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ABSTRACT
Somewhat surprisingly, the behavior of analytical query engines
is crucially affected by the dynamic memory allocator used. Mem-
ory allocators highly influence performance, scalability, memory
efficiency and memory fairness to other processes. In this work,
we provide the first comprehensive experimental analysis on the
impact of memory allocation for high-performance query engines.
We test five state-of-the-art dynamic memory allocators and dis-
cuss their strengths and weaknesses within our DBMS. The right
allocator can increase the performance of TPC-DS (SF 100) by 2.7x
on a 4-socket Intel Xeon server.
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1 INTRODUCTION
Modern high-performance query engines are orders of magnitude
faster than traditional database systems. As a result, components
that hitherto were not crucial for performance may become a per-
formance bottleneck. One such component is memory allocation.
Most modern query engines are highly parallel and heavily rely
on temporary hash-tables for query processing which can be im-
plemented in many different ways [2, 10, 15, 16]. As a result, a
large number of short living memory allocations of varying size
are requested. Memory allocators therefore need to be scalable and
be able to handle myriads of small and medium sized allocations
as well as several huge allocations simultaneously. As we show in
this paper, memory allocation has become a large factor in overall
query processing performance. New hardware trends exacerbate
the allocation issues. Because most multi-node machines rely on a
non-uniform memory access (NUMA) model, requesting memory
from a remote node is particularly expensive.

In this paper, we perform the first comprehensive study of mem-
ory allocation in modern database systems. Although memory allo-
cation is on the critical path of query processing, no empirical study
on different dynamic memory allocators for in-memory database
systems has been conducted [1]. Some online transaction processing
(OLTP) systems try to reduce the allocation overhead by managing
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Figure 1: Execution of a given query set on TPC-DS (SF 100)
with different allocators.

their allocated memory in chunks to increase performance for small
transactional queries [4, 13, 14]. However, most database systems
process both transactional and analytical queries. Therefore, the
wide variety of memory allocation patterns for analytical queries
needs to be considered as well.

Figure 1 shows the effects of different allocation strategies on
TPC-DS with scale factor 100. We measure memory consumption
and execution time with our multi-threaded database system on a 4-
socket Intel Xeon server. In this experiment, our DBMS executes the
query set sequentially using all available cores. Even this relatively
simple workload already results in significant performance and
memory usage differences. Our database linked with jemalloc can
reduce the execution time to 1

2 in comparison to linking it with the
standard malloc of glibc 2.23. On the other hand, jemalloc has
the highest memory consumption and does not release memory
directly after execution of the query. Consequently, the allocation
strategy is crucial to the performance and memory consumption
behavior of in-memory database systems.

2 EXPERIMENTAL ANALYSIS
The full version of the experimental analysis can be found in [3].

For the experimental evaluation, we use a database system that
uses pre-aggregation hash tables to perform multi-threaded group
bys and joins [10]. Our DBMS has a custom transaction-local chunk
allocator to speed up small allocations of less than 32KB. Since
only small allocations are stored within medium-sized chunks, the
memory efficiency footprint of these small object chunks is mar-
ginal. Additionally, the memory needed for tuple materialization
is acquired in chunks that grow as more tuples are materialized.
Thus, we already reduce the stress on the allocator.

To simulate a realistic workload, we use an exponentially dis-
tributed workload to determine query arrival times. We sample
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Figure 2: Memory consumption over time (4-socket Xeon,
λ = 1.25 q/s, SF 100).
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Figure 3: Query latency distributions for different query
rates (4-socket Xeon, SF 100).

from the distribution to calculate the time between two events. An
independent constant average rate λ defines the waiting time of
the distribution. The executed queries of TPC-DS are uniformly
distributed among the start events. Our query engine allows up to
10 transactions to be active simultaneously. If more than 10 trans-
actions are queried, the transaction is delayed by the scheduler of
our DBMS until the active transaction count is decreased.

Figure 2 shows the memory consumption over time for TCP-DS
(SF 100) and a constant query arrival rate of λ = 1.25 q/s. Although
the same workload is executed, very different memory consump-
tion patterns are measured. TBBmalloc [8, 9] and jemalloc [5, 6]
release most of their memory after query execution. Both malloc
implementations [11, 12] hold a minimum level of memory which
increases over time. TCMalloc [7] releases its memory accurately
with MADV_FREE which is not visible by tracking the system pro-
vided resident memory.

We analyze two additional workloads that use the rates λ = 0.63
and λ = 2.5 queries per second. Figure 3 shows the query latencies
of the three workloads. The allocators have the same respective
latency order in all three experiments. jemalloc performs best
again for all workloads, followed by TBBmalloc. All query latencies
are dominated by the wait latencies in the λ = 2.5 workload due
to frequent congestions. With an increased waiting time (λ = 0.63)
between queries, the glibc malloc 2.28 implementation is able to
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Figure 4: Query latencies (λ = 6 q/s, SF 10).

reduce the median latency to a similar level as TBBmalloc. However,
the query latencies within the third quantile vary vastly. TCMalloc
and malloc 2.23 are still not able to process the queries without
introducing long waiting periods.

In Figure 4, we show the latencies for the λ = 6 q/s workload on
different hardware architectures. On the single-socket Skylake X,
all the allocators have very similar performance. Besides having
more cores, AMD’s Threadripper uses two memory regions which
requires a more advanced placement strategy to obtain fast accesses.
In particular, TCMalloc and malloc 2.23 without a thread-local
cache have a reduced performance. Yet, the most interesting be-
havior is introduced by the multi-socket Intel Xeon. jemalloc and
TBBmalloc execute the queries with the overall lowest latencies
and smallest variance. On the other hand, TCMalloc is worse by
more than 10x in comparison to any other allocator. Both glibc
implementations have a similar median performance but incur high
variance such that a reliable query time prediction is impossible.

3 CONCLUSIONS
In this work, we provided a thorough experimental analysis and
discussion on the impact of dynamic memory allocators for high-
performance query processing. We highlighted the strength and
weaknesses of the different state-of-the-art allocators according to
scalability, performance, memory efficiency, and fairness to other
processes. For our allocation pattern, which is probably not unlike
to that of most high-performance query engines, we can summarize
our findings as follows:

scalable fast mem. fair mem. efficient
TCMalloc −− ∼ ++ +
malloc 2.23 − ∼ + ∼

malloc 2.28 ∼ + − ∼

TBBmalloc + ∼ ++ +
jemalloc ++ + + +

As a result of this work, we use jemalloc as the standard allo-
cator for our DBMS.
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