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Abstract—Instruction selection in compiler backends tradi-
tionally depends on huge handwritten rule libraries that map
IR patterns to target instruction sequences. Porting to new
architectures or extending them for new hardware features is a
very error-prone process, results in a significant development effort
of a dedicated expert and even requires long-term commitment
to apply patches for previously introduced bugs.

Automatic synthesis of these rule libraries from formal ISA
and IR specifications eliminates the initial development effort
and reduces the long-term maintenance effort, as synthesized
rules are correct by construction. Prior work on synthesizing
instruction selectors either requires synthesis times of multiple
days or significantly falls behind the code quality of an optimizing
handwritten backend — in both cases not applicable in practice.

We introduce a term canonicalization and indexing approach
that accelerates finding rules on syntactically-similar bitvector
terms while returning to SMT solving to ensure completeness
in all other cases. Combined with search bounds derived from
LLVM'’s existing pattern base, this reduces synthesis times from
multiple days to under two hours for AArch64 and RISC-V.

We integrated the synthesized instruction selection rules for
AArch64 and RISC-V into LLVM’s GloballSel backend and
achieved almost on-par performance with the existing, industry-
standard code generation backends in LLVM on the SPEC 2017
Integer benchmark suite (within 4% of LLVM GloballSel).

I. INTRODUCTION

Modern Instruction Set Architectures (ISAs), including
AArch64 or RISC-V, have grown increasingly complex. ISAs
often feature hundreds of complex instructions (e.g., AArch64
vector instructions) or modular extension mechanisms, with
RISC-V, in particular, offering a proliferation of custom
configurations and vendor-specific extensions. Even mature
ISAs like x86-64 and AArch64 continue to evolve, rapidly
expanding their instruction sets with new functionality and
instructions over time [1], [2].

A central responsibility of any compiler is to translate an
intermediate representation (IR) into efficient machine code
for the targeted hardware. A key component is the instruction
selector, which matches IR constructs to efficient, semantically
equivalent, target-specific instruction sequences. For this, in-
struction selectors rely on typically large rule libraries that map
patterns of IR operations to corresponding instruction sequences.
In most prevalent general-purpose compiler frameworks (e.g.,
GCC [3], LLVM [4], and Cranelift [5]), these pattern library is
written by hand for all architectures, which is not only a huge
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Fig. 1: Our approach to synthesizing an instruction selection rule library
involves: preprocessing specifications into pattern pools (1) building a term
index (2a) and evaluating the instruction sequences on test inputs (2b) and
searching for rules — first try to find a match in the term index (3a) on success
emitting the rule directly (3b), on failure evaluate the test inputs and probe
against cached evaluations to find candidate matches (3c) and verify with an
SMT solver (3d).

effort, but also requires continuous maintenance to support new
hardware features and IR operations.

Furthermore, it is a major burden for custom, domain-specific
code generators focusing on optimized code generation. Only
a few big industry players can support such ventures for the
JVM 6], [7], .Net [8]], JavaScript and WebAssembly [9], [10]],
[11]. And even here, the adoption of new architectures is
limited. JavaScriptCore applies code generation for x86-64 and
AArch64, and SpiderMonkey and V8 just announced additional
RISC-V support [[12]], [13].

Recent trends offer a potential way forward: both ARM and
RISC-V published formal specifications of their ISAs [14], [[15]]
and others are likely to follow [[16]. These structured semantics
enable automatic synthesis of instruction selection rules —
rules that are correct by construction, derived from the formal
semantics of both the IR of a compiler and the ISA. While
replacing handcrafted rule libraries in optimizing compilers
entirely may not be realistic, our goal is to provide a foundation
that requires only minimal adjustments or customized rules to
reach the performance of optimized backends.

There are two prevalent approaches in prior work on
automatically synthesizing instruction selection rules: Ideas
based on counter-example guided inductive synthesis [17]] try
to find all minimal IR patterns for each ISA instruction by
repeatedly generating candidate matches and verifying them
via an SMT solver [18]], [19]], [20]. Rule-based ideas apply
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Fig. 2: Major stages of the LLVM GlobalISel backend pipeline, which is responsible for the transformation from hardware-agnostic LLVM IR to target-specific
machine instructions. Example of an LLVM IR function (I) progressively lowered to gMIR (II) and MIR (III). The generic instructions, G_ADD, G_SHL and
G_CONSTANT, are combined into a target-dependent instruction — ADDWrs (addition with operand shifted by immediate).

algebraic transformations to find matching IR patterns and
instruction sequences, applying several heuristics to bound
the search space [21]. However, neither approach is practical:
one falls significantly behind in performance due to missing
rules [21]], while the other requires days of synthesis even for
small x86_32 subsets [18]] and does not scale due to exponential
growth with IR instructions. Moreover, by enumerating all
minimal patterns for single ISA instructions, they spend most
of the time on patterns that rarely occur and are restricted to
single-instruction rules.

We combine ideas of both worlds (refer Figure [T): Given a
formal ISA and IR specification, we first preprocess these into
SMT bitvector terms and derive a set of considered IR patterns
and ISA instruction sequences (Section . Next, we build
an index on a canonicalized form of the bitvector terms for
the ISA instruction sequences (Section and additionally
evaluate them on a set of random test inputs and store the result
(Section [V=C). When searching for rules for an IR pattern, we
first query the index for structurally similar bitvector terms and
emit the most beneficial rule if there are matching ones. As a
fallback, we probe the table of test evaluations to find potential
candidate matches and verify them via an SMT solver.

We synthesized an instruction selection rule library for the
RISCVg profile (in less than 40 min) and AArch64, including
Neon vector instructions (in less than 2 hours) — focusing
on integer instructions, leaving out floating point operations.
The rule libraries are integrated into the LLVM GloballSel
instruction selection backend and evaluated on the SPEC
Integer benchmark. The generated code is almost on par with
the optimized code generation in LLVM — on average only
4% slower compared to the current GloballSel backend — an
industry-standard code generation framework handcrafted and
tuned over multiple years.

This paper makes the following contributions:

o We formulate the synthesis of an instruction selector as
a memoization of the most relevant patterns and their
corresponding instruction sequences. This allows focusing
on relevant patterns and lifts the restriction of single ISA
instructions patterns to also support sequences of ISA
instructions.

« We derive general heuristics on what parts of the poten-

tially infinite search space of IR and ISA instructions
are actually relevant by analyzing LLVM’s production
rule library. Based on those observations, the synthesis
times are cut from multiple days to few hours without
sacrificing code quality of the synthesized rule library —
as confirmed by our benchmarks.

« We introduce a canonical representation and term index
structure for bitvector terms, accelerating the discovery
of equivalent terms and equivalence checking — avoiding
expensive SMT queries.

« We synthesize a rule library for RISC-V and AArch64,
integrate it into LLVM’s GloballSel infrastructure and
show that the synthesized backend achieves performance
comparable to LLVM’s handwritten AArch64 and RISC-
V backends (within 4% on average on SPEC CPU 2017
integer benchmarks compared to current GloballSel).

Throughout the paper, we will use patterns to refer to IR
instruction patterns and instructions or sequences to refer to
machine instruction sequences.

II. BACKGROUND
A. Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) [22]], [23] extends
boolean satisfiability problems by arithmetic, uninterpreted
functions, and other theories. In particular, the fixed-width
bitvector theory allows expressing operations on bit sequences,
including a fully defined set of integer operations. SMT solvers
can also be used to prove the equivalence between different
formulas. A popular SMT solver is Z3 [22]], which accepts
inputs following the SMT-LIB standard [23]]. All formulas in
this paper are written in a simplified syntax of SMT-LIB.

B. LLVM’s Global Instruction Selector

This section outlines the structure of the code generation
pipeline in LLVM using the GloballSel framework — visualized
in Figure 2] GloballSel represents LLVM’s most recent
instruction selection infrastructure, designed to replace legacy
FastISel and SelectionDAG backends.

The GloballSel pipeline begins by translating LLVM IR,
the IR used during the LLVM middle-end optimizations, into
Generic Machine IR (gMIR). It is a typed, register-aware



representation based on the same data structures as the final
Machine IR (MIR). It mainly consists of target-independent
instructions, although target-specific MIR instructions are also
legal. Fig. [2] shows an example gMIR function (targeting
AArch64), which takes two integer parameters, shifts the
second one left by 4, adds the first one, and returns the result.
It consists of target-independent G_CONSTANT, G_SHL and
G_ADD instructions, the target-dependent RET_ReallyLR
instruction, and COPY pseudo-instructions. Values are typed
but not yet assigned to a register bank.

Once in gMIR, multiple transformations and progressive
lowerings are applied. The target-dependent legalizer trans-
forms unsupported operations into target-legal equivalents (e.g.,
8-bit arithmetic on AArch64 is rewritten by inserting extension
and truncation instructions).

After register banks were selected for each value, the
instruction selector replaces generic instructions with concrete
machine instructions by applying tree-pattern-matching and
rewriting, producing the MIR program shown in Figure [2).
Beyond simple one-to-one rewrites, folding multiple gMIR
instructions into a single MIR is possible and vice versa.
The GloballSel framework allows declarative specification of
rewrite rules in the TableGen language. During instruction
selection, it performs a bottom-up traversal, greedily matching
the largest tree pattern. Matched gMIR instructions are replaced
by their MIR equivalents. For patterns that can not be expressed
in the TableGen dialect (e.g., patterns with multiple outputs),
selection can fall back to C++ code. However, declarative rules
are preferred as they are easier to understand, maintain, and
integrate with the rest of the system.

III. RELATED WORK

Previous work on program synthesis can be roughly grouped
into two categories: Rule-based approaches apply algebraic
transformations and rewrite rules to find and prove the
equivalence of ISA to IR terms, while solver-based ones
formulate search queries to an SMT solver. The following will
only discuss related work on generating instruction selectors.

The predominant approach for program synthesis is counter-
example guided inductive synthesis as introduced by [17]. It
repeatedly generates candidate programs for a given set of test
inputs, verifies the equivalence with a target specification via
an SMT solver, and either refines the test inputs by adding
a produced counter-example or terminates with a successful
match. [18] refined a previous used representation for superopti-
mization [24], and applied it to sythesize an instruction selector
for x86-32. They generate all minimal patterns for each ISA
instruction within four days and show comparable performance
to the handwritten instruction selection in their compiler.
However, they only considered single ISA instructions. More
recently, [19], [20] target the generation of a RISC-V instruction
selector, explicitly also considering instruction sequences with
more than a single instruction. They generate rules for a subset
of RISC-V instructions but did not evaluate the runtime of a
generated instruction selector.

[21] apply algebraic rewrite rules to iteratively expand a pool
of candidate formulas (starting from ISA instructions) until each
required IR pattern is matched. They use a cost-based heuristic
to prune formulas with high evaluation complexity. Although
faster than SMT-based approaches and applicable to x86, ARM,
and PowerPC, their method lags behind GCC —-01 by up to 2x
and is inherently limited by the inability to derive certain rules
algebraically. VADL [25], [26] introduces an ecosystem for
automatically deriving various toolchain components, including
instruction selection rules for LLVM. Their approach appears
to use simple rule matching to generate a RISC-V rule library,
which was only evaluated on microbenchmarks.

To our knowledge, no approach uses the official ISA
specifications from the vendors as a starting point; instead,
they use custom handcrafted ISA specifications.

Program synthesis is also used for generation of peephole
optimization rules [27], [28]], [29], searching for rewrite rules
within the domain of ISA instructions and superoptimiza-
tions [24], [30], [31], synthesizing the optimal instruction
sequence for one concrete input program.

There is also some related work in the field of formalizing
hardware specifications [32], [33], [34], [35], [36], [37]. While
most of them are handwritten and only cover small parts of the
microarchitectures, the SAIL ecosystem provides authoritative
models based on officially published vendor specifications [38]],
[39], [40].

IV. PREPROCESSING FORMAL SPECIFICATIONS
A. Deriving An Instruction Representation

The formal behavior of ISA instructions was historically
provided in the form of manuals and had to be manually
extracted into formal models [33], [34], [35]], [36]. However,
in recent years, vendors have published official specifications
of the behavior of their architectures — ARM uses a custom
specification language (ASL) [14], and RISC-V provides an
official specification in the SAIL language [15]], [41].

A widely adopted framework to formally specify, emulate,
and verify hardware specifications is SAIL [38]]. While the
RISC-V specification is already provided in the framework,
there are automatic translation tools for ASL to SAIL [38]],
making it a common hub for formal ISA specifications. Besides
other tools, it offers a symbolic execution engine, ISLA [39],
based on the formal specifications of an ISA. Although
we leverage SAIL for RISC-V and AArch64, the formal
specification could also come from other formats that allow
transforming the semantics of an instruction into an SMT-LIB
bitvector formula.

To obtain a semantic model of each instruction with SAIL,
we provide symbolic operands as inputs and leverage the
symbolic execution engine to transform each instruction into a
set of SMT formulas. An instruction can have different effects
on hardware components: it can modify the program counter,
set some flags, write to memory, and write to vector or general-
purpose registers; each is modeled with a separate bitvector
term. Compared to previous representations [24], [18], we do
not construct a single SMT formula to encapsulate the whole



functionality of an instruction, but instead, view each effect of
an instruction separately. Symbolic inputs are the PC modeled
as a 64-bit value, the condition flags (not relevant on RISC-
V) each modeled as a single bit value, and (vector) registers
modeled as 64-bit or 128-bit values respectively — subregister
operations have to extract from those. There are no additional
instruction attributes (e.g., conditional codes for AArch64
branching instructions), but instead, each possible attribute
assignment is considered a separate instruction (e.g., branch
equal, branch not equal). Refer Listing [3a] for a simple example
of an AArch64 add instruction that can also shift its second
register operand by an immediate (ADDWrs instruction from
Figure [2). It has two symbolic input registers, an immediate,
and the register effect describes the computation.

xd : (bvadd xn (bvshl xm, ((_ zext 58) imm6)))
(a) add xd, xn, xm, lsl #immé6
memory : (store ((_ extract 31 0) xt) #x4 xn)
(b) str wt, xn
xt : (load #x8 xn)
xn : (bvadd xn ((_ sext 55) imm9))
(¢c) 1dr xt, [xn],#imm9

Fig. 3: Examples of derived instruction representations on AArch64. An
instruction can have multiple effects.

To model memory interactions, we introduce two symbolic
functions: load, which returns the value loaded from memory
of a certain size, and store, which can only appear (but also
has to) as the root operation of a memory effect and stores
a value of a certain size into memory (refer Listing and
[3c). These memory operations model a relaxed memory model
— other memory orderings require additional operations. An
instruction can also have multiple effects, even of the same
type (e.g., post/pre-index loads on AArch64, refer Listing [3c).

We do not model register constraints (early clobbers, SP/XZR
on AArch64) as part of the formalization, as they are not
relevant for instruction selection.

After having semantics for the individual instructions, we
can compose them into sequences according to the following
rules: (1) We only consider sequences where each instruction
has a (transitive) impact on the effect of the last one. (2) We do
not append to an instruction with a PC effect, as this implies
a sequence that spans multiple basic blocks. This restriction
simplifies the handling of the formulas. (3) At most one memory
operation is allowed within a sequence. Otherwise, matching
those sequences would require a sophisticated alias analysis for
the operands. This could be slightly lifted to support multiple

loads, but we did not see any cases where this was beneficial.

B. Deriving An IR Representation

The formal representation of our IR follows the same rules
as the ISA instruction specifications — both share a common
representation. In the case of LLVM, the input representation
to the instruction selector are gMIR instructions. As those
currently do not have a formal specification available and

their semantics are primarily described in documentation or
code, we manually defined symbolic specifications for a large
subset of gMIR instructions. In principle, these specifications
could be derived automatically — through symbolic execution
or by translating existing lowering rules into a symbolic form.
Automating this process is an important direction for future
work, but it is not within the scope of this paper.

As in the case of ISA instructions, IR patterns can be
composed into larger ones, allowing for the formation of
arbitrary patterns by composing the formal representation of
multiple gMIR instructions. While the number of possible
patterns to consider is huge, one would ideally only focus on
the most beneficial patterns — those that are preferable over
combinations of their subpatterns. However, this is impractical,
as their usefulness can not be determined upfront but can only
be evaluated post-synthesis. As a reasonable alternative, we
use most frequently occurring patterns (refer Section [VII-B).

V. MATCHING IR PATTERNS AND ISA SEQUENCES

Given a pattern, we want to find a semantic equivalent
instruction sequence from a pool of potential sequences. For
simple cases, this comes down to checking whether two
symbolic expressions are equal — a well-studied problem.
However, synthesizing an effective and efficient instruction
selection rule library comes with some additional pitfalls and
challenges, some of which have received surprisingly little
attention in the literature so far.

A. Challenges

1) Exhaustively searching: Searching all instruction se-
quences and checking them via SMT solvers is infeasible.
Already for RISC-V’s 40 base instructions and over 200 gMIR
operations, exploring all combinations of IR patterns with up to
5 operations and instruction sequences of up to 2 instructions
already results in > 5 - 10'* SMT queries. The complexity
grows exponentially for larger ISAs like AArch64 (>150
integer instructions) and larger IR patterns. Hence, effective
heuristics [21]], [20] are essential to prune the search space and
make equivalence checking tractable. Most prior work [18],
[21] synthesized all possible IR patterns for isolated ISA
instructions, not only resulting in a still rather large search
space, but also yielding patterns that are unlikely to be used
and unable to identify multi-ISA-instruction patterns.

We address this problem by first looking for structurally
equivalent terms in an index (Sec. [V-B)), avoiding expensive
SMT solver invocations through evaluations on random data
(Sec. [V=C), and pruning the search space utilizing information
about frequently occurring IR patterns (Sec. [VII-B).

2) Immediate encodings: Immediates pose another chal-
lenge, especially in fixed-width ISAs. While IR operations
work with abstract bit-widths (e.g., 64-bit addition), hardware
instructions often impose restrictive and non-uniform immediate
encodings (e.g., 9-bit signed values). Consequently, rather than
testing whether a pattern in the instruction sequence candidate
pair is strictly equal, instruction selection must determine
whether they can be made equal under certain constraints



a,b : BitVecig
1 (bvadd a (bvnot b) #x0001)
1I (bvadd a (bvmul #xffff b))

111 a +16 -1b

Fig. 4: Two syntactically-different bitvector terms for subtraction of two 16-
bit values (I, II) and their common canonicalized representation, where +1¢
denotes 16-bit addition.

— most notably on the values or encodings of immediates, but
can also involve alignment or PC-relative addressing. This can
lead to multiple instruction sequences for the same pattern with
different constraints. For example, materializing a constant on
AArch64 may require 1-4 mov instructions depending on the
immediate value, while different load and store instructions
must be used based on bit width, signedness, and offset
alignment. To our knowledge, no prior work has identified this
issue; instead, existing approaches abstract over immediates,
requiring manual effort and ignoring the constraints during
synthesis [18].

We handle immediates specially for index lookups
(Sec. and when querying the SMT solver, we apply
heuristics to transform immediates in the instruction represen-
tation (e.g., zero-/sign-extend) (Sec. [V-C).

3) Instruction costs: Often, there are multiple different ways
to encode the same operation, and in some cases, shorter
instruction sequences can actually be less efficient than a
sequence of more instructions. Coming up with a suitable
cost model that encodes these micro-architectural differences
and prefers architectural canonical representations is hard.

We currently use the total number of input operands that
occur in all instructions of a sequence as a very simple
cost metric, which has worked sufficiently well. Using other
properties (e.g., instruction latencies, instruction count) as part
of the cost model may result in improved code; this is left as
future work.

B. Efficiently Querying Structurally Similar Terms

Equivalent bitvector terms can be formulated in numerous
syntactically different terms, making equivalence checking of
two bitvector formulas NP-hard [42]. However, we observed
that handwritten IR descriptions and the symbolic execution of
the imperative SAIL specifications for semantically equivalent
terms share a similar syntactical structure. Nonetheless, terms
as simple as subtraction of two values might still be represented
slightly differently between the IR specification and the ISA
instruction formula (refer to Figure f). We generally assume
that strength reduction, e.g. converting multiplications to shifts,
has already happened during IR optimization.

1) Canonical representation: To account for those differ-
ences, we propose a canonical representation for each bitvector
term, which consequently allows efficient equivalence checking
of two terms using structural unification. The following property
regarding the canonical representations of two terms should
hold: If the canonical representations are equivalent, the terms
are equivalent — two semantically equivalent terms do not

TABLE I: Canonicalization transformations where +,, denotes addition module
2™, valy, a constant bitvector of width n, a,, and b,, denotes arbitrary bitvector
terms of width n.

(I) (bvadd a,, by)
(Im) (bvnot aj)

— ap +n by
— -1 4y, -lan

(II) (concat a,, b)), k=m+n — 2™ ay 4§ btk
-2™ (extracty.,, bn)
(Iv) (bvmul a,, (by, +n ... Cn)) — (bvmul ay, by) +n ...
+p, (bvmul an cp))
V) (bvmul a,, valy,) — val- ap
(VD) (bvshl a, valy,) — Qualy,
(VID) (bvurem a,, valy), val = 27 — (extractz—1 an)
(VI (ite a1 0 by) — (ite (+1 a1 1) by 0)
(IX) (ite a1 (... +n, bp) (. +n, bp))  — by +p (ite a1 (...) (...))

necessarily have to end up with the same representation — in
contrast to [42]], who use a similar canonical representation for
exact equivalence checking on a very reduced set of operations.

Based on the idea of [42]], our canonical representation
consists of terms and atoms. Each term has a coefficient,
an operation (e.g., bitvector addition, multiplication, ite), and
operands which are themselves canonicalized terms or atoms.
Atoms are symbolic variables with a coefficient and, in our
case, also carry additional domain information (e.g., (vector)
register or immediate). This representation is different from
the SMT bitvector formulas: (1) We introduce coefficients
and implicitly zero-extend terms and atoms when applied to
an operation with higher bitwidth (simplifies unification later
on). (2) Besides existing arithmetic and bitwise operations, we
introduce additional operations based on the idea of [19] to
model complex operations as functions. Those are load, store
(mentioned in [IV]), popcount, count leading zeros and count
trailing zeros. (3) Boolean values are treated like bitvectors
of length 1 — modeling integer comparisons as a sequence of
bitvector arithmetic and conditionals. (4) To disambiguate, we
try to transform bitvector formulas into linear combinations
(addition module 2" for some fixed n) when possible (rules
shown in Table[l). For operations not mentioned in the table, the
operation of the term remains, and we recursively canonicalize
the operands. Note that due to implicit zero-extension, bitvector
addition on different bitwidths is not associative and requires
the introduction of overflow terms in Rule (III). In addition
to the transformations, we apply simplifications with constant
terms. The canonical representation of a subtraction, shown
in Figure [] is the same for both initial formulas. The first
formula is transformed with rules (IT) and (I); the second one
with rules (V) and (I).

By imposing some total order on the operands of commu-
tative operations (e.g., ordered by subterm type: constants,
variables, and within the subterm type by their term id, which
is discussed in the following), the canonical representation
allows structural unification and equivalence checking.

2) Efficient Querying: For efficient querying in a set of
canonicalized terms and deduplication, we store them in a trie
(refer Figure[5). Each path from the root to a node corresponds
to a modulo-n linear combination, with the individual operands
on the edges — each node represents one term. The terms along
the edges could be atoms or (sub)terms themselves. In the
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Fig. 5: The AArch64 term trie for the terms: a + (bvshl a imm) (add
with shifted operand), a + ¢mm (add with immediate), and their respective
subterms. Nodes correspond to canonicalized terms. Edges correspond to atoms
or (sub)terms, which are recursively stored in the tree. Coefficients along the
edges are left out for simplicity (all set to 1).

case of a subterm, it is recursively stored in the trie as well
— as a leaf on depth one: seen as linear combination with a
single operand. Operands of that term are recursively stored
in the trie. Each term is assigned a unique identifier ¢ when
inserted, corresponding to the number of elements in the trie
when it was added (an increasing numbering of terms). This
implies that two canonicalized terms in the trie are equal iff
their identifiers are the same.

Canonicalization of any term happens recursively from the
inside to the outside. This implies that when we canonicalize a
term, all its operands have been canonicalized already. Inserting
atoms (or any other operations that are not a linear combination)
into the trie as the base of the recursion is done by inserting a
leaf at depth 1, if it does not already exist. When we insert
a linear combination, we have to walk the trie from the root
to the leaf. At each node, we can continue with the next node
in average constant time due to the usage of a hash-map, as
we do not have to recursively compare subterms again but can
always use their term ids. This allows insertions of each term
in O(len), where len is the length of the canonicalized term,
as each part of the term is only inserted once and afterward
referred to via its id.

This part only covers the insertion into the trie so far,
but there are additional costs for the canonicalization of a
term. During canonicalization, we try to construct modulo-n
additions by incrementally adding new addends. To correctly
handle coefficients, we need an efficient way to check whether
a term already exists in the list of addends, which we do
with an ordered map based on the ids of the terms. This
leads us to a total runtime complexity of canonicalization and
insertion into the trie of O(nlogn), where n is the length
of the canonicalized term which (apart from multiplications
where the canonicalized representation can be quadratic in the
size of the input) is in the order of the input length of a term.
As a result, we can check a newly arriving term in roughly
O(nlogn), where n denotes the size of a term, for equivalence
against an arbitrarily large set of bitvector terms.

While this equivalence checking is useful during the construc-
tion of the trie for deduplication of subterms and numbering the
terms, matching an IR pattern against a set of ISA instruction
sequence terms requires unification instead of equivalence

checking. Given a query pattern, we traverse the trie to
retrieve all structurally matching candidates via a unification
procedure with backtracking. Unlike pure lookup, unification
must consider all successors of a node with a matching root
term and, in case, recursively run unification on the subterms.
During the unification, we greedily unify free variables in the
query pattern with free variables along the search path.

3) Immediate Handling: In the unification, we only unify
(vector) registers and immediates with each other, unify PC
+ imm with a single immediate in search patterns (pc-relative
addressing), allow the unification of immediates even with
different coefficients (as potential alignment/scaling constraints
to be materialized into the instruction selection rules), bind
excess constants in queries to immediates and bind excess
immediates in the trie to zero. For example, the term = + imm
could be unified with a + ¢mm, as z unifies with a and the
immediates unify. Furthermore, the terms x could be unified
with its one-length counterpart a and additionally with z+imm
as we can bind the excess ¢mm to zero.

Referring to our original example, the canonical-
ized pattern of add with shifted operand looks like
(bushl = (extracts.o imm) + y) (shift distance mod-
ulo bit width) and can be unified with 75 by unifying
(extracts.g imm) with imm. Although the terms are tech-
nically not structurally equivalent, we allow binding two
immediates with different bitwidth, extensions, or extracts; such
immediate constraints are later emitted during rule generation
(Sec. [VI-A). Once the pattern matches in the trie, the term
id retrieves the corresponding ISA instruction unless it is an
auxiliary subterm without a corresponding instruction sequence.
In our concrete example, 75 would correspond to the ADDXrs
instruction seen previously.

C. SMT Solver Fallback

As our index can have false negative matches, meaning that
no matching instruction sequence is found for a requested
pattern, although there is one, we additionally want to fall
back to an SMT solver in those cases. To restrict the number
of possible instruction candidates, we eliminate potential
sequences with simple heuristics, which worked well in practice:
The number of register inputs and immediates and the number
and size of loads and store terms must match.

To further bound the number of checked instruction se-
quences, we evaluate the bitvector formulas for a set of fixed,
randomly-generated inputs during creation of the ISA sequence
pool and cache the results. When searching for potential
candidates, we evaluate the searched pattern on the same set of
inputs and compare it with the outputs of potential instruction
sequences to quickly reject non-matching sequences. In cases
where an input value cannot be represented in an immediate
binding, we ignore the test input. The sample evaluation cannot
produce false negatives; false positives are identified by the
SMT solver.

When querying the SMT solver for equivalence of two
terms, we have to provide a binding of IR variables to ISA
variables. We, therefore, enumerate all possible assignments



of input variables and immediates from the IR inputs to the
instruction parameters, repeating the test evaluation and SMT
solving for each possible assignment. In practice, the number
of combinations remains manageable, as most instructions and
patterns involve less than four inputs. When binding a larger
immediate in the IR formula to a smaller ISA immediate, we
additionally have to decide upon the used extension for the
smaller one. We use a simple heuristic: if the sign bit of an
immediate is accessed more than five times in the formula, we
assume it is sign-extended. Despite its simplicity, this heuristic
has proven reliable in all tested cases and, if incorrect, would
only imply missing a pattern — no effect on correctness.
Finally, we impose a 500ms timeout per query and stop
upon finding a matching instruction sequence for a pattern.

D. Limitations

While our approach enables the automatic generation of a
large number of instruction selection rules, it comes with a
few limitations.

1) Non-trivial immediate encoding: Our method assumes
that immediates appear explicitly as whole values in the
instruction term. This prevents us from matching patterns where
the immediate needs to be transformed for the encoding.

Examples on AArch64 include logical operations
(and/orr/eor), the shift distance in vector shift instructions,
and the instruction to encode negative immediates (movn).

For these cases, handling is possible by manually adjusting
the SAIL representation to replace the complex expression with
a single explicit auxiliary immediate. This allows successful
matching but implies manual handling when emitting the
instruction to re-encode the immediate correctly into the in-
struction. However, these special handling for such immediates
only affect a small number of instructions and often exist in
compilers/assemblers anyway. Without manual intervention,
instructions with non-trivial encodings can currently not be
synthesized by our approach.

2) Undefined IR Behavior: Some IR operations have a
limited definition range, e.g., division by zero or out-of-range
shifts typically produce unspecified results. Currently, the index-
based matcher only checks for strict semantic equivalence.
While the SMT solver could, in principle, support such
constraints, our current implementation does not attempt to
derive or utilize them.

3) Heuristics for termination: To keep the process tractable,
we impose strict limits on the pattern search (e.g., length of
patterns/instruction sequences, SMT solver time). While these
heuristics are essential for termination and scalability, they
might lead to missing better matches or fail to match some
valid instruction sequences altogether.

4) Unsupported operations: We did not consider floating-
point operations in this work, as bitwise SMT formulas would
be highly complex without yielding additional optimization
opportunities. We also exclude certain complex instructions
(e.g., division, cryptographic operations) either due to incom-
plete support in ISLA or because symbolic execution failed to
complete within reasonable time bounds (1 hour).

Additionally, atomic operations and specifically aligned
memory accesses are currently not included. Support for
specific memory operations with different memory orderings
and alignments or floating-point arithmetic can be easily added
based on the proposal by [19] to introduce additional symbolic
functions for, e.g., IEEE 754 floating-point operations or
loading according to total-store-order.

VI. GENERATING AN INSTRUCTION SELECTOR

We consider the instruction selection procedure as repeatedly
querying a pool of possible instruction sequences to find
the best-matching sequence for a given IR pattern. To make
this practical and shippable in a compiler, we interpret the
instruction selection rules as memoizing the most requested
and beneficial mappings.

We query patterns for the most frequently used IR patterns
(refer Section against our pool of ISA sequences,
for each newly discovered instruction sequence of a larger
pattern, we verify that it is cheaper than the combination
single-IR-operation patterns to ensure that the synthesized rule
library contains only meaningful matches, and add emit the
corresponding rule into the output.

A. LLVM Integration

The synthesis stages are independent, and the instruction
pool can be persisted after construction. Since the first stage
does not depend on the IR patterns, it can be reused across
different IRs when synthesizing instruction selectors.

def : GeneratedPattern<
(164 add GPR64:%a, (i64 shl GPR64:$b, imm:$shift)),
(ADDXrs GPR64:$a, GPR64:$b, extractp:s:$shift)>;

Listing 1: Generated AArch64 TableGen pattern for the shift-and-add instruc-
tion of a 64-bit register with a 6-bit immediate.

The framework outputs synthesized instruction selection
rules in LLVM’s TableGen language. The example rule
for transforming an addition with a shift into an ADDXrs
instruction can be seen in Listing [T} Besides the structured
representation of the rewrite rule we additionally embed the
identified constraints. In this case, we only use the lower 6 bits
of the shifted immediate — indicated by the immediate type.

These generated files include both the pattern definitions
and the corresponding instruction descriptions. LLVM then
uses these definitions to import the rule library into LLVM’s
GloballSel backend and uses them in the greedy matching
during instruction selection. To ensure completeness, especially
for operations not covered by our synthesis, we manually import
missing patterns for unsupported operations (e.g., floating-point
arithmetic, atomics) from LLVM’s existing handwritten rules,
ensuring that none of these shadow a generated pattern.

We primarily target the LLVM’s new GloballSel infrastruc-
ture, which is already the default for AArch64 —-00, due to its
modularity and extensibility. With some minimal adjustments
to the IR specification and the generated TableGen output, we
can also synthesize rules for the older SelectionDAG backend,
which works on a different intermediate representation with
different legal types and a few different operations. However,



the SelectionDAG backend is a lot less modular, with large
parts of the lowering being implemented in a single, large
C++ component, and legalization often already generates target
instructions. This makes evaluation of the synthesized rule
library in the context of SelectionDAG very difficult.

There are also some restrictions stemming from the use of
TableGen. We extended TableGen to support instruction chains —
sequences connected via flags (e.g., cmp and cset). However,
there are still patterns that our framework can discover but
that TableGen cannot express — most notably patterns with
multiple outputs or those that introduce new basic blocks.
LLVM implements those patterns in C++ instead. Besides, we
must ensure forwarding or generation of meta-information (e.g.,
register banks, symbolic operands for relocation generation)
so that succeeding passes can do their job.

B. Retargeting for Different Compilers and Architectures

Although our integration and initial motivation stem from
LLVM’s code generation framework, the synthesis of the rule
library is fundamentally agnostic to the input IR. Our approach
can derive instruction selection rules for arbitrary IRs, provided
a formal specification is available — SSA-form is not required.
This makes it applicable to GCC’s RTL [3], Cranelift’s CLIF
IR [3]], or domain-specific code generators in JIT compilers [11]],
[9], [1O]] or databases [43]], [44].

Using our approach with a different compiler requires:

(1) A formal specification of the input IR to instruction selec-
tion, if it does not already exist. Prior verification efforts [435]],
[46] or existing documentation can often serve as a starting
point. (2) Adapting the output format of the synthesized rules to
the compiler’s instruction selection framework. Cranelift’s rule
language is structurally similar to LLVM TableGen and could be
targeted with only minor adjustments to the current text output,
whereas GCC’s more complex and less structured RTL requires
greater effort. Alternatively, rules can also be directly emitted
as source code, e.g., for domain-specific compilers without a
dedicated rewrite language. In either case, an expert in the
respective framework should have little difficulty formalizing
this step.

Porting our approach to a new architecture requires a formal
specification of the ISA instructions as bitvector terms. This can
be obtained from a SAIL specification via symbolic execution,
through other toolchains, or written by hand.

Note that this process is limited to synthesizing instruction
selection rules; a complete backend still requires additional
components. For example, to create a new LLVM backend from
scratch for a new architecture, the other stages, in particular
legalization, register allocation, call and function lowerings, and
metadata, number of registers, register banks, register classes,
must be adjusted manually. Some of this information could be
derived automatically from specifications, but this lies outside
the scope of this work.

VII. SYNTHESIS TUNING

Our synthesis framework has several hyperparameters that
impact the quality of our generated rule library and the synthesis

times. The following sections will discuss the most important
ones and explain our choices. We synthesized two LLVM
backends on an Intel Xeon Gold 6430 with 32 cores and
256GB RAM using Z3 as SMT Solver.

AArch64: We synthesize a backend targeting the AArch64
instruction set, including core and vector instructions (subject
to ISLA’s limitations as discussed in Section [[V).

RISC-V: We synthesize backends for the RISC-V base ISA
(rv64imafd). To generate reasonable patterns for 32-bit arith-
metic patterns, we extended the searched instruction pool by
appending zero-extension instructions to arithmetic operations.

A. Pattern and Instruction Sequence Sizes

One major challenge is the vast search space of possible
pattern and instruction sequence combinations. To better guide
synthesis, we analyze the existing LLVM rule library to
understand which IR patterns and instruction sequences are
actually used in practice. We exclude IR pseudo-operations
like COPY and instructions we currently do not support, like
floating-point arithmetic.

Pattern Instruction Sequences
. % T i )\( 1T T T T 1 % § I T T
5] 103 =) x E B
g r* 8 H X B
= 10% £ O E .
S 10t | "%g ]
o F x E. o O
ol 1 P g By L &
12345671021 o 1 2 3 4
Size
Oclang(aarch64)  xours(aarch64)

O clang(riscv) x ours(riscv)

Fig. 6: Pattern and instruction sequence lengths compared between LLVM and
our generated pattern set.

Figure [6] shows that nearly all instruction sequences in
LLVM TableGen rules are two instructions or fewer. AArch64
includes a few longer sequences (up to four) for materializing
64-bit immediates, and RISC-V occasionally uses three for
zero-extended arithmetic. From this, we conclude that limiting
instruction sequences to a maximum length of two is sufficient.
However, to support 64-bit immediate materialization, we added
length-4 sequences where the sum of encoded immediate bits
is 64, and for better 32-bit arithmetic on RISC-V, we included
sequences with prepended zero extension (length 3).

Most LLVM patterns contain six or fewer gMIR instructions,
so we set the pattern size limit to six.

Our generated rule libraries closely match LLVM’s distri-
bution, though we miss pseudo-instructions (no instruction
sequences of length zero) and generate more rules, e.g., for
AArch64 immediates and RISC-V 32-bit arithmetic.

The rule libraries for x86 and PowerPC have similar
characteristics in instruction sequence length and pattern sizes.
Therefore, these observations should hold as well for new ISAs
with similar characteristics.



B. Source of IR Patterns
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Fig. 7: Synthesized rules based on the number of considered patterns on
AArch64 — split between rules found by the term index and rules from the
SMT Solver fallback.

Another parameter is the source and number of IR patterns
for which rules are generated. We extract these by running
LLVM’s code generation on the CTMark suite [47], a collection
of real-world applications used for testing in LLVM, and
tracking all instruction trees up to a depth 6. Figure [7| shows
the number of patterns that are generated with an increasing
number of considered pattern trees. With an increasing number
of considered patterns, the newly discovered rules decline.
We decided to cut off the search after 5000 pattern skeletons
(turned into 70000 patterns by enumerating feasible types) as
the number of newly discovered rules stagnated.

C. Test Input Evaluation
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Fig. 8: Comparison of the synthesis time for different numbers of test input
evaluations when falling back to the SMT solver when targeting AArch64.

The number of test inputs used to determine potential
matching candidates, which are fed into Z3, affects both
performance and accuracy: more inputs reduce false positives
but increase evaluation time.

Figure [§] shows that pattern matching times remain mostly
constant after reaching a minimal number of test evaluations,
while index generation time steadily increases. The total
synthesis time is minimal at around 400 test inputs, which we
use for subsequent experiments.

D. Synthesis Time

Synthesizing an instruction selection backend should be
tractable in practice. Previous work has reported runtimes
ranging from several hours to multiple days — even for relatively
simple instruction sets [[18]]. Our approach significantly reduces
synthesis time: we generate a complete rule library for RISC-V
in under 40 minutes and for AArch64 in under 2 hours. A
detailed breakdown of AArch64 synthesis is shown in Table
The final matching stage runs on 60 threads, and reported times

show wall-clock duration; subcomponent times represent the
average cpu-time per threads. RISC-V follows a similar pattern,
with a shorter total runtime (36 minutes) and less generated
rules (8000 vs. over 12000 for AArch64).

The results demonstrate that our indexing strategy is effective
— 65% of the patterns are synthesized via the index, with mini-
mal time spent compared to SMT fallback. Canonicalization
and index insertion are also efficient, while the majority of
the runtime is spent in the SMT solver, confirming the index
impact in reducing expensive equivalence checks. Without
the index, the total synthesis time would double, due to more
sample evaluations; the number of SMT solver invocations
would only increase by ~ 30%. Without sample evaluation,
synthesis did not terminate within 5 days.

TABLE II: Synthesis time for the AArch64 backend. Top-level stages report
wall-clock time, while individual components average CPU time per thread.

Instruction Generation | 2122445 instr: seq. | | 10.3min
Canonicalize 5.0min
SMT Test Eval. 3.6min
Index Insert 21s

Pattern Generation 76225 Patterns 29.3min
Canonicalize 15.0min

Lookup (parallel) 12448 Rules 1.4h
Index Lookup 8181 Rules 0.4min
SMT Test Eval. 0.5min
73 Time 4267 Rules 1h

Total 2h

VIII. EVALUATION

While the previous sections evaluated the synthesis time
itself, we will next evaluate the quality of the code that is
generated with our synthesized instruction selector.

For RISC-V evaluation, we used a Milk-V board
equipped with a SOPHON SG2042 processor supporting
the RV64IMAFD instruction set and 128GB of RAM. The
AArch64 evaluation was performed on an Apple M2 system
with 16 GiB of RAM. Both platforms were running Linux and
used the LLVM-20 stable release to integrate the synthesized
instruction selection rules.

All benchmarks use the SPEC CPU 2017 Integer benchmark
suite [48]]. This suite provides a representative and diverse
set of complex, real-world programs written in C, C++, and
Fortran, making it a suitable target for evaluating instruction
selection quality. We compiled each benchmark with Clang
and varying backends using —02 middle-end optimizations.

A. gMIR Coverage

In addition to the synthesized patterns, we manually specified
a few patterns to successfully compile programs (e.g., traps
and divisions). Although our approach exclusively generates
TableGen patterns, there are still C++ fallbacks for specific
instructions like GLOBAL symbols, which require more elabo-
rate handling that is not expressible in TableGen. Nevertheless,
compared to existing backends our approach has significantly
fewer selections that require C++.



TABLE III: GloballSel Fallbacks

Functions aarch64 riscv

clang | ours | clang | ours
600.perlbench 7182 3 6 0 0
602.gcc 33159 20 33 0 0
605.mcf 116 0 0 0 0
620.omnetpp 17507 1 1 0 0
623.xalancbmk 35200 4 10 0 0
625.x264 2665 5 45 1 1
631.deepsjeng 308 0 0 0 0
641.lecla 1010 0 0 0 0
657.xz 1067 0 0 0 0

To quantify the coverage of our synthesized patterns, Ta-
ble lists the GloballSel fallbacks — cases in which the
compilation had to fall back to SelectionDAG for that function.
Note that even the baseline has some fallbacks due to missing
IR patterns (e.g., missing operations on vector of pointers)
and more structural reasons (e.g., failed legalization of phi
instruction with certain vector operands).

On AArch64, we have only slightly more fallbacks than
the baseline. In those cases, ISLA was not able to formalize
the required ISA instructions (e.g., vectorized comparison for
8-bit scalars across 16 lanes) within an hour. However, those
fallbacks have no impact on the execution time evaluation, as
less than 1% of execution time is spent in those functions. Only
in x264, our approach falls back in one of the core functions
(= 35% of execution time) due to a signed-less-than vector-
comparison across 8 lanes, which requires an instruction that
is not available due to an ISLA timeout.

On RISC-V, there are close to no fallbacks with both the
current LLVM GloballSel backend and our synthesized rule
library. This shows that our synthesized backend covers all
occurring gMIR patterns.

B. Pattern Coverage

Next, we identify rules in the existing LLVM GloballSel
backend, which are currently expressed in C++ coding, while
our approach synthesizes declarative rules for them. We
facilitate that by automatically generating test cases from our
synthesized rule library and inspecting whether the input gMIR
can be selected without falling back to C++.

We generated approximately 9100 test cases (6800 AArch64
and 2300 RISC-V). Nearly 5000 test cases required a fallback
to C++ code to complete instruction selection, while our
approach can handle all cases without falling back to C++.
This demonstrates that a large portion of current backend func-
tionality implemented imperatively, can, in fact, be expressed
declaratively and thus made easier to work with.

C. Quality of Generated Code

To assess the quality of the generated binary code from our
synthesized backend, we compare the runtime of the SPEC
benchmarks with the current LLVM GloballSel implementation,
the FastISel backend, which is used for fast code generation at
the cost of slightly worse binary code (default for O0) and the
SelectionDAG backend, which is the most involved and stable
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Fig. 9: Runtime of SPEC Benchmarks on AArch64 when compiled with
different LLVM backends — normalized to the runtime of SelectionDAG.

one, which is used as the fallback for the other two and full
optimized code generation (default for O2).

Figure [9] depicts the runtime normalized to the SelectionDAG
runtime on AArch64. We are on average less than 4% slower
than GloballSel and 5% than SelectionDAG but consistently
faster than naive FastISel; apart from x264 where FastISel falls
back to SelectionDAG for all relevant functions.

In addition to the runtime, we also measured the size of the
resulting binaries. The binary size of all benchmarks increases
by roughly 5%, matching the result of the runtime evaluation.

There are three main reasons for the introduced runtime and
binary size overhead: While we support various immediate
encodings (16-, 32-, 48-, and 64-bit), we fall short of LLVM’s
sophisticated constant materialization. For instance, we emit
a 4-instruction sequence for a 64-bit constant that could be
encoded with a single instruction when only the upper 16
bits are set. More advanced, LLVM turns the addition with a
32 bit constant into two additions with shiften immediates (if
possible), while we first materialize the constant and afterwards
emit the addition. Both cases could be addressed with C++
implementations or more specific constant patterns.

Although our backend is compatible with LLVM’s pipeline,
it lacks deep integration with optimization passes. LLVM
deliberately misses some advanced patterns during instruction
selection (e.g., aggressive address mode folding) to enable more
effective subsequent optimizations like load-store optimizations
or sinking/folding, whereas we apply more foldings directly.
When disabling architecture-specific passes, our backend
degrades by 4-6%, while LLVM itself degrades by 5-14%,
indicating the importance of tight integration.

Greedy selection requires more care than simply favoring
large rules: A severe case adjusted from the leela benchmark
is shown in Figure [I0] Consider having rules for zero-
extension with select and select with comparison (both clearly
beneficial over the sum of partial covers) in addition to
rules for each gMIR instruction. Pattern application starting
at $x0 and %wO0, applies the respectively largest rules —
zero-extension and the select,select and comparison. Finally,
we emit code for the comparison (as still required by our
first matching). Note that although it is a possible solution
in this example, larger rules in general are not — independent
of how large the rules are; there could always be another



covering that would be more beneficial. LLVM solves the
issue with C++ coding and multiple passes to clean such
artifacts. This highlights that a good rule library alone is not
sufficient for optimal instruction selection but also requires
more coordination on what rules should be actually generated
— this poses an interesting challenge for future work.

-— ins: %x10, $x11, Swl, $w2 | outs: $w0, $x0 —-
%$x12:_(sl) = G_ICMP intpred(eq), %$x10:_, %$$x11:_
$w0:_(s32) = G_SELECT %x12:_(sl), %Swl:_, %Sw2:_
$x0:_(s64) = G_ZEXT %$w0:_(32)
cmp x10, x11
cset x12, eq
cmp x10, x11 cmp x10, x11
csel x0, wl, w2, eq csel w0, wl, w2, eq
cmp x12, #0
csel x0, wl, w2, ne

GloballSel Ours

Fig. 10: Different assembly output due to greedy matching.

Figure [T1] shows normalized runtimes on RISC-V (there is
no FastISel backend for RISC-V). Our synthesized backend
performs comparably with an average slowdown of 2% com-
pared to GloballSel and produces binaries that are 3% larger on
average. Performance varies more than on AArch64, reflecting
the active development of the RISC-V backend; in particular
GloballSel lacking behind SelectionDAG performance with
the exception of leela, where GloballSel and ours significantly
outperform SelectionDAG despite executing more instructions.
This suggests that improving the cost model beyond simple
instruction counts could yield further gains.

IX. DISCUSSION

Previous work [21]] synthesized rules for 32-bit x86, Pow-
erPC, and ARM, but the resulting instruction selectors lagged
11-65% behind GCC -01. Others [18] required over 100
hours to synthesize rules for just 20 x86-32 instructions (basic
arithmetic, mov, control-flow) — a tiny fraction of the AArch64
ISA. With our approach, generating an x86-32 rule library from
their simplified formal specification takes under 5 minutes,
though yielding fewer rules (~1300) since many discovered
patterns rarely occur in practice and much of the search
space cannot be represented with their limited instruction
subset (e.g., no multiplication, no 64-bit arithmetic). As their
runtime grows exponentially with the number of IR instructions,
the approach clearly does not scale to the complexity of
AArch64 and hundreds of gMIR operations, especially given its
reliance on simplified handwritten ISA specifications rather than
today’s authoritative vendor specifications. Thus, automatically
generating an instruction selector for large parts of AArch64
approaching the performance of handwritten backends was
previously out of reach.

We were able to effectively prune the search space with
derived heuristics based on prior usage statistics, an efficient
term-index structure, and our approach of viewing instruction
selection as memoization of frequent patterns. Our approach
synthesizes a correct-by-construction rule library in under two
hours, achieving performance within roughly 5% of LLVM, a

OoGloballSel  [0Ours
® 1.2f— I . :
= - —" I .
: 1 I i SelDAG
é [
0.8
= T T \ T D\H \ T 1
1 \\S
Puar NE "0°=> Qﬁ@‘% o5 Q%X %\e%o"%,s“ P
¥ &
o 69

Fig. 11: Runtime of SPEC Benchmarks on RISC-V when compiled with
different LLVM backends — normalized to the runtime of SelectionDAG.

production-grade framework refined over many years. The same
holds for RISC-V, where we are similarly close performance-
wise, and the reduced binary size shows that we indeed find
complex and desirable patterns.

Crucially, our results show that much of instruction selection
logic can be expressed declaratively, reducing engineering
and maintenance effort compared to LLVM’s scattered C++
implementations. While LLVM is unlikely to replace its mature,
highly optimized rule libraries, our results demonstrate that it
is feasible to significantly reduce the manual effort required
to create a handwritten rule library. Achieving within 4%
of LLVM’s GloballSel performance makes our approach a
practical and efficient starting point for further tuning — cutting
the total effort of multiple person-years typically required for
backend creation and tuning.

X. SUMMARY & OUTLOOK

We presented an approach to instruction selector synthesis
based on the memoization of the most relevant IR patterns
and their corresponding instruction sequences. Our approach
combines efficient term indexing with SMT solving and
supports real-world ISAs, like AArch64 and RISC-V.

We integrated the synthesized rule libraries into LLVM’s
GloballSel framework, achieving almost on-par performance
for the resulting code — guiding an effective way to reduce the
effort in crafting and maintaining huge sets of rules by hand.

Beyond LLVM, our approach applies to other compiler
infrastructures. It can reduce the effort of backend development
and is an alternative to handwritten code generators.
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