
Efficient Enumeration of the Complete Join Search Space
Altan Birler

altan.birler@tum.de
Technische Universität München

Garching, Germany

Thomas Neumann
neumann@in.tum.de

Technische Universität München
Garching, Germany

Abstract
Join plan enumeration is a critical step in query optimization, im-
pacting the performance of queries by orders of magnitude. Many
queries contain complex non-inner joins, such as outer joins and
semi joins, which make the efficient enumeration of all valid join
plans difficult. There are existing solutions, but they are either in-
complete or expensive. We improve the state-of-the-art join plan
enumeration, efficiently handling all cases, including outer joins.
Our approach is both complete and efficient by exploiting the prop-
erties of relational join transformations.

CCS Concepts
• Information systems→ Query optimization.

Keywords
query optimization, join enumeration, outer joins
ACM Reference Format:
Altan Birler and Thomas Neumann. 2025. Efficient Enumeration of the Com-
plete Join Search Space. In The 19th International Symposium on Database
Programming Languages (DBPL ’25), June 22–27, 2025, Berlin, Germany.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3735106.3736536

1 Introduction
Query optimizers are responsible for generating efficient join plans
given high-level queries. The performance of a query can vary by
orders of magnitude depending on the join plan chosen [9]. To
generate an efficient join plan, the optimizer searches through a
large space of possible plans, all while ensuring that the generated
plan is valid, i.e., produces the same result as the original query.
This is made difficult by the interaction of various join types, such
as inner joins, outer joins, and semi joins, which cannot be freely
reordered [3] as shown in Figure 1. Additionally, since the search
space is exponential in the size of the query definition, the efficient
exploration of the search space is critical to finding a good plan
in a reasonable time [8, 14]. Thus, the optimizer must be very
efficient in detecting whether a plan is valid while iterating over
the search space [10]. State-of-the-art approaches to this problem
are either incomplete, i.e., they do not guarantee that all valid
plans are generated, or they are based on expensive techniques.
In this paper, we present a new approach to the problem of join
plan generation that is both complete and efficient. Additionally,
we support the decomposition of conjunctive predicates, which

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
DBPL ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1919-6/2025/06
https://doi.org/10.1145/3735106.3736536

B23

K12

𝑅1 𝑅2

𝑅3

K12

𝑅1 B23

𝑅2 𝑅3

.

Figure 1: Invalid transformation in the presence of outer
joins. An inner join and a full outer join are not associative
in general due to nulls a full outer join may produce.

related work did not address. We achieve this result by pruning
unnecessary reordering restrictions, i.e., if the join enumeration
would never produce plans violating the restriction anyway, the
restriction does not need to be considered. To achieve this result,
we rely on a certain property of valid relational join operators we
call the hiding property. We also show that existing techniques fail
in the absence of the hiding property, implying that our approach
is a strict improvement over existing techniques.

The main contributions of this paper are as follows:
• We introduce the hiding property, which constrains the in-
teraction of commutativity and associativity. We show that
existing approaches that provide completeness for relational
joins do not generalize for operators that do not exhibit the
hiding property.

• By exploiting the hiding property, we provide an efficient
and complete validation algorithm for join plans. Our algo-
rithm builds upon existing non-complete approaches which
describe the query as a hypergraph [3, 10, 12, 16].

• Wedescribe a graph algorithm for single decremental connec-
tivity, which can be used to further speed up the construction
step of our approach. Single decremental connectivity an-
swers queries of the form: “Is there a path from 𝑢 to 𝑣 in the
graph 𝐺 after removing the edge (𝑢, 𝑣)?”

• We describe a generalization of validation algorithms to
support the decomposition of conjunctive predicates.

• We evaluate our approach against existing techniques and
show that it is both complete and efficient.

The rest of the paper is organized as follows. In Section 2, we
provide the necessary background on join plan enumeration and
the properties of valid relational join transformations. We also intro-
duce the hiding property, which complete enumeration techniques
rely on. In Section 3, we discuss the state of the art approaches in the
area of join plan enumeration for non-inner joins. We also discuss
the limitations of existing approaches. Namely, they require the
hiding property and do not support the decomposition of conjunc-
tive predicates. In Section 4, we present our approach to join plan

https://orcid.org/0009-0007-1177-772X
https://orcid.org/0000-0001-5787-142X
https://doi.org/10.1145/3735106.3736536
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3735106.3736536

DBPL ’25, June 22–27, 2025, Berlin, Germany Birler & Neumann

enumeration and show how it can be used to efficiently enumerate
all valid join plans. In Section 5, we evaluate our approach against
existing techniques and show that it is both complete and efficient.
In Section 6, we discuss the limitations of existing approaches and
outline future work, i.e., what plans do state of the art construc-
tive enumeration techniques fail to generate and why. Finally, in
Section 7, we summarize our findings.

2 Background
In this section, we describe state-of-the-art algorithms for enumer-
ating the search space of join plans. These algorithms will provide
the basis for more advanced algorithms that take complex join
predicates and non-inner joins into account.

In Section 2.1, we introduce the notation used throughout this
work. In Section 2.2, we describe join enumeration by the succes-
sive application of local transformation rules. In Section 2.3, we
describe constructive plan generation, which generates plans in
a bottom-up fashion, avoiding the need to enumerate the entire
search space to find the optimal plan. In Section 2.4, we describe
how to represent queries as graphs for more efficient enumeration
when avoiding cross products. Finally, in Section 2.5, we describe
how to represent queries as hypergraphs, which allows us to repre-
sent the constraints imposed on reordering by non-inner joins and
complex join predicates.

2.1 Notation
This section describes the notation used throughout this work.

Operator ◦𝑎 denotes an arbitrary operator.
Subtrees T (◦𝑎), left(◦𝑎), and right(◦𝑎) denote the relations in

the subtree of the operator ◦𝑎 , the left subtree of ◦𝑎 , and the right
subtree of ◦𝑎 , respectively. If not otherwise specified, we consider
the subtrees of ◦𝑎 within the initial query plan.

Subtree operators STO(R) denotes the set of operators that
connect the set of relations R. In other words, given any join plan
formed by the relations in R, STO(R) contains all operators that
are part of the plan.

Syntactic eligibility set [12] SES(◦𝑎) denotes the set of tables
referenced by the join operator ◦𝑎 in its predicates. SES-left(◦𝑎)
and SES-right(◦𝑎) denote references to the left and right inputs of
the join operator ◦𝑎 , respectively.

Total eligibility set [12] TES(◦𝑎) denotes the extended set of
tables required by the join operator ◦𝑎 in its input. TES-left(◦𝑎) and
TES-right(◦𝑎) denote requirements to the left and right inputs of
the join operator ◦𝑎 , respectively. We will discuss the construction
of the total eligibility sets in Section 2.5 and Section 4.

Null rejecting denotes a predicate that returns null or false
on inputs that contain null values. Most SQL predicates such as
𝑥 = 𝑦 are null rejecting, i.e., if either one of 𝑥 or 𝑦 is null, the
predicate evaluates to null, which is interpreted as false, rejecting
the input tuple. However, not all predicates are null rejecting, such
as coalesce(𝑥, 0) = coalesce(𝑦, 0).

Join operators B, Z, E, K, are used to denote the operators
inner join, group join [13], left outer join, and full outer join, re-
spectively. We group operators that share behaviors together. The
B operator is used to represent both inner joins B and cross prod-
ucts A. TheZ operator is used to represent the left semi join, left

anti join, and group join [13]. Additionally, we use the apostrophe
notation to denote joins with null rejecting predicates. For instance,
′K denotes a full outer join with a null rejecting predicate on the
left input and ′K′ denotes a full outer join with null rejecting
predicates on both inputs.

2.2 Enumeration of Join Plans
Given an initial join plan input by the user, a join optimization al-
gorithm tries to find the optimal execution plan in terms of runtime
cost. The execution plan must respect the semantics of the initial
plan, meaning that the result of the query must not be changed by
the optimization. The search space of valid plans can be defined
through a set of local transformation rules. For instance, the cross
product operator A is commutative 𝑅0 A 𝑅1 ≡ 𝑅1 A 𝑅0 and asso-
ciative 𝑅0 A (𝑅1 A 𝑅2) ≡ (𝑅0 A 𝑅1) A 𝑅2. Given an initial plan of
cross products, a transformative algorithm can apply these rules to
generate all valid plans.

An inner join operator can additionally contain a selection pred-
icate which references attributes of input relations. A selection
predicate can only be applied when all the required attributes are
available. For instance

𝑅0B𝑅0 .𝑥=𝑅2 .𝑥 (𝑅1B𝑅1 .𝑦=𝑅2 .𝑦𝑅2) . (𝑅0B𝑅0 .𝑥=𝑅2 .𝑥𝑅1)B𝑅1 .𝑦=𝑅2 .𝑦𝑅2

because the selection predicate 𝑅0 .𝑥 = 𝑅2 .𝑥 cannot be applied to
the subtree1. Since we are only interested in the input relations
referenced by the selection predicate, also known as the predicate’s
syntactic eligibility set, we will represent predicates with the short-
hand notation 𝑅0 B02 (𝑅1 B12 𝑅2).

Certain non-inner join operators cannot be reordered in general,
even if the syntactic eligibility sets are satisfied:

𝑅0 E01 (𝑅1 E12 𝑅2) . (𝑅0 E01 𝑅1) E12 𝑅2

We refer to such constraints as reordering restrictions: Given the
left initial plan, the join E01 must succeed the join E12 in the
final execution plan. In this work, we focus on prohibiting invalid
reorderings of outer joins. An alternative approach is to allow
all reorderings of outer joins, but repair wrong query results by
applying compensation operators [20, 21]. The drawback of this
alternative approach is that the complex compensation operators
can be costly to execute.

For most of this work, we consider predicates of joins as in-
divisible units of arbitrary complexity2. We will only differenti-
ate whether a predicate is null rejecting for the left or right in-
put of the join, i.e., whether the join eliminates tuples containing
nulls in the left or right input. This property is important for pre-
cise reordering restrictions between outer joins and other join
types. Note that more transformation rules can be defined by not
considering the join predicates as indivisible units. For instance,
the join 𝑅0 B𝑅0 .𝑥=𝑅2 .𝑥 (𝑅1 B𝑅1 .𝑥=𝑅2 .𝑥 𝑅2) can be transformed into
(𝑅0 B𝑅0 .𝑥=𝑅1 .𝑥 𝑅1) B𝑅1 .𝑥=𝑅2 .𝑥 𝑅2 by rewriting the topmost join

1Note that we do not consider the equivalences that produce new cross products:
𝑅0B𝑅0 .𝑥=𝑅2 .𝑥 (𝑅1B𝑅1 .𝑦=𝑅2 .𝑦 𝑅2) ≡ (𝑅0A𝑅1)B𝑅0 .𝑥=𝑅2 .𝑥∧𝑅1 .𝑦=𝑅2 .𝑦 𝑅2 . Introduc-
ing cross products is a valid transformation but almost always results in plans with
higher costs, especially considering errors in cardinality estimation. Not considering
such transformations allows us to focus on reordering existing operators without
introducing new ones. There are other valid use cases for the introduction of new
operations such as semi join reduction, but they are out of scope for this work.

Efficient Enumeration of the Complete Join Search Space DBPL ’25, June 22–27, 2025, Berlin, Germany

𝑜𝑏

B Z E ′E K ′K K′ ′K′

𝑜𝑎

B + + + + – – – –
Z – – – – – – – –
E – – – + – – – –
′E – – – + – – – –
K – – – + – – – –
′K – – – + – – – –
K′ – – – + – + – +
′K′ – – – + – + – +

Table 1: Associativity. Apostrophes indicate null rejecting
sides.

𝑜𝑏

B Z E ′E K ′K K′ ′K′

𝑜𝑎

B + + + + – – – –
Z + + + + – – – –
E + + + + – – – –
′E + + + + + + + +
K – – – + – – – –
′K – – – + – + – +
K′ – – – + – – – –
′K′ – – – + – + – +

Table 2: L-asscom. Apostrophes indicate null rejecting sides.

predicate 𝑅1 .𝑥 = 𝑅2 .𝑥 into 𝑅0 .𝑥 = 𝑅2 .𝑥 using the equivalence of at-
tributes. We will discuss how to decompose conjunctive predicates
in Section 4.5. We will briefly discuss the limitations of current
approaches in Section 6.

We have given examples for the transformation rules commuta-
tivity and associativity. However, the application of commutativity
often results in redundant plans (in terms of mirror symmetry of
individual joins). This further complicates join enumeration as com-
mutativity of certain joins changes the type of the join: A left outer
join becomes a right outer join and vice versa. To avoid these prob-
lems, Moerkotte et al. [10] propose the following three fundamental
transformation rules:

(1) associativity: 𝑅0 ◦𝑎01 (𝑅1 ◦
𝑏
12 𝑅2) ≡ (𝑅0 ◦𝑎01 𝑅1) ◦

𝑏
12 𝑅2

(2) l-asscom: (𝑅0 ◦𝑎01 𝑅1) ◦
𝑏
02 𝑅2 ≡ (𝑅0 ◦𝑏02 𝑅2) ◦

𝑎
01 𝑅1

(3) r-asscom: 𝑅0 ◦𝑎02 (𝑅1 ◦
𝑏
12 𝑅2) ≡ 𝑅1 ◦𝑏12 (𝑅0 ◦

𝑎
02 𝑅2)

These three rules are sufficient to generate all valid plans ignoring
mirror symmetry of individual joins. For a pair of operators ◦𝑎01
and ◦𝑏12, a lookup table can be used to determine whether a rule
can be applied. We provide these lookup tables in Tables 1 to 3. By
successively applying the rules, all valid plans can be generated,
assuming the predicates are indivisible.

Transformative approaches generate all possible plans, which
can be expensive in terms of time and space [15]. As we only need
the optimal plan according to a certain cost model, constructive
approaches can be used to generate plans in a bottom-up fashion [6,
12].
2A predicate can contain arbitrary expressions such as length(𝑅0 .𝑥 | |𝑅1 .𝑦) > 𝑅0 .𝑧 +
𝑅1 .𝑢 and may be impossible to simplify or decompose.

𝑜𝑏

B Z E ′E K ′K K′ ′K′

𝑜𝑎

B + – – – – – – –
Z – – – – – – – –
E – – – – – – – –
′E – – – – – – – –
K – – – – – – – –
′K – – – – – – – –
K′ – – – – – – + +
′K′ – – – – – – + +

Table 3: R-asscom. Apostrophes indicate null rejecting sides.

2.3 Constructive Plan Generation
Constructive plan generation is a bottom-up approach to generating
plans based on the optimality principle [1]. Given a monotonous
cost function (all practical cost functions are monotonous), an opti-
mal plan exists where all its subplans are also optimal [12]. Thus,
we can avoid generating all plans by only generating plans by com-
bining smaller optimal subplans. However, not all combinations
of optimal subplans are valid, as reordering restrictions may not
be satisfied. Thus, an efficient check for plan validity is required,
where we need to answer the question of whether a plan could
be reached from the initial plan by applying valid transformation
rules.

There are various approaches for checking plan validity, with dif-
ferent trade-offs between completeness (which percentage of valid
plans are found) and efficiency (how fast can we enumerate plans).
Our approach, described in Section 4, is both efficient and complete.
We achieve this by relying on an enumeration algorithm that avoids
cross products (see Section 2.4) and a hypergraph representation of
the query (see Section 2.5).

2.4 Query as Graph
Cross products are often detrimental to the performance of a query [4,
11, 12, 14]. Thus, most query optimizers avoid cross products unless
absolutely necessary, i.e., unless the original query contains a cross
product. The bottom-up join enumeration while avoiding cross
products can be reformulated as a graph problem and efficiently
solved by connected subgraph enumeration algorithms [12].

Assuming join predicates require attributes from exactly two
input relations, we can represent the query as a simple undirected
graph. The vertices of the graph represent the input relations and
the edges represent the join predicates. The entire graph represents
the entire query, while a subgraph represents a subset of the query
with the relations and predicates contained therein. A bottom-up
join enumeration algorithm computes optimal plans for all con-
nected components of the query graph. To compute the optimal
plan for a connected component, we consider all possible pairs of
connected subcomponents that are connected by a join predicate.
Note that, if a subgraph is connected, it can be evaluated without in-
troducing new cross products. Thus, enumerating all optimal plans
that do not introduce cross products can be done by enumerating
all connected subgraph pairs of the query graph. Using the DPccp

DBPL ’25, June 22–27, 2025, Berlin, Germany Birler & Neumann

algorithm [11], this enumeration can be done in constant time per
connected subcomponent pair3.

2.5 Query as Hypergraph
To support join predicates with more than two input relations,
hypergraphs are used. A query hypergraph’s edges are defined as a
pair of sets of vertices. Note that we define the hyperedges as having
left and right sets of vertices instead of the single syntactic eligibility
set. This is advantageous for guaranteeing efficient executions for
predicates of the form 𝑝 ≡ 𝑅0 .𝑥+𝑅1 .𝑦 = 𝑅2 .𝑧. While such a predicate
could be applied on the inputs {𝑅0, 𝑅2} and {𝑅1} as in (𝑅0B𝑅2)B𝑝

𝑅1, this would prevent us from using an efficient physical operator
such as hash join. Thus, in edges, we explicitly define the left and
right sets for predicates. To combine two plans for subgraphs using
a join hyperedge, the left subgraph must contain the left set of the
hyperedge and the right subgraph must contain the right set of
the hyperedge. So the join edge ({𝑅0, 𝑅2}, {𝑅1}) can join a plan
for the left subgraph of relations 𝑅0, 𝑅2, 𝑅3 and a plan for the right
subgraph of relations 𝑅1, 𝑅5, as both subgraphs contain the required
relations.

Hypergraphs can also be utilized to encode reordering restric-
tions [3]. For instance, given the initial plan 𝑅0 E01 (𝑅1 E12 𝑅2),
the joinE01 must be applied after the join E12. This information
can be encoded using hyperedges. If we assign E01 the hyperedge
({𝑅0}, {𝑅1, 𝑅2}), we require that the right subgraph for this join
must contain both𝑅1 and𝑅2. This implicitly enforces thatE12 must
be applied first. The set of relations referred to by these extended
hyperedges are called the total eligibility set of the join.

The DPccp algorithm for enumerating connected subcompo-
nents of a graph has been extended to hypergraphs with the DPhyp
algorithm [12]. Although the DPhyp algorithm does not guarantee
constant time per connected hyper-subcomponent pair, it is still
efficient in practice. Thus, encoding reordering restrictions as hyper-
edges allows us to efficiently enumerate all valid plans. However, to
the best of our knowledge, no existing algorithm using hypergraph-
based encoding of reordering restrictions is complete, i.e., they do
not guarantee that all valid plans are found (see Section 3). And
approaches that do guarantee completeness are not as efficient in
practice. In Section 4, we will describe our novel hypergraph-based
approach that guarantees completeness. We rely on the DPhyp
algorithm that guarantees no cross products are introduced. When
we can prove that the violation of a reordering restriction would
necessitate the introduction of a new cross product, we can safely
prune the restriction and not introduce hyperedges.

2.6 Cross Products
Most query optimizers reject plans containing cross products unless
absolutely necessary. Unfortunately, some queries are disconnected.
They must be evaluated using a cross product. In such a case, we
introduce an additional edge to the query graph between the two
disconnected components to hide the cross product from the rest
of the query. Given R A S, we reinterpret this query as R B𝑅𝑆 S,
where 𝑅 and 𝑆 are arbitrary relations from R and S, respectively.

3DPccp enumerates in constant time if the number of nodes fit into a machine word.

2.7 Selections and Maps
A complex join tree can contain various additional operators that
break up the joins. Considering these additional operators within
the reordering of the joins enables us to explore a larger search
space. Selection and map operators can be interpreted as joins with
faux tables. This allows them to be considered as a natural part of
the query graph. We do not consider the integration of group by
operators into the query graph [5] in this work.

2.8 Hiding Property
We want to exploit the properties of join operators to design ef-
ficient algorithms for join plan enumeration. The following basic
implications can be derived from the definition of transformation
rules in Section 2.2:

l-asscom(◦𝑏 , ◦𝑎) =⇒ l-asscom(◦𝑎, ◦𝑏) (1)

r-asscom(◦𝑏 , ◦𝑎) =⇒ r-asscom(◦𝑎, ◦𝑏) (2)

assoc(◦𝑎, ◦𝑏) ∧ assoc(◦𝑏 , ◦𝑎) ∧ l-asscom(◦𝑎, ◦𝑏)

=⇒ r-asscom(◦𝑎, ◦𝑏) (3)

assoc(◦𝑎, ◦𝑏) ∧ assoc(◦𝑏 , ◦𝑎) ∧ r-asscom(◦𝑎, ◦𝑏)

=⇒ l-asscom(◦𝑎, ◦𝑏) (4)

assoc(◦𝑏 , ◦𝑎) ∧ l-asscom(◦𝑎, ◦𝑏) ∧ r-asscom(◦𝑎, ◦𝑏)

=⇒ assoc(◦𝑎, ◦𝑏) (5)

assoc(◦𝑎, ◦𝑏) ∧ l-asscom(◦𝑎, ◦𝑏) ∧ r-asscom(◦𝑎, ◦𝑏)

=⇒ assoc(◦𝑏 , ◦𝑎) (6)

All relational join operators additionally exhibit the following
four properties:

assoc(◦𝑎, ◦𝑏) ∧ assoc(◦𝑏 , ◦𝑐) =⇒ assoc(◦𝑎, ◦𝑐) (7)

l-asscom(◦𝑎, ◦𝑏) ∧ assoc(◦𝑏 , ◦𝑐) =⇒ l-asscom(◦𝑎, ◦𝑐) (8)

assoc(◦𝑐 , ◦𝑏) ∧ r-asscom(◦𝑏 , ◦𝑎) =⇒ r-asscom(◦𝑐 , ◦𝑎) (9)

r-asscom(◦𝑎, ◦𝑏) ∧ l-asscom(◦𝑏 , ◦𝑐) =⇒ assoc(◦𝑎, ◦𝑐) (10)

We call these four statements the hiding property. The hiding prop-
erty states that if a join operator ◦𝑏 may be reordered below ◦𝑎 ,
then all operators ◦𝑐 that are reorderable under the opposite side
of ◦𝑏 must also be reorderable under ◦𝑎 . In other terms, even if an
operator ◦𝑐 hides behind ◦𝑏 , its reordering restrictions regarding ◦𝑎
will be respected by ◦𝑏 . This is shown in Figure 2 for Equation (8).
If ◦𝑏 can be reordered under ◦𝑎 , then ◦𝑐 must be reorderable under
◦𝑎 as well. In Section 3.4, we will show that the approach CD-C, an
approach that claims completeness, fails to find valid plans in the
absence of the hiding property. Furthermore, in Section 4.2, we use
the hiding property to argue the completeness of our approach.

The individual transformation rules have local effects on the
query plan. However, in order to do efficient bottom-up join enu-
meration, we need global properties that are easily checked. The
hiding property (combined with the basic implications) extends
the individual operator incompatibilities to global statements on
reordering restrictions. Consider an initial join plan 𝑇 transformed
into a plan𝑇 ′ by applying a sequence of valid transformation rules.

Efficient Enumeration of the Complete Join Search Space DBPL ’25, June 22–27, 2025, Berlin, Germany

◦𝑐

◦𝑏

◦𝑎

𝑅1 𝑅2

𝑅3

𝑅4

◦𝑏

◦𝑎

𝑅1 𝑅2

◦𝑐

𝑅3 𝑅4

=⇒

Figure 2: The hiding property. ◦𝑐 can hide behind ◦𝑏 . Nonethe-
less, we know that if ◦𝑐 cannot be reordered under ◦𝑎 , ◦𝑏
cannot be reordered under ◦𝑎 either.

As joins satisfy the hiding property, the following statements hold
for any pair of operators ◦𝑎 and ◦𝑏 in 𝑇 and 𝑇 ′:

• If ¬assoc(◦𝑎, ◦𝑏), and ◦𝑎 was in the left subtree of ◦𝑏 in 𝑇 ,
then ◦𝑏 cannot be in the right subtree of ◦𝑎 in 𝑇 ′.

• If ¬assoc(◦𝑏 , ◦𝑎), and ◦𝑎 was in the right subtree of ◦𝑏 in 𝑇 ,
then ◦𝑏 cannot be in the left subtree of ◦𝑎 in 𝑇 ′.

• If ¬l-asscom(◦𝑎, ◦𝑏), and ◦𝑎 was in the left subtree of ◦𝑏 in
𝑇 , then ◦𝑏 cannot be in the left subtree of ◦𝑎 in 𝑇 ′.

• If ¬r-asscom(◦𝑎, ◦𝑏), and ◦𝑎 was in the right subtree of ◦𝑏
in 𝑇 , then ◦𝑏 cannot be in the right subtree of ◦𝑎 in 𝑇 ′.

These statements generalize the local incompatibilities of individual
operators to global statements of the query plan. The dynamic
programming approaches described in Section 3 will exploit these
global statements to efficiently verify the validity of plan without
having to trace an entire sequence of valid transformations.

We could not yet formally prove that the hiding property implies
the global statements. However, we experimentally verified with
random queries and transformation sequences that the hiding prop-
erty can be used to deduce all the global incompatibilities that arise.
We start with a random tree, apply a sequence of transformations,
and use Datalog to extend the known operator compatibilities. We
then check whether all global statements are satisfied for all oper-
ator pairs. For example, if an operator ◦𝑎 was in the left subtree
of ◦𝑏 in the initial plan, and ◦𝑏 is in the right subtree of ◦𝑎 in the
final plan, then we check whether assoc(◦𝑎, ◦𝑏) can be derived us-
ing the applied transformations, basic implications, and the hiding
property.

3 Related Work
There are different approaches for checking the validity of a plan,
i.e., determining whether an optimized plan can be reached from the
initial by only applying valid transformations. Moerkotte et al. [10]
propose three approaches for computing validity: CD-A, CD-B, and
CD-C.We only consider CD-A and CD-C as they supersede CD-B in
terms of either efficiency or completeness. CD-A exclusively relies
on the hypergraph representation of the query (see Section 2.5)
and is thus efficient. However, CD-A is not complete: It is not
able to generate all valid plans reachable from the initial plan via
valid transformations. Moerkotte et al. [10] claim completeness for
CD-C when it is disallowed to decompose conjunctive predicates.

However, CD-C relies on conflict rules (CRs) instead of hyperedges,
which makes the enumeration of join plans more costly.

In Section 3.1, we give an overview of how the simpler CD-
A algorithm works in checking plan validity. In Section 3.2, we
describe how CRs work, which are utilized by CD-C. In Section 3.3,
we build on Section 3.2 to describe the full CD-C algorithm. Finally,
in Section 3.4, we show how CD-C is not complete for arbitrary
operators. We describe the implicit assumptions made by CD-C
to ensure completeness, and argue that these assumptions hold
with relational joins. This analysis will form the basis for why
our approach based on the weaker hypergraph construct can be
complete.

3.1 CD-A
In Section 2.5, we described how the hypergraph representation of
a query can be used to encode reordering restrictions. The CD-A
algorithm builds such a hypergraph representation by first deter-
mining total eligibility sets (TES) for each join operator in the query.
The TES start with the syntactic eligibility sets (SES), which are the
input relations referenced by the predicate of the join. Then, the
algorithm iterates bottom up over the query tree, finding conflicts
between operators. If an operator pair is found to be conflicting,
the upper operator’s total eligibility set is extended with the lower
operator’s inputs, ensuring that the lower operator is executed be-
fore the upper operator. Pseudocode for the algorithm is given in
Algorithm 1.

Input: Join operator ◦𝑏
Output: Total eligibility set TES(◦𝑏)
for ◦𝑎 ∈ STO(left(◦𝑏)) do

if ¬assoc(◦𝑎, ◦𝑏) then
TES(◦𝑏) += left(◦𝑎);

end
if ¬l-asscom(◦𝑎, ◦𝑏) then

TES(◦𝑏) += right(◦𝑎);
end

end
for ◦𝑎 ∈ STO(right(◦𝑏)) do

if ¬assoc(◦𝑎, ◦𝑏)) then
TES(◦𝑏) += right(◦𝑎);

end
if ¬r-asscom(◦𝑎, ◦𝑏) then

TES(◦𝑏) += left(◦𝑎);
end

end
Algorithm 1: CD-A without degenerate predicates. This algo-
rithm is invoked for each join operator ◦𝑏 in the initial plan,
bottom up.

After the TES are computed, those sets can be split to left and
right sets based on the input relations of the join operator to form
hyperedges. These hyperedges are then used in the enumeration
algorithm to guarantee no invalid plans are generated.

Given the left example in Figure 1 and Table 1, the algorithm will
produce TES(K12) = {𝑅1, 𝑅2} and TES(B23) = {𝑅1, 𝑅2, 𝑅3}. These

DBPL ’25, June 22–27, 2025, Berlin, Germany Birler & Neumann

B34

B23

K12

𝑅1 𝑅2

𝑅3

𝑅4

B23

K12

𝑅1 𝑅2

B34

𝑅3 𝑅4

≡

Figure 3: Valid transformation in the presence of outer joins.
The inner joins can be reordered amongst themselves. But
an imprecise reordering restriction may prevent the valid
transformation.

correspond to the hyperedges ({𝑅1}, {𝑅2}) and ({𝑅1, 𝑅2}, {𝑅3}),
respectively. Given these hyperedges, the right tree in Figure 1 is
not valid, as the hyperedge ({𝑅1, 𝑅2}, {𝑅3}) for the inner join is not
satisfied as its left side does not contain 𝑅1. CD-A thus prevents the
invalid plan.

Nonetheless, CD-A is not complete. Given the left example in
Figure 3, the algorithm will produce TES(B34) = {𝑅1, 𝑅3, 𝑅4} and
the corresponding hyperedge ({𝑅1, 𝑅3}, {𝑅4}), to prevent the in-
ner join from being executed before the outer join. However, this
hyperedge is too restrictive, as it prevents the valid transforma-
tion to the right tree in Figure 3. Note also that this restriction is
unnecessary. Reordering B34 below K12 would result in a cross
product, which we explicitly disallow. We exploit this observation
to eliminate redundant hyperedges in our approach (see Section 4).

3.2 Conflict Rules (CRs)
A hyperedge (Rleft,Rright) corresponding to a join ◦𝑎 requires the
set of relations Rleft to be present in the left subtree of 𝑜𝑎 and
Rright to be present in the right subtree of 𝑜𝑎 . A CR, similar to a
hyperedge, is a pair of sets of relations: Sleft → Sright. However,
the requirement is more relaxed compared to hyperedges. If any
relation from Sleft is present in the input of the join, all relations
from Sright must also be present in the input. So, if none of the
relations from Sleft are present, the relations from Sright are not
required.

The DPccp algorithm can be extended to support CRs, albeit with
high costs. For each connected subcomponent pair that DPccp finds,
all the CRs corresponding to the connecting edge are validated. If
any CR is violated, the subcomponent pair is not valid and is not
considered for an optimal plan.

CRs can be used to encode more complex relationships compared
to hyperedges. However, surprisingly, our approach is able to find
a hypergraph that is also complete (see Section 4). This means that
the additional power provided by CRs, and the high validation costs,
are not necessary for completeness.

3.3 CD-C
The CD-C algorithm works similarly to CD-A, iterating over the
query tree and checking for conflicts. However, instead of produc-
ing hyperedges, it uses CRs to check for conflicts. The simplified

pseudocode for CD-C is given in Algorithm 2, ignoring degenerate
predicates4.

Input: Join operator ◦𝑏
Output: Conflict rules CR(◦𝑏)
for ◦𝑎 ∈ STO(left(◦𝑏)) do

if ¬assoc(◦𝑎, ◦𝑏) then
CR(◦𝑏) += right(◦𝑎) → SES-left(◦𝑎)

end
if ¬l-asscom(◦𝑎, ◦𝑏) then

CR(◦𝑏) += left(◦𝑎) → SES-right(◦𝑎)
end

end
for ◦𝑎 ∈ STO(right(◦𝑏)) do

if ¬assoc(◦𝑎, ◦𝑏)) then
CR(◦𝑏) += left(◦𝑎) → SES-right(◦𝑎)

end
if ¬r-asscom(◦𝑎, ◦𝑏) then

CR(◦𝑏) += right(◦𝑎) → SES-left(◦𝑎)
end

end
Algorithm 2: CD-C without degenerate predicates. This algo-
rithm is invoked for each join operator ◦𝑏 in the initial plan,
bottom up.

CD-C is complete when predicates may not be decomposed.
Thus, it can find valid plans that CD-A cannot. For example, in
Figure 3, CD-C will produce the CR {𝑅2} → {𝑅1} for the join B34.
This CR is satisfied by the right tree in Figure 3, as B34 does not
contain 𝑅2 in its input.

CD-C is not as efficient as CD-A, as it has to potentially loop
over and check multiple CRs for each operator instead of just the
one hyperedge. While the number of CRs can be reduced using
simplification rules [10], the number of CRs per operator is upper-
bounded by twice the number of operators in its subtree. Regardless,
since the check whether an operator is applicable is executed for
each connected component pair, any slowdown in the validation
results in a significant slowdown in the overall algorithm.

3.4 CD-C Is Not Complete for Arbitrary
Operators

CD-C is complete for relational joins. For completeness, it relies on
the hiding property as described in Section 2.8. We can, however,
show that CD-C is not complete for arbitrary hypothetical operators.
Here, we will provide an example for operators that violate the
transitivity of associativity as in Equation (7). If there is an operator
triplet where associativity is not transitive:

∃◦𝑎, ◦𝑏 , ◦𝑐 : 𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑏) ∧ 𝑎𝑠𝑠𝑜𝑐 (◦𝑏 , ◦𝑐) ∧ ¬𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑐)
we can give an initial plan and a final plan where CD-C will not
recognize the validity of the final plan, even though the final plan
can be reached through valid transformations. In Figure 4, we show
an example of this. In the initial tree, the CR {𝑅2, 𝑅3} → {𝑅1} is
4Degenerate predicates are predicates that do not refer to at least one relation from
each side of the join operator.

Efficient Enumeration of the Complete Join Search Space DBPL ’25, June 22–27, 2025, Berlin, Germany

◦𝑐34

◦𝑎12

𝑅1 ◦𝑏23

𝑅2 𝑅3

𝑅4

◦𝑐34

◦𝑏23

◦𝑎12

𝑅1 𝑅2

𝑅3

𝑅4

◦𝑏23

◦𝑎12

𝑅1 𝑅2

◦𝑐34

𝑅3 𝑅4

◦𝑎12

𝑅1 ◦𝑏23

𝑅2 ◦𝑐34

𝑅3 𝑅4

Figure 4: Valid transformations leading to a final state that
is rejected by CD-C. The transformations applied are left to
right in order 𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑏), 𝑎𝑠𝑠𝑜𝑐 (◦𝑏 , ◦𝑐), and 𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑏).

produced for the operator ◦𝑐 as ¬𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑐). Since the input of
◦𝑐 contains 𝑅3 but not 𝑅1 in the final plan, the CR is violated.

For the relational join operators that we consider, associativity is
transitive. However, it is possible to construct a set of hypothetical
operators where associativity is not transitive. As a simple exam-
ple for binary operators, we can use ternary logic operators that
input and output 3 possible values: 0, 1, and 2. The following is an
example of three ternary logic operators that violate transitivity of
associativity:

• ◦𝑎 (𝑥,𝑦): if 𝑥 = 0 ∧ 𝑦 = 0 then 1, else 0.
• ◦𝑏 (𝑥,𝑦): 0.
• ◦𝑐 (𝑥,𝑦): if 𝑥 = 1 ∧ 𝑦 = 1 then 2, else 0.

Since transitivity is required for the completeness of CD-C, we
can explicitly exploit transitivity to develop a hypergraph represen-
tation of the query that is also complete. We demonstrate this in
Section 4.

4 Approach
In Section 3.1, we provided an example of a redundant reordering
restriction. Even though the rules of CD-A require us to create
a hyperedge for B34 in Figure 1 to prevent that inner join from
being placed below the outer join, that hyperedge prevents us from
reordering the inner joins amongst each other. Such restrictions
have a drastic impact on the search space: A single outer join below
a complex plan can end up preventing a significant number of re-
orderings (see Section 5). Surprisingly, in this example, considering
the outer join as a base table for the rest of the plan improves the
situation. This is counterintuitive, as considering more joins for
reordering should not reduce our search space.

Nonetheless, that hyperedge is not needed. As we prevent cross
products, B34 could never go below K12. For B34 to be placed
belowK12,B23 would have to be placed belowK12, whichwe also
prevent with a hyperedge. So a single hyperedge for the middle join
B23 is sufficient to prevent invalid reordering. We generalize this
technique and present an algorithm to avoid introducing redundant
hyperedges.

4.1 Redundant Reordering Restrictions
Assume we have two operators ◦𝑎 and ◦𝑏 where ¬𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑏)
and ◦𝑎 is in the right subtree of ◦𝑏 . We need to prevent plans where
◦𝑏 is in the right subtree of ◦𝑎 . We only need to prevent this if it is
possible for ◦𝑏 to be in the right subtree of ◦𝑎 . To check this, we
need to ask the question: Is it possible for ◦𝑏 to be placed below ◦𝑎
without resulting in cross products? In essence, we remove ◦𝑎 from
the query graph and then check whether we can connect the corre-
sponding relations. We describe a connectivity check algorithm in
Section 4.3. Given a connectivity check operation, we amend CD-A
as follows in Algorithm 3, calling it CD-E.

Input: Join operator ◦𝑏
Output: Total eligibility set TES(◦𝑏)
for ◦𝑎 ∈ STO(left(◦𝑏)) do

if ¬assoc(◦𝑎, ◦𝑏) ∧ connected(right(◦𝑎), right(◦𝑏), ◦𝑎)
then

TES(◦𝑏) += TES-left(◦𝑎);
end
if ¬l-asscom(◦𝑎, ◦𝑏) ∧ connected(left(◦𝑎), right(◦𝑏), ◦𝑎)
then

TES(◦𝑏) += TES-right(◦𝑎);
end

end
for ◦𝑎 ∈ STO(right(◦𝑏)) do

if ¬assoc(◦𝑎, ◦𝑏) ∧ connected(left(◦𝑎), left(◦𝑏), ◦𝑎) then
TES(◦𝑏) += TES-right(◦𝑎);

end
if ¬r-asscom(◦𝑎, ◦𝑏) ∧ connected(right(◦𝑎), left(◦𝑏), ◦𝑎)
then

TES(◦𝑏) += TES-left(◦𝑎);
end

end
Algorithm 3: CD-E. CD-E is based on CD-A in Algorithm 1, but
with two important changes. First, instead of amending TES(◦𝑏)
with the entire T (◦𝑎), we only add from TES(◦𝑎). Second, we
check for connectivity before adding the TES. This algorithm is
invoked for each join operator ◦𝑏 in the initial plan, bottom up.

4.2 Completeness of CD-E
In this section, we briefly argue for the completeness of CD-E if
predicate decomposition is not allowed. We additionally empirically
verify this in Section 5.

We want to look at cases where CD-C allows a plan where CD-A
prevents it. Assume, for the sake of argument, we have two opera-
tors ◦𝑎 and ◦𝑐 where ¬𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑐) and ◦𝑎 is in the left subtree of
◦𝑐 . In Section 3, we saw that CD-A could prevent valid reorderings
while CD-C does not. We know that both CD-A and CD-C will
prevent ◦𝑐 from being reordered in the right subtree of ◦𝑎 . But
CD-C may allow ◦𝑐 to be reordered below a third operator ◦𝑏 while
CD-A may prevent it. So, for there to be a plan that is valid under
CD-C but not under CD-A, there needs to be a third operator ◦𝑏
on the path from ◦𝑎 to ◦𝑐 .

DBPL ’25, June 22–27, 2025, Berlin, Germany Birler & Neumann

An example is given in Figure 3, with three operators ◦𝑎 , ◦𝑏 , and
◦𝑐 corresponding toK12,B23, andB34, respectively. If a reordering
of ◦𝑐 is allowed by CD-C, but prevented by CD-A, this implies that
in the resulting plan ◦𝑐 does not contain ◦𝑎 in its input, as in the
right side of Figure 3. Given that ◦𝑎 was in the left subtree of ◦𝑐 , this
implies that ◦𝑐 has moved to the right subtree of an operator ◦𝑏 on
the path from ◦𝑎 to ◦𝑐 . Hence, assoc(◦𝑏 , ◦𝑐) must hold. We assumed
initially that ¬𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑐). Since, for join operators, associativity
is transitive, this implies that ¬𝑎𝑠𝑠𝑜𝑐 (◦𝑎, ◦𝑏) must also hold. This
implies that ◦𝑏 cannot be reordered to the right of ◦𝑎 . Algorithm 3
will have introduced a hyperedge for ◦𝑏 to prevent this. We can
also infer that a path on the query graph from the right side of ◦𝑐 to
the right side of ◦𝑎 must go over ◦𝑏 , as we know predicates cannot
be decomposed and ◦𝑐 can be reordered to the right side of ◦𝑏 . This
means that the hyperedge for ◦𝑏 will also prevent ◦𝑐 from being
reordered to the right side of ◦𝑎 . Thus, the connectivity check will
fail, and CD-E will not add the hyperedge for ◦𝑐 . Hence, we have
argued that CD-E also allows all plans that CD-C allows.

4.3 Proving Redundancy via Connectivity
Checks

As we have seen in Section 4.1, we can use connectivity checks
to prove that a reordering restriction is redundant. In this section,
we describe a generic algorithm for connectivity checks within
hypergraphs of queries. The algorithm potentially has quadratic
runtime in the size of the query per connectivity check. While this
is not ideal, we can check connectivity exactly and allow for a large
number of reorderings by preventing all redundant hyperedges.
Still, we can improve on the performance of the algorithm with
a second algorithm that takes constant time but can return false
positives. We describe this algorithm in Section 4.4.

Our basic algorithm is based on the union find data structure.
The union find data structure efficiently supports merging of two
sets merge(R,S) and checking whether two elements are in the
same set find(𝑅) = find(𝑆). We extend this with the isMerged(R)
operation in Algorithm 4, which checks whether all relations in R
are part of the same set, i.e., whether they all have been merged
together.

Input: Relations R
Output: isMerged(R): Whether the relations have been

made into a union
root = find(𝑟) for arbitrary 𝑟 ∈ R;
for 𝑟 ∈ R do

if find(𝑟) ≠ 𝑟𝑜𝑜𝑡 then
return false;

end
end
return true;

Algorithm 4: Algorithm for checking whether all relations in
a set are part of the same component within the union find data
structure.

Our algorithm for checking connectivity is as follows. Whenever
a hyperedge can be applied, i.e., the left and right sides of the
hyperedge are connected, we merge the two sides of the hyperedge.

We repeat this as long as we can find an edge to apply. In the end,
we have maximal connected components of our hypergraph. We
can finally check whether the two relation sets we are interested in
are in the same component. This is illustrated in Algorithm 5, where
we further increase the efficiency by assuming the inputs sets are
already connected and exiting early whenever we can determine
connectedness.

Input: Relations R1, R2, excluded edge 𝐸, query
hyperedges E

Output: connected(R1,R2, 𝐸): Whether the relations from
R1 and R2 are connected in the hypergraph
without 𝐸

Let 𝑟1, 𝑟2 be arbitrary relations from R1, R2;
for 𝑟 ∈ R1 do

merge(𝑟1, 𝑟);
end
for 𝑟 ∈ R2 do

merge(𝑟2, 𝑟);
end
while there is an edge that can be applied do

for (S1,S2) ∈ E \ {𝐸} do
if isMerged(S1) ∧ isMerged(S2) then

merge(S2,S2);
if find(𝑟1) = find(𝑟2) then

return true;
end

end
end

end
return false;

Algorithm 5: Algorithm for checking connectivity in a query
hypergraph. We repeatedly apply edges until no new edges can
be applied.

4.4 Fast Path for Connectivity Checks
To quickly verify whether an operator ◦𝑏 can be placed below ◦𝑎 ,
we can quickly check whether the input relations of these operators
are still connected in the query graph, if we were to remove the
edge corresponding to ◦𝑎 . If they are connected, we can run the
more precise check in Algorithm 5. If they are not connected, we
can immediately return false. We can make this check very efficient
by building index structures on the initial state of the query graph,
ignoring updates. If we answer connectivity queries on the initial
query graph based on SES, we will have false positives but no
false negatives. We may report that a pair of relations is connected
when they are not but never the other way around, as the newly
introduced hyperedges only reduce connectivity in the graph.

We call this problem single decremental connectivity as a special
case of decremental dynamic connectivity [19] where only a single
edge is removed before a connectivity query. To answer queries
efficiently, we preprocess the query graph in multiple steps as
shown in Figure 5:

• We start with the initial query graph where nodes are rela-
tions and edges are joins.

Efficient Enumeration of the Complete Join Search Space DBPL ’25, June 22–27, 2025, Berlin, Germany

(a)

(b)

(c)

Figure 5: Preprocessing the query graph for fast connectivity
checks. (a) The initial query graph with relations and joins.
(b) The graph with midpoints added, representing the joins.
(c) The bridge tree, a spanning tree of the query graph where
each edge is a bridge.

• We add midpoints to the edges graph, shown as white nodes
in Figure 5(b). These white nodes represent the joins.

• We build a bridge tree on the graph, shown in Figure 5(c).
The bridge tree is a spanning tree of the query graph where
each edge is a bridge. The bridge tree can be built using
Tarjan’s algorithm [7, 17, 18] that computes and merges
bridge-connected components [22]. The merged components
shown as shaded nodes in Figure 5(c).

• Given this spanning tree, we can answer connectivity queries
in constant time by querying the lowest common ancestors of
nodes5. Given two relations and a join edge, the relations are
disconnected if the two relations are in different components
and the node corresponding to the join predicate is not on
the path between the two relations in the bridge tree.

If performance for the TES computation is critical, one could
use the fast connectivity check to completely replace the expensive
canPlaceBelow check. However, this would result in false negatives,
meaning that the algorithm would not be complete. We name this
alternative approach CD-D and evaluate it in Section 5.

4.5 Decomposing Predicates
Many queries contain inner joins with conjunctive predicates such
as 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 . Such predicates can be decomposed and the terms
can be reordered independently. For example, the plan

(𝑅 B𝑅.𝑎=𝑆.𝑎 𝑆) B𝑆.𝑏=𝑇 .𝑏∧𝑅.𝑐=𝑇 .𝑐 𝑇

can be reordered to the following:

𝑅 B𝑅.𝑎=𝑆.𝑎∧𝑅.𝑐=𝑇 .𝑐 (𝑆 B𝑆.𝑏=𝑇 .𝑏 𝑇)
Such predicates are especially common when many relations join
on the same attribute such as 𝑅.𝑎 = 𝑆.𝑎 = 𝑇 .𝑎 = 𝑈 .𝑎, where the
transitive closure would result in a clique query graph. Disabling

5A static tree can be preprocessed in O(𝑛) time, where 𝑛 is the number of nodes, to
answer lowest common ancestor queries in O(1) time [2]. This can be done with an
infix traversal of the tree followed by the construction of a range minimum query
structure.

the decomposition of such predicates would result in the planner
missing out on many valid reorderings.

Decomposing precidates is the same as interpreting each term
in the conjunctive predicate as a separate inner join. Unfortunately,
CD-C, as described in Section 3.1, may generate erroneous plans if
all terms are considered as separate joins. For the query

((𝑅0 E01 𝑅1)′E12𝑅2) B03,23 𝑅3

where the topmost inner join contains two conjunctive terms, CD-C
does not explicitly disallow the plan

(𝑅1′E12𝑅2) B23 (𝑅0 B03 𝑅3)

where theE01 disappears6.
The hypergraph based approaches that we have discussed, CD-A,

CD-D, and CD-E can be adapted to allow for decomposing predi-
cates, by simply considering each term in the conjunctive predicate
as a separate join. One important caveat is that the transformations
assoc, l-asscom, and r-asscom may lead to the sides of a join predi-
cate being swapped, i.e., the same effect as applying commutativity.
Thus, the checks for whether a join may be applied need to consider
that the predicates may have been flipped for inner joins.

We evaluate the effectiveness of the hypergraph based algo-
rithms in Section 5. None of them are complete in the presence of
decomposable predicates, but CD-E finds the most plans.

5 Evaluation
In this section, we evaluate our approach CD-E to experimentally
validate its correctness and completeness. We also compare it to
other approaches, CD-A, CD-C, and CD-D, to show that CD-E is
strictly better in the number of enumerated plans.

In Section 5.1, we describe the experimental setup, including the
query generation methodology. In Section 5.2, we provide a short
summary of the algorithms we test. In Section 5.3, we evaluate the
algorithms with non-decomposable predicates. In Section 5.4, we
evaluate the algorithms with decomposable predicates. Finally, in
Section 5.5, we show some examples where CD-E does not find all
valid plans with decomposable predicates.

5.1 Experimental Setup
To evaluate our approach, we have implemented a transformation-
based join plan enumeration based on memoization [15]. This im-
plementation is used to verify all other approaches. Every other
algorithm must produce plans that are a subset of the plans pro-
duced by the transformation-based approach. All algorithms we
show in this section correctly produce only a subset of the plans
produced by the transformation-based approach.

We generate all possible queries with single binary predicates
joining up to 7 relations similar to Moerkotte et al. [10]. Our query
generator iterates over all possible tree shapes, then all possible
join operators, and finally all possible binary predicates with one
input from the left side and one input from the right side (we do
not consider degenerate predicates). The join operators we iterate
over are listed in Tables 1 to 3.

6More precisely, CD-C allows for the connected component pair ({1, 2}, {0, 3}) ,
which should not be allowed.

DBPL ’25, June 22–27, 2025, Berlin, Germany Birler & Neumann

CD-A CD-H CD-D CD-C CD-E Total

Complete Queries 63.8% 65.9% 80.7% 100.0% 100.0% 12,659,013,896
Found Plans 89.2% 90.0% 96.0% 100.0% 100.0% 225,829,100,155

Table 4: Completeness with non-decomposable predicates. We show both the percentage of queries for which the algorithms
found all plans, and the percentage of all plans that were found across all queries.

CD-A CD-H CD-D CD-C CD-E Total

Complete Queries 54.3% 55.2% 67.2% - 85.5% 23,666,545,952
Found Plans 81.3% 81.7% 89.7% - 96.3% 575,494,740,652

Table 5: Completeness with decomposable predicates. We show both the percentage of queries for which the algorithms found
all plans, and the percentage of all plans that were found across all queries. CD-C produces incorrect plans and is thus not
shown.

5.2 Algorithms
We compare the following algorithms:

• CD-A: The original algorithm due to Moerkotte et al. [10]
that builds a hypergraph based on operator reordering re-
strictions.

• CD-C: The algorithm due to Moerkotte et al. [10] that builds
up conflict rules instead of a hypergraph. This algorithm
is complete when predicates are not decomposable. This
algorithm does not support decomposable predicates.

• CD-H: This algorithm is a mixture of CD-C and CD-A. Mo-
erkotte et al. [10] describe an algorithm to prune conflict
rules. CD-H starts with CD-C and tries to prune the conflict
rules. If it is not able to prune all conflict rules, it switches
to CD-A. This algorithm always ends up with a hypergraph
with no conflict rules. This makes it very efficient. Also, as
it is based on CD-C, it has fewer false negatives than CD-A.

• CD-D: Our algorithm from Section 4.4 that relies on the
fast connectivity check on the original query graph to prune
reordering restrictions.

• CD-E: Our algorithm from Section 4.3 that applies a more
connectivity check and is complete when predicates are not
decomposable. This algorithm supports decomposable pred-
icates.

5.3 Non-Decomposable Predicates
Given only one predicate per operator (which are not decompos-
able), we have over 1010 initial query plans for up to 7 relations. We
show the number of plans found by each algorithm in Table 4. The
results show that CD-C and CD-E are complete, while CD-A, CD-D,
and CD-H are not. CD-D is not complete, but it is able to find 96% of
all plans, which is a significant improvement over CD-A and CD-H,
which find around 90% of all plans. CD-H improves on CD-A, but
not significantly. CD-D represents a middle ground between CD-A
and CD-E.

5.4 Decomposable Predicates
To test decomposable predicates, we take all queries we generated
for Section 5.3, and add an additional binary predicate to an inner

join within the query. We try all inner joins and all possible input
relations for the additional binary predicate (we do not consider
degenerate predicates). Additionally, we consider commutativity
for the inner joins. We show the number of plans found by each
algorithm in Table 5. As described in Section 4.5, CD-C produces
incorrect plans that do not respect reordering restrictions. The
other algorithms are correct, but not complete, with CD-E being
the most exhaustive, being able to find 96% of all possible plans,
compared to CD-A, which finds 81% of all possible plans, meaning
that the number of missed plans is reduced by a factor of over 4. The
ranking of the other approaches is similar to the non-decomposable
case in Table 4.

5.5 Missing Plans with Decomposable
Predicates

In this section, we want to discuss when CD-E is not able to find
all plans.

5.5.1 Bottom-Up Iteration. The bottom-up iteration of CD-E is not
always optimal, as a hyperedge introduced later on can make an
earlier hyperedge redundant. A different order of the iterations,
especially one based on the structure of the query graph, can lead
to a significant reduction in missed plans. Nonetheless, the com-
plexity of the algorithm increases significantly, thus we leave such
considerations for future work. An example is the following query:

((𝑅0 B01 𝑅1) E02 𝑅2) B13,23 𝑅3

Do we need to prevent E02 from being moved to the right of B01?
If B01 is removed, based on the connectedness in the initial query
graph, 𝑅1 and 𝑅2 are connected due to the inner joins on the top.
Nonetheless, after we determine all reordering restrictions, we
recognize that the inner joins B23 must succeed the left outer join
E02. Thus, we do not need to explicitly prevent E02 from being
moved to the right ofB01. However, in the bottom-up iteration, we
do not recognize this redundancy.

5.5.2 Imprecise Connectedness. We use connectedness as an indi-
cator for whether an operator ◦𝑏 can be moved to the left or right of
an operator ◦𝑎 . Nonetheless, this is just an approximation. Consider

Efficient Enumeration of the Complete Join Search Space DBPL ’25, June 22–27, 2025, Berlin, Germany

the following query:

((𝑅0 B01 𝑅1) B02,12 𝑅2) K03 𝑅3

If the K03 is assigned the hyperedge ({𝑅0, 𝑅1, 𝑅2}, {𝑅3}), then, it
is guaranteed that the all inner joins must preceed the full outer
join. Nonetheless, if we removeB01, all relations remain connected,
meaning that the connectedness check cannot detect thatB01 must
preceed K03.

6 Limitations and Future Work
In this section, we discuss the limitations of our approach and out-
line future work. While our approach, CD-E, is complete and effi-
cient for enumerating join plans with non-decomposable predicates,
it does not guarantee completeness for decomposable predicates.
In Section 5, we quantify the completeness of CD-E with respect to
the other approaches, and discuss the specific cases where CD-E
fails to find valid plans with decomposable predicates. We believe
it is promising to address the limitations of the bottom-up iteration
order of CD-E to improve the percantage of plans it finds.

Another significant limitation of all the discussed approaches is
that, none of them consider the possibility of rewriting predicates.
Rewrites can be algebraic transformations 𝑎 − 𝑏 = 𝑐 ≡ 𝑎 = 𝑏 + 𝑐 .
Rewrites can also exploit equivalences of attributes. Consider the
following query:

(𝑅1′E𝑅1 .𝑥=𝑅2 .𝑥𝑅2) B𝑅1 .𝑥=𝑅3 .𝑥 𝑅3

In the result of the outer join, the attribute 𝑅1 .𝑥 is not guaranteed
to be equal to 𝑅2 .𝑥 . Nonetheless, we can use l-asscom to reorder
the joins:

(𝑅1 B𝑅1 .𝑥=𝑅3 .𝑥 𝑅3)′E𝑅1 .𝑥=𝑅2 .𝑥𝑅2

Now, we can rewrite the predicate of the left outer join based on
the equivalence the inner join provides:

(𝑅1 B𝑅1 .𝑥=𝑅3 .𝑥 𝑅3)′E𝑅3 .𝑥=𝑅2 .𝑥𝑅2

After this rewrite, we can apply assoc to reorder the joins:

𝑅1 B𝑅1 .𝑥=𝑅3 .𝑥 (𝑅3′E𝑅3 .𝑥=𝑅2 .𝑥𝑅2)

None of the discussed approaches are able to find this plan, as they
do not consider the possibility of rewriting predicates. We see such
rewrites as an avenue for future work.

7 Conclusion
In this paper, we presented new approaches to join plan enumera-
tion based on representing the query as a hypergraph. Our algo-
rithm CD-E is both complete and efficient. It demonstrates signif-
icant improvements over existing approaches. We also presented
CD-D, which is even more efficient than CD-E and is close to being
complete, i.e., it finds almost all possible plans.

Classical techniques such as CD-A can have unintuitive behavior,
such as the search space being reduced with the introduction of
additional operators. CD-C avoids such behaviors but significantly
slows down join enumeration and does not support the decomposi-
tion of conjunctive predicates. Such surprising behaviors lead to
difficult-to-diagnose issues for users. Thus, we believe all systems
should adopt more robust approaches such as CD-E or CD-D to
improve user experience and query performance.

References
[1] Richard Bellman. 1952. On the Theory of Dynamic Programming. Proceedings

of the National Academy of Sciences of the United States of America 38, 8 (1952),
716–719. http://www.jstor.org/stable/88493

[2] Michael A. Bender and Martin Farach-Colton. 2000. The LCA Problem Revisited.
In LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Punta del
Este, Uruguay, April 10-14, 2000, Proceedings (Lecture Notes in Computer Science,
Vol. 1776), Gaston H. Gonnet, Daniel Panario, and Alfredo Viola (Eds.). Springer,
88–94. doi:10.1007/10719839_9

[3] Gautam Bhargava, Piyush Goel, and Balakrishna R. Iyer. 1995. Hypergraph Based
Reorderings of Outer Join Queries with Complex Predicates. In Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data, San Jose,
California, USA, May 22-25, 1995, Michael J. Carey and Donovan A. Schneider
(Eds.). ACM Press, 304–315. doi:10.1145/223784.223847

[4] Altan Birler, Mihail Stoian, and Thomas Neumann. 2025. Optimizing Linearized
Join Enumeration by Adapting to the Query Structure. In Datenbanksysteme für
Business, Technologie und Web (BTW 2025), 21. Fachtagung des GI-Fachbereichs
„Datenbanken und Informationssysteme" (DBIS), 03.-07, März 2025, Bamberg, Ger-
many, Proceedings (LNI, Vol. P-361), Meike Klettke, Ralf Schenkel, Andreas Hen-
rich, Daniela Nicklas, Maximilian E. Schüle, and Klaus Meyer-Wegener (Eds.).
Gesellschaft für Informatik e.V., 193–216. doi:10.18420/BTW2025-09

[5] Philipp Fent, Altan Birler, and Thomas Neumann. 2023. Practical planning and
execution of groupjoin and nested aggregates. VLDB J. 32, 6 (2023), 1165–1190.
doi:10.1007/S00778-022-00765-X

[6] Peter Gassner, GuyM. Lohman, K. Bernhard Schiefer, and YunWang. 1993. Query
Optimization in the IBM DB2 Family. IEEE Data Eng. Bull. 16, 4 (1993), 4–18.
http://sites.computer.org/debull/93DEC-CD.pdf

[7] John E. Hopcroft and Robert Endre Tarjan. 1973. Efficient Algorithms for Graph
Manipulation [H] (Algorithm 447). Commun. ACM 16, 6 (1973), 372–378. doi:10.
1145/362248.362272

[8] Toshihide Ibaraki and Tiko Kameda. 1984. On the Optimal Nesting Order for
Computing N-Relational Joins. ACM Trans. Database Syst. 9, 3 (1984), 482–502.
doi:10.1145/1270.1498

[9] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. VLDB J.
27, 5 (2018), 643–668. doi:10.1007/S00778-017-0480-7

[10] Guido Moerkotte, Pit Fender, and Marius Eich. 2013. On the correct and com-
plete enumeration of the core search space. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias
(Eds.). ACM, 493–504. doi:10.1145/2463676.2465314

[11] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One
New Dynamic Programming Algorithm for the Generation of Optimal Bushy Join
Trees without Cross Products. In Proceedings of the 32nd International Conference
on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, Umeshwar Dayal,
Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L.
Kersten, Sang Kyun Cha, and Young-Kuk Kim (Eds.). ACM, 930–941. http:
//dl.acm.org/citation.cfm?id=1164207

[12] Guido Moerkotte and Thomas Neumann. 2008. Dynamic programming strikes
back. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, Jason Tsong-Li
Wang (Ed.). ACM, 539–552. doi:10.1145/1376616.1376672

[13] Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with Group-
By and Join by Groupjoin. Proc. VLDB Endow. 4, 11 (2011), 843–851. http:
//www.vldb.org/pvldb/vol4/p843-moerkotte.pdf

[14] Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization of Very
Large Join Queries. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,
677–692. doi:10.1145/3183713.3183733

[15] Arjan Pellenkoft, César A. Galindo-Legaria, and Martin L. Kersten. 1997. The
Complexity of Transformation-Based Join Enumeration. In Proceedings of the 23rd
International Conference on Very Large Data Bases (VLDB ’97). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 306–315.

[16] Jun Rao, Bruce G. Lindsay, Guy M. Lohman, Hamid Pirahesh, and David E. Sim-
men. 2001. Using EELs, a Practical Approach to Outerjoin and Antijoin Reorder-
ing. In Proceedings of the 17th International Conference on Data Engineering, April
2-6, 2001, Heidelberg, Germany, Dimitrios Georgakopoulos and Alexander Buch-
mann (Eds.). IEEE Computer Society, 585–594. doi:10.1109/ICDE.2001.914873

[17] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput. 1, 2 (1972), 146–160. doi:10.1137/0201010

[18] Robert Endre Tarjan. 1974. A Note on Finding the Bridges of a Graph. Inf. Process.
Lett. 2, 6 (1974), 160–161. doi:10.1016/0020-0190(74)90003-9

[19] Mikkel Thorup. 1997. Decremental Dynamic Connectivity. In Proceedings of
the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 5-7 January
1997, New Orleans, Louisiana, USA, Michael E. Saks (Ed.). ACM/SIAM, 305–313.

http://www.jstor.org/stable/88493
https://doi.org/10.1007/10719839_9
https://doi.org/10.1145/223784.223847
https://doi.org/10.18420/BTW2025-09
https://doi.org/10.1007/S00778-022-00765-X
http://sites.computer.org/debull/93DEC-CD.pdf
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/1270.1498
https://doi.org/10.1007/S00778-017-0480-7
https://doi.org/10.1145/2463676.2465314
http://dl.acm.org/citation.cfm?id=1164207
http://dl.acm.org/citation.cfm?id=1164207
https://doi.org/10.1145/1376616.1376672
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1109/ICDE.2001.914873
https://doi.org/10.1137/0201010
https://doi.org/10.1016/0020-0190(74)90003-9

DBPL ’25, June 22–27, 2025, Berlin, Germany Birler & Neumann

http://dl.acm.org/citation.cfm?id=314161.314313
[20] TaiNing Wang and Chee-Yong Chan. 2018. Improving Join Reorderability with

Compensation Operators. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,
693–708. doi:10.1145/3183713.3183731

[21] TaiNing Wang, Yunpeng Niu, and Chee-Yong Chan. 2023. Complete Join Re-
ordering for Null-Intolerant Joins. In 39th IEEE International Conference on Data
Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 1734–1746.
doi:10.1109/ICDE55515.2023.00136

[22] Jeffery R. Westbrook and Robert Endre Tarjan. 1992. Maintaining Bridge-
Connected and Biconnected Components On-Line. Algorithmica 7, 5&6 (1992),
433–464. doi:10.1007/BF01758773

http://dl.acm.org/citation.cfm?id=314161.314313
https://doi.org/10.1145/3183713.3183731
https://doi.org/10.1109/ICDE55515.2023.00136
https://doi.org/10.1007/BF01758773

	Abstract
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Enumeration of Join Plans
	2.3 Constructive Plan Generation
	2.4 Query as Graph
	2.5 Query as Hypergraph
	2.6 Cross Products
	2.7 Selections and Maps
	2.8 Hiding Property

	3 Related Work
	3.1 CD-A
	3.2 Conflict Rules (CRs)
	3.3 CD-C
	3.4 CD-C Is Not Complete for Arbitrary Operators

	4 Approach
	4.1 Redundant Reordering Restrictions
	4.2 Completeness of CD-E
	4.3 Proving Redundancy via Connectivity Checks
	4.4 Fast Path for Connectivity Checks
	4.5 Decomposing Predicates

	5 Evaluation
	5.1 Experimental Setup
	5.2 Algorithms
	5.3 Non-Decomposable Predicates
	5.4 Decomposable Predicates
	5.5 Missing Plans with Decomposable Predicates

	6 Limitations and Future Work
	7 Conclusion
	References

