

overhead for simple data distributions. Our approach mitigates the

cost of collisions by sizing the hash table proportionally to the

number of tuples, instead of the number of distinct keys.

Prefetching [8, 12, 14] is an alternative approach to make the

memory access in hash tables fast. Explicitly issuing prefetch in-

structions potentially avoidsmemory stalls by utilizing idle memory

bandwidth to fetch data that will be needed later. In contrast, our

approach implements the hash table lookup in very few instructions

and exploits the out-of-order execution of modern CPUs that have a

large reorder buffer. This way, the CPU automatically schedules the

data prefetching without overhead for the hot path. Our approach,

with hyperthreading, can hit memory bandwidth limits, at which

point prefetching would not be useful.

6 CONCLUSION

Hash tables for join processing have a huge design space. Nonethe-

less, many workloads exhibit common characteristics that can be

exploited when designing efficient hash tables. In this paper, we

have presented the unchained hash table design that is optimized

for both relational and graph processing. Our hash table design is

based on the observation that joins are often selective, asymmetric,

and have duplicates in their inputs. We have shown that unchained

hash tables outperform state-of-the-art hash tables in a variety of

workloads, including TPC-H, TPC-DS, JOB, LDBC, and CE.

REFERENCES

[1] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-

memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In

ICDE. IEEE Computer Society, 362–373.

[2] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or Not

to Partition, That is the Join Question in a Real System. In SIGMOD Conference.
ACM, 168–180.

[3] Sam Benzaquen, Alkis Evlogimenos, Matt Kulukundis, and Roman Perepelitsa.

2018. Swiss Tables and absl::Hash. https://abseil.io/blog/20180927-swisstables.
[4] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation of

main memory hash join algorithms for multi-core CPUs. In SIGMOD Conference.
ACM, 37–48.

[5] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-

Pipelining Query Execution. In CIDR. www.cidrdb.org, 225–237.

[6] Nathan Bronson and Xiao Shi. 2019. Open-sourcing F14 for faster, more memory-

efficient hash tables. https://engineering.fb.com/2019/04/25/developer-tools/f14/.

[7] Jeremy Chen, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Kenneth Salem.

2022. Accurate Summary-based Cardinality Estimation Through the Lens of

Cardinality Estimation Graphs. Proc. VLDB Endow. 15, 8 (2022), 1533–1545.

https://doi.org/10.14778/3529337.3529339

[8] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. 2007.

Improving hash join performance through prefetching. ACM Trans. Database
Syst. 32, 3 (2007), 17.

[9] Andrew Crotty, Viktor Leis, and Andrew Pavlo. 2022. Are You Sure You Want

to Use MMAP in Your Database Management System?. In 12th Conference on
Innovative Data Systems Research, CIDR 2022, Chaminade, CA, USA, January 9-12,
2022. www.cidrdb.org. https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf

[10] Daniel Flachs, Magnus Müller, and Guido Moerkotte. 2022. The 3D Hash Join:

Building On Non-Unique Join Attributes. In CIDR. www.cidrdb.org.

[11] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. 2008. Hopscotch Hashing. In

DISC (Lecture Notes in Computer Science, Vol. 5218). Springer, 350–364.
[12] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin J. Levandoski,

and Gor V. Nishanov. 2018. Exploiting Coroutines to Attack the "Killer Nanosec-

onds". Proc. VLDB Endow. 11, 11 (2018), 1702–1714.
[13] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP

main memory database system based on virtual memory snapshots. In ICDE.
IEEE Computer Society, 195–206.

https://abseil.io/blog/20180927-swisstables
https://engineering.fb.com/2019/04/25/developer-tools/f14/
https://doi.org/10.14778/3529337.3529339
https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf

Simple, Efficient, and Robust Hash Tables for Join Processing DaMoN ’24, June 10, 2024, Santiago, Chile

[14] Yusuf Onur Koçberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous

Memory Access Chaining. Proc. VLDB Endow. 9, 4 (2015), 252–263.
[15] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and Alfons

Kemper. 2013. Massively Parallel NUMA-aware Hash Joins. In IMDM@VLDB.
1–12.

[16] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter A. Boncz. 2019.

Performance-Optimal Filtering: Bloom overtakes Cuckoo at High-Throughput.

Proc. VLDB Endow. 12, 5 (2019), 502–515.
[17] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-

driven parallelism: a NUMA-aware query evaluation framework for the many-

core age. In SIGMOD Conference. ACM, 743–754.

[18] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,

Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the

looking glass, and what we found running the Join Order Benchmark. VLDB J.
27, 5 (2018), 643–668. https://doi.org/10.1007/S00778-017-0480-7

[19] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2000. Optimizing

database architecture for the new bottleneck: memory access. VLDB J. 9, 3 (2000),
231–246.

[20] Jan Mühlig and Jens Teubner. 2023. Micro Partitioning: Friendly to the Hardware

and the Developer. In DaMoN. ACM, 27–34.

[21] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern

Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.
[22] Felix Putze, Peter Sanders, and Johannes Singler. 2009. Cache-, hash-, and space-

efficient bloom filters. ACM J. Exp. Algorithmics 14 (2009). https://doi.org/10.

1145/1498698.1594230

[23] Mark Raasveldt and HannesMühleisen. 2019. DuckDB: an Embeddable Analytical

Database. In SIGMOD Conference. ACM, 1981–1984.

[24] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional

Analysis of Hashing Methods and its Implications on Query Processing. Proc.
VLDB Endow. 9, 3 (2015), 96–107.

[25] Tobias Schmidt, Maximilian Bandle, and Jana Giceva. 2021. A four-dimensional

Analysis of Partitioned Approximate Filters. Proc. VLDB Endow. 14, 11 (2021),
2355–2368.

[26] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison

of Thirteen Relational Equi-Joins in Main Memory. In SIGMOD Conference. ACM,

1961–1976.

[27] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler,

Mingxi Wu, Yuchen Zhang, and Peter A. Boncz. 2022. The LDBC Social Network

Benchmark: Business Intelligence Workload. Proc. VLDB Endow. 16, 4 (2022),

877–890. https://doi.org/10.14778/3574245.3574270

https://doi.org/10.1007/S00778-017-0480-7
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.14778/3574245.3574270

	Abstract
	1 Introduction
	2 Design Criteria
	3 Approach
	3.1 Layout
	3.2 Efficient Probes
	3.3 Parallel Build
	3.4 Handling Large Tuple Sizes
	3.5 Large Memory Allocation

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

