
JSON Tiles: Fast Analytics on Semi-Structured Data
Dominik Durner

Technische Universität München
dominik.durner@tum.de

Viktor Leis
Friedrich-Schiller-Universität Jena

viktor.leis@uni-jena.de

Thomas Neumann
Technische Universität München

thomas.neumann@tum.de

ABSTRACT
Developers often prefer flexibility over upfront schema design, mak-
ing semi-structured data formats such as JSON increasingly popular.
Large amounts of JSON data are therefore stored and analyzed by
relational database systems. In existing systems, however, JSON’s
lack of a fixed schema results in slow analytics. In this paper, we
present JSON tiles, which, without losing the flexibility of JSON, en-
ables relational systems to perform analytics on JSON data at native
speed. JSON tiles automatically detects the most important keys and
extracts them transparently – often achieving scan performance
similar to columnar storage. At the same time, JSON tiles is capable
of handling heterogeneous and changing data. Furthermore, we
automatically collect statistics that enable the query optimizer to
find good execution plans. Our experimental evaluation compares
against state-of-the-art systems and research proposals and shows
that our approach is both robust and efficient.
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1 INTRODUCTION
A plethora of data is created every day and forecasts show that
data volume will rapidly increase in the next years [43]. Much of
this data is semi-structured, i.e., it combines the data content and
the schema. The most common semi-structured format today is the
JavaScript Object Notation (JSON), a human-readable plain text
storage format that allows representing arbitrarily-complex hier-
archies. Large JSON data sets are, for example, accumulated when
logging software system events or collecting data through public
web APIs, such as the JSON APIs of Facebook [24], Twitter [60], and
Yelp [64]. Public JSON data sets are also used to enrich proprietary
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Figure 1: Classification of existing work.

data that is stored in relational systems. Analytics on large JSON
data is valuable but expensive. Specialized tools for log file analysis,
such as Splunk [55] exist, but lack the flexibility and functionality
of general-purpose data management systems.

To speed up analytical processing of JSON data, a number of
approaches have been proposed. Figure 1 classifies them with re-
spect to access performance, robustness to heterogeneous data, and
query optimization. SIMD-JSON [37] and Mison [39] allow parsing
JSON with up to one GB/s per core. However, querying documents
remains expensive because access to a single field requires a full
parse over the data. Relational database systems store each JSON
object as a string or use a per-object binary representation [52].
Both approaches are inefficient for analytical queries in comparison
with relational column stores. Sinew [57] therefore extracts com-
plete columns to speed up accesses. However, it can only produce
good columnar extracts if the data mostly consists of the same static
document structure. Sinew does not handle changing or heteroge-
neous data well and updates are expensive because new document
structures change the global frequency of common keys. Reassem-
bling shredded documents with different structures at a record level,
as performed with Dremel [42] and implemented in Apache Par-
quet [6], results in additional work during query execution: many
different optional fields have to be handled while evaluating the
access automata. Processing Parquet files is CPU-bound even for
purely relational files without optional fields [14].

This paper presents JSON tiles, a collection of algorithms and
techniques that enable high-performance analytics on JSON data.
The key idea behind JSON tiles is to automatically detect the im-
plicit common structure across a collection of objects. Using this
structural information, we infer types, materialize frequently oc-
curring keys as relational columns, and collect query optimizer
statistics – enabling performance close to that of native relational
column stores. Infrequent keys and heterogeneous (outlier) objects
are stored in an optimized binary format that allows fast access to
individual keys. All these techniques are automatic and transpar-
ent, enabling fast analytics on JSON data without sacrificing the
flexibility of the format.

We integrated JSON tiles into our RDBMSUmbra, which provides
SQL, columnar storage, a fast query engine, and a cost-based query
optimizer [34, 47]. Using JSON tiles, we leverage these mature
technologies, which have been developed in a relational setting, for
analytics on JSON data. This paper describes the deep integration
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necessary and may therefore serve as a blueprint showing how to
extend existing systems with high-performance JSON support.

2 DESIGN OVERVIEW
In principle, JSON objects can have very complex structures and
each object can have a different implicit schema. However, in prac-
tice, JSON data is often machine-generated and has a fairly rigid
and predictable structure. The key idea of our approach is to detect
and leverage this implicit structure to speed up query processing.

2.1 Challenges
We first define three design goals before outlining how JSON tiles
achieves these goals.

Access Performance: Accessing attributes of JSON documents
requires document traversal. This traversal introduces a large over-
head as every tuple requires a new lookup and all values are un-
typed. Accesses of relational columns, on the other hand, are cheap
– in particular in column stores. This creates a big performance
gap between JSON and relational attribute accesses. JSON tiles
gains insights during data loading such that data can be stored in a
columnar representation. This enables fast scans of JSON data.

Query Optimization: Traditional RDBMS collect statistics
(such as histograms and distinct counts) on each column. As each
JSON document is stored as one opaque tuple, the statistics are cre-
ated based on full (textual) JSON representation. For example, this
would likely result in the number of distinct values corresponding
to the table’s cardinality. However, scan and join conditions usually
access individual keys, and such statistics do not help in estimating
selectivities.

For meaningful statistics, each document must be traversed and
statistics on individual keys must be gathered. For example, join
ordering uses distinct values of attributes to estimate the join car-
dinality. Without individual statistics, the optimizer relies on im-
precise estimates. Thus, the query plan can be very inefficient [38]
(e.g., because a bad join order is selected).

JSON tiles exploits the structural information gathered during
loading to maintain data statistics. As the number of keys is un-
bounded, JSON tiles stores statistics on the frequent keys for precise
estimates. This enables complex multi-table queries without having
to manually transform the data to a relational schema first.

Robustness on Heterogeneous Data: The convenience of
putting arbitrary documents into the database is often the primary
reason for choosing semi-structured formats. Although the struc-
ture of objects is not arbitrary in practice, many data sets contain
heterogeneous document types. Consequently, the storage engine
needs to adapt to heterogeneous documents, changes of fields, and
previously unseen data. For example, documents tend to grow over
time as more and more fields are added to the original document
type. Another important use case is the combination of log data
from multiple sources. It is infeasible to define a global schema up-
front for analytics on combined log data. As the analytics on JSON
data was expensive in a general DBMS, log data is often analyzed
by specialized providers such as Splunk [55].

JSON tiles handles different document types and copes with
outliers through local computations. Further reordering helps in
randomized insertions of heterogeneous documents.

2.2 Leveraging Implicit Document Structure
We explain the key ideas of JSON tiles using a running example
that consists of real-world JSON documents from Twitter’s public
API. Figure 2 shows a simplified example of 8 JSON documents
representing information about tweets. Every document consists
of an identifier, the tweet text, a create field, and a user object. As
is common in many real-world data sets, the attributes of tweets
changed over time. For example, Twitter introduced the famous
hashtags after user feedback in 2007 and further attributes like reply
(2007), retweet (2009), geo-tags (2010) were added over time [61].

Observations: As the example illustrates, the JSON documents
in a collection often have the same set of keys and, therefore, have
a similar implicit schema. Furthermore, the values for a key have
matching types as well. In the example, the identifier attribute stores
integers and the tweets (not shown in the example) would be textual
strings. Another interesting type can be derived from create key.
Although it is represented as a string because JSON does not specify
a date data type, a query will most likely use it as date object. These
observations lead to the insight that real-world semi-structured
databases often effectively contain relational information.

Consequently, using the key structure and observed values, we
can materialize the common structures as typed relational columns.
However, detecting a single global relational schema, as proposed
by Sinew [57], may be problematic. Simply materializing all keys
as columns may lead to many null entries. Using some frequency
cutoff, e.g., only extracting a particular column if at least 80% of
all documents have that key, may prevent relevant columns from
being extracted. In our example, the replies and geodata cannot be
extracted by a global detection algorithm that extracts all keys that
are represented by more than 2

3 of all documents.
Our approach therefore breaks the input documents into mul-

tiple chunks – which we call JSON tiles. We search for local sub-
structures within the smaller chunks to find more common patterns.
We also automatically infer the data types and assume that values
that look like a certain type will most likely be used as such. The
small granularity of JSON tiles also enables parallelizing bulk load-
ing as tiles can be constructed largely independently.

Outlier Handling: As JSON tiles collects document structures
locally, it is likely that fewer document structures are observed in
comparison to a global collection of structures. This already reduces
the number of potentially materialized but unused columns, and
thereby the number of null entries from absent fields. Because
tiles are restricted in the number of tuples, a higher percentage of
potential outliers, such as the missing geo-info, can be accepted.
Hence, JSON tiles does not miss frequent keys and is able to adapt to
changes of data objects and arrays, which results in a more robust
system. New keys are added to the materialized parts, whereas
removed keys are not extracted in future tiles.

Column Extraction: Because data is materialized into a colum-
nar format, no semi-structured access computations are necessary.
The cost of accessing a column chunk is amortized by the number
of tuples scanned. Therefore, our approach achieves high analytical
columnar scan performance while being robust to heterogeneous
data objects or combined log data documents from different sources.
In the Twitter example, our approach is able to extract replies and
geodata into column chunks of the second tile.
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"text"
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{"id":1, "create": "3/06", "text": "a", "user": {"id": 1}}
{"id":2, "create": "3/07", "text": "b", "user": {"id": 3}}
{"id":3, "create": "6/07", "text": "c", "user": {"id": 5}}
{"id":4, "create": "1/08", "text": "a", "user": {"id": 1}, "replies": 9}

{"id":5, "create": "1/10", "text": "b", "user": {"id": 7}, "replies": 3, "geo": {"lat": 1.9}}
{"id":6, "create": "1/11", "text": "c", "user": {"id": 1}, "replies": 2, "geo": null}
{"id":7, "create": "1/12", "text": "d", "user": {"id": 3}, "replies": 0, "geo": {"lat": 2.7}}
{"id":8, "create": "1/13", "text": "x", "user": {"id": 3}, "replies": 1, "geo": {"lat": 3.5}}
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Figure 2: Twitter Tweet JSON data extracted into two JSON tiles.

Statistics:Aswe collect the smaller JSON tiles, we trace whether
keys have been materialized and compute query optimizer statistics.
We store the statistics information in each JSON tile. The local
statistics are then propagated to generate table statistics such that
they give details about the input data. This information is used to
find efficient query plans that minimize intermediate join results.

3 EXTRACTION
This section presents the fundamental ideas behind JSON tiles and
the algorithms for constructing them.

3.1 JSON Tiles
Previous work by Tahara et al. [57] observed that documents in
real-world data sets often have similar structure and they therefore
propose extracting a single schema globally. However, such a global
approach is not robust with respect to heterogeneous or changing
data. Depending on the chosen extraction threshold, many keys will
either fall below the threshold or the resulting relation will have
many attributes with mostly null values. In both cases, performance
will not be optimal for heterogeneous data sets.

We therefore propose to detect the implicit document structure
at a fine granularity (hundreds or thousands of documents rather
than globally). We split the input data into disjunct JSON tiles, for
each of which we detect a local schema. This approach naturally
exploits the spatial locality contained in many data sets and finds
a sweet spot between fast scan performance and the reduction
of uncommon patterns. Our experiments show that a tile size of
210-212 tuples works well across many workloads.

In the following, we show the extraction steps for JSON tiles.
Tile #2 of Figure 2 acts as our running example. The tile size of the
tweet data is 4 tuples and we use an extraction threshold of 60%.

(1) Collect all key paths for each tuple: A key path is the path of
nested objects and arrays followed to the actual key-value pair. For
an easier notation, we will use only the first letter of each key and
encode the nesting with ’_’. For instance, the tuple with id 5 has the
key paths { i , c , t , u_i , r , g_l }. Tuples 7 and 8 have the same
key paths, whereas tuple 6 lacks g_l .

(2) Use the collected key paths as input for frequent itemset mining:
An itemset is frequent if it exceeds the extraction threshold. The
extraction threshold is the frequency count, which counts how
many tuples contain this itemset, divided by the overall number
of tuples. The itemset miner finds subsets within the collected key
paths that are frequent. In our example, theminer finds two frequent
maximum subsets and their frequency: ({ i , c , t , u_i , r }, 4) and

{"id":1, "date": "1/11", type: "story", "score": 3, "desc": 2, "title": "...", "url": "..."}
{"id":2, "date": "1/12", type: "poll", "score": 5, "desc": 2, "title": "..."}
{"id":3, "date": "1/13", type: "pollop", "score": 6, "poll": 2, "title": "..."}
{"id":4, "date": "1/14", type: "story", "score": 1, "desc": 1, "title": "...", "url": "..."}
{"id":5, "date": "1/15", type: "comment", "parent": 4, "text": "..."}
{"id":6, "date": "1/16", type: "comment", "parent": 1, "text": "..."}
{"id":7, "date": "1/17", type: "pollop", "score": 3, "poll": 2, "title": "..."}
{"id":8, "date": "1/18", type: "comment", "parent": 1, "text": "..."}

Figure 3: News items [28] with different document types.

({ i , c , t , u_i , r , g_l }, 3). They are maximum itemsets as each
further subset of ({ i , c , t , u_i , r }, 4) has the same frequency.
All details and constraints of the itemset mining algorithm are
explained in Section 3.3.

(3) Extract the union of the maximum itemsets: JSON tiles iterates
over the found itemsets and extracts the key paths as materialized
relational columns. All key paths are materialized from the first
maximum subset. As the first and second maximum subset over-
lap, only g_l is additionally materialized. This results in the final
extraction of { i , c , t , u_i , r , g_l } for Tile #2.

3.2 Tile Partitions and Tuple Reordering
A new tile is created whenever the number of newly-inserted tu-
ples reaches the tile size. Consequently, the content of JSON tiles
depends on the insertion order. For many applications, the inser-
tion order already provides strong spatial locality and therefore
high-quality JSON tiles. For instance, adding fields over time, as
in the Twitter example, results in almost perfect tiles. However,
workloads like the one shown in Figure 3, where each document
is of a different type, have little spatial locality. Even fine-granular
tiles would result in poor scan performance. In the following, we
describe an approach that solves this issue by reordering tuples
between neighboring tiles.

The goal of the reordering algorithm is to find frequent itemsets
across multiple tiles. The tuples are then reordered such that the
same frequent itemsets are clustered in a single tile. The neighbor-
ing tiles grouped together for reordering are denoted as a partition.

Reordering is illustrated in Figure 4, which uses a tile size of 5
tuples and shows 12 tiles that are split into partitions of size 4. Each
tile mines frequent itemsets with a reduced threshold. In the exam-
ple, every patterned rectangle represents a tuple and the pattern
denotes the frequent itemset that describes the tuple best. If we as-
sume that all of the different patterns have no key paths in common,
no materialization would be possible without reordering. JSON tiles
clusters tuples into the tiles such that every itemset cluster satisfies
the original threshold. The tuples are then distributed accordingly.



Once the tile redistribution has been performed, most tiles are per-
fectly extractable in the example. Each tile has a frequent structure
that is over the extraction threshold. However, some tiles contain
tuples that cannot be materialized. In contrast, before reordering
none of the patterns exceeded the threshold in any tile. Our experi-
ments on multiple workloads show that a partition size of 8 tiles
yields good results.

The full algorithm for reordering proceeds as follows:
(1) The frequent itemsets of each individual JSON tile are mined.

As these itemsets are used for reordering, the threshold for being
frequent is reduced to threshold

partition size .
(2) The itemsets of all tiles within one partition are exchanged.

Itemsets with a frequency of more than threshold ∗ tile size survive.
(3) Every tuple in the partition is matched to the frequent item-

set that describes it best. The algorithm picks the largest itemset
that has the most items in common with the tuple. As the itemset
mining needs to be limited (see Section 3.3), ties need to be resolved
such that every tuple that encounters this tie will match the same
itemset. For example, our JSON tiles implementation resolves ties
by minimizing the sum of item ids for equal matches.

(4) While matching the tuples, a hash table aggregates the count
of the itemsets for both the individual tiles and the partition. As
each tuple is only matched to one itemset, the tuples are simply put
into individual tiles such that the original extraction threshold is
reached (if possible). This mapping is computed in a greedy fashion.

(5) With the current count of tuples matching the itemsets in
the tile as well as those required to satisfy the mapping, the swap
positions between tiles are computed. The algorithm iterates over
all tuples. If the tuple is needed in the current tile, no swapping
is performed. Otherwise, the tuple is swapped with another tuple
that matches the need for this tile. For example, a tuple is of itemset
type green and in tile 1. Further, tile 1 needs to be filled with type
purple and tile 2 with type green. First, tile 2 will be searched for a
matching tuple of type purple as this would benefit both tiles. If tile
2 does not have any tuple of type purple, which is directly visible
from the aggregate map, the remaining tiles are searched.

(6) The last step simply computes the itemsets with the original
threshold of the reordered tiles to find the final extraction columns.
Even if tuples belong to different itemsets, they can share key paths.

As is indicated by Figure 4, the tile partitioning parallelizes well
on larger data sets. Each thread is dedicated to a disjoint subset of
the data (partition). No interaction is needed as the information is
disjoint between different threads. During tile creation, no issues
for concurrent scans arise, as the tile is visible to scanners only
once it is fully created. Only if tuples are currently being swapped,
concurrent readers need to block until the swapping is finished.

3.3 Frequent Itemset Mining
JSON tiles uses frequent structures to materialize columns and
redistribute tuples between them. These structures are found by
gathering information on all available key paths. The frequent
itemset miner determines which items are common and therefore
materialized. The knowledge of itemsets helps to find the best
frequent representation so that similar tuples can be redistributed.
Furthermore, reordering within a tile improves compression in
systems that support run-length encoding.

{  }{  }{  }read #1 read #2 read #3

Before 
reordering

Aer
reordering

Tile ID 1 2 3 4 6 7 8 9 10 11 12

{ Partition 1 Partition 2 Partition 3{ { 
5

Figure 4: Reordering with partition size 4. Each tile has 5
tuples (vertical) and the extraction threshold is 60%.

To compute frequent itemsets, we rely on an efficient implemen-
tation of the FPGrowth algorithm [29]. In comparison to the classic
Apriori [1] variant, FPGrowth does not need to generate candidate
sets. FPGrowth creates a tree of frequent items and recursively iter-
ates over the tree to generate output sets. We collect all keys from
the documents and store them dictionary encoded. Dictionaries are
created for every JSON tile and are used as the database to mine.

Unfortunately, the complexity of the result is a major problem
of itemset mining. Since in the worst case the number of frequent
itemsets is equal to the cardinality of the powerset of frequent items,
we need to restrict the number of computed itemsets. Otherwise,
itemset mining would be prohibitively expensive for tile creation.

As we only want to gracefully decrease precision, the algorithm
computes itemsets until a budget is reached. Smaller itemsets are
computed first as these are needed for larger ones. All frequent items
are used to find potential itemsets that can be used for extraction.
However, the number of elements (𝑘) in the potential sets needs to
be restricted. We denote a budget 𝑢 as the upper bound of itemsets.

𝑘∑︁
𝑖=1

(
𝑛

𝑖

)
≤ 𝑢 ′ ≤ 2𝑛 − 1, with 𝑢 ′ ≤ 𝑢 (1)

We choose all 1 to 𝑘 subsets of an 𝑛-ary set, resulting in the
summation of the binomials. We compute 𝑘 such that the number
of generated subsets is limited to𝑢 ′, which is always smaller than 2𝑛
and 𝑢. Because 𝑘 is dependent on the depth of the recursive mining
of conditional pattern trees generated by FPGrowth, we bound the
operations. As the recursion depth is restricted, the system is not
overloaded during JSON tile materialization.

3.4 Value Types and Key Paths
In JSON, multiple values for the same key do not necessarily have
the same primitive JSON type, e.g., some values are integer and
some are float. If we decide to extract that key, we have to decide
which data type to assign to the extracted column. At the same
time, it must be ensured that the original type information is not
lost and that JSON semantics is maintained.

To solve this problem, the tile extraction algorithm combines the
key path with the primitive JSON type, i.e., each itemset entry is
actually a pair and two key paths only match if their value types
match as well. This way, if several options are available, extraction



will chose the most common type. Assume, for example, that the
same key path contains integers as well as floats, and that the inte-
gers are extracted. This means that the float values cannot be stored
in an extracted form and have to be stored in the binary JSON rep-
resentation (cf. Section 5). On access, for example when summing
up all values, we therefore traverse the binary representation when
the extracted column value is null. This approach maintains JSON
semantics for outliers, while providing fast scan performance for
the majority of values.

3.5 Nested Objects and Arrays in JSON Tiles
A major feature of JSON is its capability to nest objects arbitrarily.
Our extraction algorithm handles nesting by encoding it into the
key path. During extraction, JSON tiles thereby do not have to
distinguish between nested and non-nested objects. During the
key path retrieval, the nesting level is computed as well as the
followed keys. In the Twitter example (Figure 2), the nested key lat
is extracted and encoded with its nested path (geo→lat).

Accessing nested column extracts require some care. For ex-
ample, the access to ’key’→’nestedKey’ could first extract the
object key and then use a regular JSON lookup or access nestedKey
directly if available. Usually, a direct access to nestedKey is pre-
ferred. However, the database needs to know whether an access to
key is needed as other expressions could use key as well.

To overcome this issue, JSON tiles recognizes during the scan
operation whether the other levels of the key path are needed. We
count how often each key is used as multiple expressions are able to
share the same paths. If the path is used exclusively by one expres-
sion and the nestedKey is materialized, the intermediate access is
removed. The final lookup is a simple access of this extracted key.

Another interesting challenge arises from heavily nested arrays.
If the number of elements in an array is similar in all documents of a
tile, JSON tiles is able to materialize all frequent elements. However,
if the number varies, JSON tiles materializes only the leading ele-
ments that are frequent across all documents. For example, if every
document contains an array with 𝑥 elements but some documents
have 𝑥 + 𝑐 array elements, only the first 𝑥 elements are extracted.

This issue can be addressed by combining our approach with
prior work. Deutsch et al. [19] distinguish between high-cardinality
arrays and small-set arrays. The issue described only arises with
high-cardinality arrays that contain many nested objects and differ
significantly in the element count. Related work suggests extracting
high-cardinality arrays into separate tables. The details on the or-
thogonal problem of detecting high-cardinality arrays are discussed
in [19, 54]. After these arrays are determined, our JSON tiles extrac-
tion algorithm is used to automatically materialize additional tables
from the detected arrays. In Section 6.3, we evaluate a combined
approach in the presence of high-cardinality arrays.

4 INTEGRATION
JSON tiles touches many components of the DBMS. This section
explains the adaptions that are necessary for a seamless integration.

4.1 Accessing JSON Attributes
In relational database systems, JSON data is usually stored in a
single column of a table. Each value of this kind of JSON column

ORDERS o

LINEITEM l

CUSTOMER c

{ l.data->>'l_orderkey'::BigInt  

           = o.data->>'o_orderkey'::BigInt }

{ o.data->>'o_custkey'::BigInt

          = c.data->>'c_custkey'::BigInt }

{ c.data->>'c_custkey'::BigInt,

         SUM(l.data->>'l_extendedprice'::Decimal

              * (1 - l.data->>'l_discount'::Decimal)) }

Γ

⨝

⨝

Figure 5: Join tree of simplified TPC-H query 10 before ac-
cess expression push down.

holds a full JSON document. They are stored as JSON strings, which
is a verified human-readable textual representation. JSON columns
do not have any additional information on the structure of the
contained documents. Some systems use a per-document optimized
binary JSON format. This improves access performance by storing
data in a binary representation that has minimal parsing overhead.

The most basic operation on JSON data is attribute access. In the
examples throughout this paper, we use PostgreSQL-style access
operators: the access as JSON type (->) and the access as Text
(->>) expressions evaluate JSON queries [51]. These expressions
are needed since the information is stored in nested objects and
arrays. They return the value to the key (object) or slot (array).

For example, {"id":0, "name":"JSON"} is a JSON object that
holds two keyswith one integer and one string value. Assuming that
the user wants to access the id field, it can be requested as a value of
type JSONwith object->’id’ resulting in {0}. Note that the result
type is not the integer itself. The access as JSON object function is
necessary to access nested objects since access expressions can only
be evaluated on JSON documents. The other option is to access the
element as text with object->>’id’, which returns the Text "0".
Because the user usually intends to access the pure integer value,
a cast from the string representation is needed. The expression is
therefore rewritten to object->>’id’::Int, which finally outputs
the Integer 0. Umbra follows the PostgreSQL semantics of returning
null if the requested key or any parent key is not present.

4.2 Push Down of Access Expressions
To utilize the scan performance of JSON tiles, changes to the query
plan are necessary. The scan operator needs information on the
keys that are accessed to decide whether extracts of tiles can be
used. Previous work showed that the push down of accesses into
the scan operator is crucial to heterogeneous data formats [33]. In
the following, we describe the push down of JSON accesses and
explain the steps to integrate JSON tiles into the query plan.

Figure 5 shows the query plan of a simplified version of TPC-H
query 10 that uses JSON. In this example, the data is stored in a
single JSON column (data). Each row is transformed into a JSON
document such that every column name works as the key in the
JSON objects. Because the operators above the scan need the JSON
string for expression evaluation, each table scan operator has to
produce the whole JSON string. Using the whole string when only
parts are needed is inefficient.

As JSON tiles relies on the usage of extracted columns, the table
scan operator needs to know which parts of the JSON data are
accessed. If access expressions are evaluated further up the query
plan, the table scan needs to provide the raw JSON data and cannot



utilize the materialized columns of JSON tiles. Thus, the access
expression evaluation has to be pushed down into the scan operator.

We use placeholders for expressions and hand the computation of
the access expressions over to the table scan operator. The result of
an expression is then available at this location and directly usable by
a parent operator. If a column extract of an expression is available,
the data is read from the extract and the placeholder simply points
to the materialized data. Otherwise, the raw JSON value is accessed.

4.3 Cast Rewriting
Because the return type of JSON accesses is Text, it is important
to also push down the cast type information to the scan operator.
Otherwise, the materialized types need to be transformed to Text
first and later have to be transformed back to the cast requested
type. This introduces a large query runtime overhead.

During the optimization phase of the RDBMS, cast rewriting
reduces this overhead. The RDBMS checks whether the input ex-
pression of the cast is an access as Text lookup. If so, the cast result
type determines which specialized access expression is used.

The RDBMS implements optimized access expressions for every
data type that is defined for JSON documents (Section 5.1). Since
these types are also used for the JSON tiles extraction, it is beneficial
to rewrite these expensive casts. If the original typematches the cast
result, we simply delete the cast operator and return the evaluated
access expression directly. Otherwise, we reduce cast overhead as
a better cast option is chosen. For example, a BigInt stored element
key with the lookup x->>’key’::Float is rewritten to a BigInt
lookup followed by a cheap cast to Float.

4.4 Storing the JSON Tiles Header
Because JSON tiles detects frequent document structures from the
input seen locally, the extracted columns vary between different
tiles. Thus, each tile needs its own header describing its seen and
materialized data. For accessing materialized data, JSON tiles needs
to store the extracted key paths and the corresponding value types.
Since tiles vary in data and size, they are not directly stored in the
fixed-sized part of the relation but in the variable-sized data. Only
the pointer to the header is stored in the relation to map from tuples
to the corresponding tile. Offsets into the variable-size data remain
static as we either append the memory region or fill empty spaces.

In addition to the key path information and the type, the original
JSON column is needed as the relation could contain multiple JSON
columns. Moreover, JSON tiles stores the information on whether
the key path is used with another type and whether null values
are possible. The type information is necessary for correctness
since the same key can have different values across the database.
This is particularly interesting for JSON tiles, as null entries are
often avoided due to a fine-grained JSON tiles size. For further
optimizations, shown in Sections 4.6 and 4.8, the key paths that are
not extracted are stored as well. Because the number of keys may
be large, we store the key paths in a bloom filter [35].

4.5 Access Expression Evaluation
Information about the availability of an extracted column is only
known during the table scan of each JSON tile. Because JSON tiles
only materializes the frequent structures, not all keys are stored

as columns. Therefore, the access on the raw JSON data must be
performed if no extract is found.

Accesses on JSON tiles use the information stored in the header
of each tile to find the correct position of the requested data. The
key path is stored as a string with information on the nesting depth
(the number of nested levels) and the size of the string. We compute
the matching of key paths in linear time, as the number of different
key paths is limited within a single tile. Since it is expensive to
calculate the availability of materialized columns per tuple, the
calculations is performed once per tile. It is cached and reused for
all the following tuples of the same tile.

If a materialized column is available, the header of JSON tiles is
used to compute the access information. The matching column start
position is computed by the position of the tile data and the offset
into the matching column. The type information of the column
is used to load the data and determine the best cast options. In
Section 4.3, we show the rewriting of the cast expression that is
used by both JSON tiles and our binary representation (Section 5.4).

To find the correct materialized column, our algorithm uses the
key path and the requested types as inputs. If the types do not
match, we test whether the types are both numerical values or
the request type is a cast to Text. The former type suggests that it
is easy to cast between the extracted and desired value. The only
exceptions are values of type Date or Time. These are not allowed
to be transformed to a textual representation. This restriction is
explained further in Section 4.9.

4.6 Optimizer Integration
The query optimizer relies on cardinalities and selectivities to find a
suitable query plan. In particular, join ordering relies on statistics to
minimize intermediate join results. Without any tile statistics, the
content of the JSON column is completely opaque to the database.
Consequently, the optimizer has no information on how often a
key path exists in a document and on the possible values. This
can result in poor query plans and slow queries – in particular for
complex, multi-table queries.

When constructing JSON tiles, we gather additional information
for each tile. However, for join ordering the information needs to
be available for the complete table. Thus, the information of the
individual tiles is aggregated to leverage the data insights during
query optimization. The additional tile information is used for
optimizations as discussed in Section 4.8.

In the following, we describe the steps necessary to provide
per-column statistics and estimators for JSON tiles. We use a fixed
number of frequency counters and HyperLogLog [25] sketches for
the extracted paths. The frequency counters are used to argue about
the cardinality of the keys in the data. If, for example, a query re-
quests replies is not null from the tweet data of Figure 2, only
5 out of 8 tuples match. Our JSON tiles implementation collects
HyperLogLog sketches as these are the primary source of domain
statistics in Umbra. The collection of regular histograms would
work analogously. We suggest 64 sketches and 256 frequency coun-
ters as an upper bound on the statistics to restrict the maximum
amount of memory used for query optimization.

During frequent itemset mining (Section 3.3), the frequency of all
key paths within a tile is computed. The frequency of the key paths
is used as the starting point for itemset mining. Each entry of the



database consists of the key and the number of occurrences in the
tile. As described in Section 4.4, this database is also stored in the
tile header. We update the relation-wide frequency counters (256
slots) if the key exists or replace empty slots as long as available. If
all slots are utilized, we start replacing slots according to the most
recent tile number that last updated that slot and the frequency
count of the keys. Hence, new values can overwrite existing ones,
however, the most frequent ones are always stored in the statistics.

To retrieve the cardinality of the keys, we simply use the fre-
quency counters. If the key is not present in the frequency counters,
we leverage the smallest available counter for this access. We argue
that the missing counter will behave most similarly to the key with
the minimal frequency of all retrieved counters. Although the small-
est retrieved frequency is still an approximation, the results are
significantly more accurate than using the global count of tuples.

Similar to the frequency counters, we collect statistics about the
domain of the associated value of key paths with HyperLogLog
sketches. When a tile is created, the inserted values are directly
sampled. Hence, JSON tiles creates sketches without noticeable
overhead. To aggregate the sketches at the relation level, we use the
same replacement strategy as described with frequency counters.
Note that HyperLogLog sketches are easy to combine.

During query optimization, the filter predicates on materialized
JSON tiles leverage the distinct counts of the HyperLogLog sketches.
With this information, better join orders are possible as the result-
ing join cardinality estimation is improved. Furthermore, different
documents are sampled statically at query plan generation to find
more accurate estimations. This improves the sketch estimates and
creates new estimates if no HyperLogLog sketch is available.

4.7 Updates
As JSON tiles creates columnar chunks, we can simply update the
values of the keys that were changed. As variable-length data is
tracked in a separate memory region with offsets, value updates
can be computed in place. If the new document does not contain
some of the extracted keys, null values in the respective columns
indicate the absence of these keys. Note that the tile header needs
to add all new access paths to the bloom filter. Otherwise, queries
that scan the data could incorrectly skip the changed tiles.

Tiles need to be recomputed only if many outlier documents
are introduced. An outlier document is defined as one that does
not overlap with the existing extracted keys. As the recomputation
of the materialized JSON tiles are costly, the computation should
only be triggered after the majority of the tuples do not match the
current extracted JSON tiles schema.

4.8 Skip Tiles Without Matches
Because JSON tiles collects tuples locally, some tiles do not contain
certain key paths. If an expression is searching for such a path,
skipping these tiles seems valuable.

The simple skipping of tiles that do not provide a key path,
similar to the previous work on efficient column stores [36, 53],
leads to incorrect results. Accessing a value from a key that was not
found returns a null value. Skipping null values results in incorrect
results, for example, some aggregates count null values.

To overcome this issue, our system tracks the optimization path
of skipping null values and whether null is evaluated as false. These

two properties can change at an operator and expression level.
For example, an inner-join on top of the access expression has
the property that null values are skipped as the join condition is
evaluated as false. Another example for skipping null values are
comparisons, e.g., the expression where x->>’key’::Float > 1.

Thus, if the expression is not found and null values are skipped or
evaluated as false, the whole JSON tile has no valuable information.
These tiles are then skipped to improve performance.

4.9 Date and Time Extraction
Because the exact representation of values need to be restored
during accesses, the extraction of Dates and Times from strings is
complex. As many different formats exist, it is hard to guarantee
the recreation of the original string. We use a hybrid method to
store Dates and Times in which the access type is leveraged. If
the database user casts the value into Date or Time, JSON tiles
does not need to recreate the exact string representation. As a
result, any correct internal representation can be used to satisfy
the request. Therefore, JSON tiles extracts possible Date and Time
values because these are probably accessed as such.

To find columns that store Dates and Times, we first sample on
the potential column. If the string-encoded values match a Date
or Time type, we extract these values encoded as SQL Timestamp.
When the user casts the access to any Date- or Time-like type,
the extracted Timestamp value is used to cast to the defined type.
Otherwise, the string representation of the binary JSON is returned
retaining the input format.

5 BINARY JSON FORMAT
JSON tiles extracts the frequent key paths of documents; however,
some data sets contain outliers and infrequent keys that are not
materialized. This section presents a new optimized binary format
that allows fast access to individual keys of such infrequent objects.
An optimized format is necessary as JSON is a human-readable
data format. Each access results in an expensive parsing of the raw
string. The goals for the binary format are fast lookups in objects
and arrays, typed values, and few cache misses. The format must
further conform to RFC 8259 [13], which defines the general JSON
representation and needed value types.

Several binary JSON formats were developed to efficiently trans-
fer data [26, 32, 49]. These formats, however, are not optimized for
fast accesses and focus on (de-) serialization support. DBMS that use
custom binary formats include PostgreSQL and MongoDB [45, 52].
Although the latter formats are better suited for query process-
ing than exchange formats, they do not combine a logarithmic
worst-case runtime for lookups with continuous memory accesses.

Our JSONB format is optimized to provide O(𝑙𝑜𝑔(𝑛)) accesses
to the correct key in objects and O(1) accesses to array elements.
Moreover, objects and arrays are forward iterateable such that all
key-value pairs – even nested objects – can be accessed continu-
ously without memory address jumps. This results in fewer cache
misses for nested accesses. The physical types used in our binary
JSON representation match the RFC requirement and are also used
by JSON tiles as mentioned in Section 3.3. Hence, the cast rewriting
presented in Section 4.3 is a universal access optimization.



Due to restructuring, some of the unimportant properties of the
original document get lost, such as whitespace information or the
order of keys in the input. We argue, aligned with the guidelines
of using binary JSON in PostgreSQL, that the gains in query per-
formance outweigh the ability to recreate the exact syntax of the
input [52]. Apart from the syntactic restriction, our JSONB docu-
ment is round-trip safe. Thus, all other properties and the exact
value representation can be reconstructed.

5.1 JSONB Storage Format
To provide interoperability and correctness, our binary JSON format
conforms to RFC 8259 [13]. It defines objects, arrays, numbers,
strings, and three literals. Our binary format uses the following
data types to represent the type definitions. Each type has an 8-bit
header with the type identifier and additional information.

Numeric Integers use the SQL type BigInt. We store small
values (< 23) in the integer header, otherwise, we calculate the
number of bytes needed to represent the integer and store the
amount in the header. The size-optimal integer follows the header.

Numeric Floats store the remaining numeric values, using the
SQL Float datatype represented with IEEE 754 double precision.
RFC 8259 relies on double-precision floats for the remaining nu-
merics as they are “generally available", “widely used", and “good
interoperability can be achieved" [13]. We further optimize for
smaller precision levels (half-floats, and single-precision floats) if
the conversion from double-precision floats is lossless.

Literals use a special header representing the value.
Objects contain all key-value pairs including nested objects

and arrays. Objects need an object header, followed by an integer
representing the number of elements in that object. The integer
uses the minimum number of bytes as defined for Numeric Integers.
This is followed by an offset into the object for every element. Each
offset points to the end of the corresponding element. The offset
key follows the payload in every element slot. Note that nested
objects and arrays are also stored in the payload such that we
can iterate over the object without memory address jumps. Keys
are further sorted to accelerate lookups and guarantee O(𝑙𝑜𝑔(𝑛))
accesses since we can use binary search to find the correct entry.
The representation is illustrated in Figure 6.

Arrays are stored similar to objects but do not use keys.
Strings are stored with the possibility to use unicode characters.

The exact representation matches the RFC 8259 definition.

5.2 Detection of Numerics in Strings
As RFC 8259 does not specify any precision for JSON numbers,
strings are usually used to preserve the exact representation. For
example, monetary values should not be represented as floating-
point values. As a result, a decimal-valued price is usually stored as
string. We auto-detect numeric values hidden in strings and extend
our binary JSON format with an additional numeric string type.

During the transformation, we check whether the complete
string, except the start and end quotes, can be represented as an SQL
Numeric. We first test whether the input string is a valid numerical
value (digits, point, etc.). If so, round-trip safety is guaranteed since
the exact representation can always be reconstructed with the help
of scale and precision. Because the original input must be a string,

key 1

object number of elements offset 1

offset 2 offset n

element / payload 1

key 2

element / payload n key n

...

element / payload 2

Figure 6: JSONB representation of an object.

the start and end quotes are simply added to the Numeric output.
The key motivation is that strings that are representable as Numeric
will probably be used as numeric values. Query execution benefits
by performing a smaller number of expensive casts from strings.

5.3 Two-Pass Transformation Algorithm
Our JSONB format stores nested objects within the parent ob-
ject. This allows for continuous accesses without memory address
jumps. Continuously stored data increases locality and reduces
cache misses. However, this makes object creation harder as the
object size depends on the size of its nested objects and arrays. For
example, the object with a nesting level of 0 only knows its size after
the sizes of the inner objects have been computed. The simple ap-
proach of on-the-fly resizing is not feasible as resizing is expensive
and needs to be performed for every inner object. Our compressed
storage algorithm for floats and integers even aggravates this issue.

To overcome the problem of resizing, we propose a two-pass
algorithm. In the first iteration, we check for validation errors and
calculate the required memory for every JSONB type. This is possi-
ble because we remember the computed nesting level and perform a
depth-first calculation. Note that depth-first is the order as defined
in the input of JSON documents. Nested objects are textually rep-
resented within the parent object. Hence, we can simply forward
iterate over the input. In the second iteration, we use the informa-
tion of the first pass to allocate the right amount of memory and
transform the data without further checks. In total, we iterate twice
over the input data. However, this is usually not a performance
issue because most JSON objects fit into the CPU cache.

5.4 Accessing Elements
Since JSON documents consist of objects and arrays that contain
the information, the user typically looks up only specific parts of
them. Umbra uses the access as JSONB -> and the access as Text
->> expressions to lookup the values of objects and arrays.

The access expression is implemented in two phases. First, a
lookup into the object or array is executed. Object keys can be ac-
cessed in O(𝑙𝑜𝑔(𝑛)) since keys are sorted and binary search is used
to perform the positioning. Because arrays are stored sequentially,
we can access the element in O(1). The second phase extracts the
found value. The default extracted SQL types are JSONB (->) and
Text (->>). As a result, the storage of the right type would reduce
the performance if the access needs to cast to Text.

The database user usually casts the access result to the desired
type, e.g., x->>’key’::Integer. Our system analyzes the cast and,
if possible, directly returns the correct result type instead of the
string representation. Otherwise, it parses the value as Text and
performs the cast afterwards.
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Figure 7: External competitors with all 32 threads.

Table 1: Execution times for all TPC-H queries in seconds.
PG. Spark Hyper Umbra

Mongo Parquet JSON JSONB Sinew Tiles

1 5.276 14.297 1.939 1.950 1.725 0.178 0.122 0.030
2 > 100 23.383 2.735 1.370 1.608 0.584 0.637 0.035
3 17.905 15.892 1.288 0.560 0.675 0.280 0.259 0.030
4 3.013 10.439 1.755 0.539 0.692 0.227 0.228 0.026
5 87.468 22.659 2.072 > 100 1.340 0.372 0.326 0.045
6 1.259 14.896 0.690 0.244 0.254 0.119 0.085 0.010
7 > 100 21.035 2.554 3.111 1.177 0.429 0.351 0.103
8 > 100 26.608 1.814 1.156 1.469 0.474 0.416 0.062
9 > 100 23.688 3.939 1.728 2.576 0.395 0.370 0.153
10 > 100 21.967 2.003 0.984 1.362 0.388 0.294 0.067
11 > 100 23.444 0.809 0.829 1.070 0.344 0.353 0.068
12 1.493 18.783 1.316 0.419 0.450 0.286 0.289 0.061
13 5.570 10.597 2.146 0.683 0.665 0.149 0.291 0.044
14 1.502 9.552 0.734 0.343 0.392 0.171 0.142 0.017
15 9.105 19.024 1.306 0.339 0.399 0.211 0.185 0.018
16 4.220 15.119 2.693 0.898 0.629 0.201 0.273 0.048
17 > 100 16.379 1.381 0.605 0.567 0.173 0.091 0.026
18 86.167 14.861 1.849 1.388 0.949 0.260 0.179 0.050
19 1.290 33.885 0.970 0.363 1.834 0.213 0.170 0.057
20 > 100 20.234 1.613 0.787 0.974 0.355 0.348 0.042
21 12.372 39.236 3.517 1.415 1.787 0.615 0.479 0.103
22 2.060 11.306 3.135 0.529 0.566 0.172 0.180 0.016

6 EXPERIMENTAL EVALUATION
We integrated JSON tiles into our high-performance relational data-
base system Umbra that supports SQL, columnar storage, and effi-
cient memory management [23, 47]. We compare it with the follow-
ing industrial-strength database systems: PostgreSQL (12.4) with its
binary JSONB format, Tableau Hyper (0.11556) with its JSON format
(no binary JSON available), Apache Spark (3.0) with Apache Parquet
(Dremel), and Apache Spark with MongoDB (3.6). Because MongoDB
does not support joins, Spark is used to schedule the queries. The
mandatory sampling of the MongoDB data is not accounted.

Besides this system-wide comparison, we also integrated a num-
ber of prior JSON handling proposals into our system (sharing
the optimizer and query engine): human-readable JSON format,
our binary JSONB representation as described in Section 5, Sinew,
which extracts the whole table with the original proposed 60% table-
frequency using our JSONB format, and JSON tiles with JSONB.
Unless otherwise noted, we use the tile size 210, partition size 8,
and extraction threshold 60%.

All experiments were performed on an AMDRyzen Threadripper
1950X (16 cores, 32 threads) with 64GB ofmainmemory. The system
runs Ubuntu 20.04 and uses a Samsung 850 Pro SSD (2TB).
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Figure 8: Scalability of internal competitors.

6.1 Combined TPC-H JSON
Our initial experiments are based on TPC-H. As this benchmark is
based on a relational schema, we first explain the steps necessary
to convert the data to JSON. Queries are modified similarly to the
example query shown in Section 4.2. We modify TPC-H such that
every row of each table is represented as a JSON object with the
column names as the keys of the object. Thus, each JSON document
contains the schema of the table and the values of one row. To simu-
late a combined log data workload with different JSON documents,
we combine the different structures of these multiple relations into
a single one. Although the documents are adapted in JSONized
TPC-H, the queries return the same result as queries executed on
the original TPC-H relations. Data loading is performed in parallel
and uses all cores which leads to an imperfect insertion order.

In the following, we focus on chokepoints for TPC-H, which
have been elaborated by previous work [11, 21]. Therefore, the
results of the queries Q1 (expression calculation & aggregation),
Q3 (join & aggregation), and Q18 (join) are shown in detail. The
execution times of all TPC-H queries are shown in Table 1.

Query 1 only accesses items of the original lineitem table and
performs low-cardinality aggregations with expensive expression
calculations. As visually illustrated in Figure 7, our approach is
an order of magnitude faster than Spark with Parquet and Hyper,
which are both able to leverage a large fraction of the available
cores. In comparison to other approaches within Umbra, visualized
in Figure 8, we are able to speed up the computation by a factor
of 3. As Query 1 relies on date expressions, our date and time
optimization helps to significantly outperform Sinew. Umbra scales
with a rising number of cores despite executing a single pipeline.

On the other hand, Query 18 joins multiple original tables with
groups, and is therefore a chokepoint for join and high-cardinality
aggregation performance. PostgreSQL uses a sub-optimal join or-
der which results in very low performance. Although the lineitem
columns accessed by the query are extracted with Sinew, the query
performance is 4× slower than JSON tiles. This is a result of the
missing information on cardinalities and the non-materialized tu-
ples of customer and order data. Query 3 contains an expensive
aggregation and performs joins. Our approach dominates all others
since the optimal join order is computed and all lineitem fields are
materialized.

6.2 Combined Yelp
To confirm the findings of the TPC-H benchmark, we test additional
queries on the real-world Yelp data set (∼9 GB) [64]. We define five
queries on top of the data to gather interesting business insights [22].
Table 2 shows the results for all Yelp queries. For example, Yelp



Table 2: Execution times for all Yelp queries in seconds.
PG. Spark Hyper Umbra

Mongo Parquet JSON JSONB Sinew Tiles

1 15.883 9.211 1.114 1.892 6.068 0.487 0.366 0.293
2 5.121 8.582 1.868 0.454 0.813 0.191 0.163 0.044
3 > 100 > 100 > 100 > 100 3.262 0.444 0.302 0.145
4 10.961 4.774 0.188 0.296 0.843 0.105 0.013 0.013
5 49.033 8.521 1.499 1.095 2.698 0.273 0.160 0.088

Table 3: Execution times for all Twitter queries in seconds.
Spark Hyper Umbra

Mongo Parquet JSON JSONB Sinew Tiles Tiles-*

1 17.226 3.246 65.381 8.319 0.419 0.255 0.116 0.116
2 5.517 1.100 1.262 4.510 0.181 0.191 0.091 0.091
3 1.881 1.336 > 100 > 100 0.191 0.204 0.215 0.017
4 28.860 4.139 1.401 23.749 0.229 0.212 0.206 0.022
5 17.095 2.542 1.603 2.802 0.164 0.049 0.057 0.058

Query 4 counts the number of reviews in groups of stars. Because
the number of reviews is large, Sinew also materializes all fields
needed for this query. The performance of our approach and Sinew
is very similar in this example, which results from the extraction
of the star rating. Although this is one of the best cases for Sinew,
our approach is able to slightly increase the performance, which
highlights the small static overhead per JSON tile. JSON tiles has a
higher throughput due to the skipping defined in Section 4.8.

6.3 Twitter
As we use Twitter as our running example, we benchmark multiple
queries on an excerpt of tweets from June 1, 2020 (∼31 GB) [22,
58]. Tiles-* combines JSON tiles with extracting high-cardinality
arrays as discussed in Section 3.5.We extract high-cardinality arrays
(hashtags, mentions) and store them in an additional JSON tiles
relation. Queries join these relations with the original Twitter table.

Query 1 selects the tweets of the most influential users of the
day. Although the user object is mandatory in tweets and extracted
by both Tiles and Sinew, we are able to outperform the competitors.
The deleted tweets of each user are aggregated with query 2. Dele-
tions use a different JSON structure that is not frequent globally.
This structure is reordered and can be materialized in some tiles.

Query 3 selects tweets that mention @ladygaga (user_mentions
array), and query 4 selects tweets that include the hashtag #COVID
(hashtags array). As both rely on the extraction of high-cardinality
arrays, only a subset of the items is materialized within JSON tiles.
JSON Tiles-* outperforms all competitors by joining the matching
high-cardinality arrays with the base Twitter data.

Table 4: Geo-mean of Twitter.

JSON JSONB Sinew Tiles Tiles-*

Twitter 11.803 0.258 0.239 0.122 0.054
Changing 11.683 0.236 0.182 0.115 0.054

Table 4 shows
the geo-mean run-
time on a data set
that changes its
tweet structure as
described in Sec-

tion 2.2 [22, 61]. As the changes in the JSON structure reduce the
number of matches, most systems have an improved geometric
mean. JSON tiles can easily adopt to unseen access keys and does
not introduce null values if an access path is absent.
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shuffled TPC-H.
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Figure 12: Yelp Geo-mean.
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Figure 13: Tweet Geo-mean.

6.4 Shuffled TPC-H
To demonstrate the robustness of our novel partitioning algo-
rithm, we manually shuffled the TPC-H table before loading.
Thus, during the insertion no local tuple patterns are retained.
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Figure 9: Shuffled
TPC-H Geo-mean.

JSON tiles with a partitioning of 8
and a tile size of 210 is able to reduce
the query runtime significantly. Fig-
ure 9 shows the geometric mean of the
shuffled TPC-H benchmark. The JSON
string representation has poor perfor-
mance due to the parsing needed for
every document. Although JSONB and
Sinew are able to significantly increase
performance, JSON tiles can further im-
prove on these results by a factor of 4x.

6.5 Tile and Partition Size
The choice of the tile and partition size has impact on the insertion
time and materialization quality. The following experiments show
how to find robust values for these settings.

Figures 10, 12, and 13 show the different choices and the resulting
geometric mean for the respective workloads. The more partitions
are enabled, the better the reordering. Even in naturally ordered
data sets (e.g., Yelp and sequential TPC-H), the parallel insertion into
our database (32 threads) creates outliers and imperfect data. Hence,
the reordering is also beneficial there. Considering the insertion
performance, Figure 11 highlights that a tile size of less than 214
and a partition size of less than or equal to 8 do not introduce any
overhead. Thus, we recommend tile size 210 and partition size 8.

6.6 Optimizations for JSON Tiles
For the TPC-H and Yelp workloads, Figure 14 shows the impact of
the optimizations discussed in Section 4.8 and 4.9. The skipping of
tiles without matches is an optimization that helps to speed compu-
tations if the number of different JSON document types is higher.
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Figure 14: Geometric means of
different optimization levels.

Because many real-
world workloads use
queries that are con-
strained by date ranges,
the extraction of date
and time is beneficial.
As Figure 14 shows,
the optimizations im-
prove the performance
considerably.

6.7 Micro Benchmark
The following micro benchmark demonstrates that our approach
has only minimal static overhead for each JSON tile while gaining
robustness. JSON tiles is able to achieve an order of magnitude
improvements in comparison to only using binary JSON documents.

To explain the overhead behavior, we choose a query that is
executed optimally by both the regular relational system and Sinew.
The query simply sums up the linenumber field. Sinew extracts the
column perfectly just like JSON tiles. The performance is shown in
Figure 15, the corresponding low-level CPU performance counters
are shown in Table 5. The benchmarks labeled with “Comb." use the
combined TPC-H, whereas the others use the original lineitem table.
Note that the relational approach cannot use combined TPC-H.

First, the materialization of JSON tiles leads to significant im-
provements over using the raw or binary optimized JSON formats.
The performance of both extraction algorithms is similar to a pure
relational TPC-Hworkload if the original lineitem table is used. The
imperfect combined data consists of outliers and different structures
because of the parallel data loading. The performance is reduced for
the extraction algorithms, however, it is still an order of magnitude
faster than when only JSONB is used. The relational table needs
32 instructions per tuple, Sinew 65, and JSON tiles 70. As this is
the perfect extraction workload for Sinew, it is expected that the
increased robustness requires some additional computations.
Table 5: Low-level performance counters for the summation
query on lineitem; normalized per tuple computed.

System Cycles Instr. Branch- L1-Miss Sec/All

Relational 17.01 31.58 0.00 0.02 0.001613
Tiles 39.33 69.82 0.02 0.18 0.002494

Sinew 32.12 65.08 0.01 0.10 0.002050
Sinew Comb. 39.07 71.73 0.03 0.10 0.003450
Tiles Comb. 50.15 74.20 0.04 0.14 0.004462

6.8 Data Loading and Storage Consumption
As our approach preprocesses the data during insertion, wemeasure
the time needed to load the data sets. Figure 17 shows the loading
times of all systems. The fastest system for TPC-H and Yelp is
Hyper, which just stores the raw JSON string in the database and
uses almost-instant data file loading [46].

Focusing on the overhead of JSON tiles, only a small reduc-
tion compared to the raw JSON and binary JSON insertion times
are noticeable. The performance drop by Sinew results from the
single-threaded frequency algorithm and the materialization of the
detected columns. For a fair comparison, Sinew eagerly extracts
the data after the insertion.
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Figure 17: Parallel loading (numbers in 1000 tuples/sec).

Figure 16 breaks down the time needed for the different steps
to create JSON tiles. Most of the insertion time is spent for stor-
ing the binary JSON data. Note that the expensive creation of the
binary JSON is not measured as these steps are further up the
pipeline. Although the JSON tiles operations require computation
time, the overall loading times indicate that these computations
do not change the insertion speed significantly. For example, the
shuffled TPC-H spends a crucial amount of time on reordering,
however, Figure 11 shows that this does not result in slower overall
insertion times. Also, the insertion times do not change between
partition sizes for small tile sizes.

Table 6: Size in MB (% of JSONB).

JSON JSONB +Tiles +LZ4-Tiles

TPC-H 3092 2766 665 (24%) 317 (11%)
Yelp 8657 7809 718 (9%) 237 (3%)

Twitter 31271 24106 706 (3%) 247 (1%)

We measured the
size needed to store
JSON tiles in Table 6
to analyze the stor-
age requirements.
In our current
implementation,

JSON tiles are materialized in addition to the original JSONB data.
All benefits of JSON tiles come with only a moderate size overhead.
As TPC-H consists of few strings and many extractable columns,
the overhead is the highest there. Only 3% overhead results in
significantly improved performance for Twitter. Because the data
of JSON tiles are stored in columnar format, we can achieve strong
compression ratios. For example, LZ4 compression on JSON tiles
can further reduce storage consumption by a factor of 2-3x.

6.9 JSON Binary Formats with Nesting
As some documents cannot be extracted, we rely on a high-
performance binary JSON representation. We compare our binary
format, referred to as JSONB below, to the BSON implementation
from MongoDB’s open source C++ driver [45], and the JsonCons
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C++ CBOR implementation [49]. To demonstrate a wide variety of
complex and nested JSON documents, we use standardized JSON
files from the SIMD-JSON repository [37].

First, we analyze the serialization and deserialization perfor-
mance of the different JSON formats. Figure 18 shows the slowdown
of the other two approaches compared to our JSONB implementa-
tion. JSONB is the fastest format in all serialization workloads and
only three deserialization workloads are beneficial for CBOR.

The normalized costs for storing the JSON documents in a binary
format are shown in Figure 19. CBOR’s space requirements are the
lowest as this is used mostly to exchange messages. In comparison
to MongoDB’s BSON, our representation uses less disk space.

Our binary representation has the best lookup performance,
which is shown in Figure 20. Accessing keys within a document
requires the object to be extracted in CBOR. This reduces the access
performance significantly. Our O(𝑙𝑜𝑔(𝑛)) object key lookup is su-
perior to the linear-time algorithm of BSON. Thus, JSONB achieves
large performance gains for random accesses.

7 RELATEDWORK
Due to the increasing importance of semi-structured data, many
systems have been developed to handle different data documents.
In the following, we differentiate between database systems and
raw data processing systems.

Database Systems with JSON Support: With the rising us-
age of JSON, relational database systems integrate storage solu-
tions for these data formats. One common idea is to store and
index the data such that consequent accesses can be evaluated effi-
ciently [3, 15, 18, 33, 40, 41, 56, 62]. Sinew [57] extends PostgreSQL
with the approach of extracting data from the whole table, which
incurs robustness problems for changing or combined data. This
reduces query performance as only a certain number of keys are
extracted [51, 57]. Our system focuses on the efficient and robust
storage of JSON data to satisfy multiple user queries thereafter.

Proteus [33] builds indexes on top of JSON data to speed up
accesses. Recache accelerates processing of heterogeneous formats
by caching accesses of the data according to the query workload [8].
Other systems, such as Apache Spark [7] or Hive [59], use different
storage plugins for heterogeneous data. Apache Parquet [6] and
Avro [5] are common formats for storing JSON data. Although these
plugins are quite robust, e.g., record shredding of Dremel [42], the
performance of Spark on combined data is severely reduced.

NoSQL systems such asMongoDB [44], Couchbase [17], and Doc-
umentDB [4] store semi-structured documents directly. However,

their feature set for querying is limited and analytical (columnar)
accesses are slow as these systems are optimized for point accesses.

Raw Data Processing: Another approach of accessing JSON
files is to query raw files without explicitly loading them. After
defining the queries and providing the raw files, the system should
return the results without any loading delay [30]. Modern database
systems try to saturate the wire speed to keep the loading gap small.
Raw systems have reduced performance on multiple queries as the
data is not stored as efficiently as possible [46].

Other approaches, e.g., NoDB [2], use in-situ raw accesses [10,
16, 50] to query the raw files directly. This requires the data to
be parsed quickly. For both structured and semi-structured data,
parsers such as FAD.js, Mison or SIMD-JSON use modern CPU
properties for fast reads [12, 27, 37, 39]. Raw filters are used to
speed up the parsing and reduce the amount of data ingested into
the database [48, 63].

JSON Schema Retrieval: Inspired by the usage of JSON
Schema [31], which is a work-in-progress description language
for JSON, recent theoretical work [9, 20] has studied schema infer-
ence for JSON data. Although these approaches can describe the
inherent JSON schema accurately, the computation of the schema
file is expensive as all optional and required schema fields have
to be enumerated. Different JSON documents in large-scale data
sets can further decrease the performance, as the existence of many
optional fields makes it harder to choose the right fields to extract.

8 CONCLUSION
We presented JSON tiles, a collection of algorithms and techniques
for deeply integrating high-performance JSON support into re-
lational database systems. High scan performance is achieved by
extracting the frequent parts of the data into chunks of materialized
JSON data. During the materialization we collect statistics about the
data so that the query optimizer of the RDBMS is able to find good
query plans. The materialized chunks are robust to heterogeneous
data as we find globally and locally frequent structures. We further
infer data types from the textual representation. If attributes cannot
be extracted, we use an optimized binary format for JSON so that
object lookups are in logarithmic time of the keys within an object.
The experimental evaluation shows that our approach is an order
of magnitude faster on imperfect and combined workloads, without
adding any significant overhead to perfectly-structured data.

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).



REFERENCES
[1] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining

Association Rules in Large Databases. In VLDB. 487–499.
[2] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia

Ailamaki. 2012. NoDB: efficient query execution on raw data files. In SIGMOD.
241–252.

[3] Wail Y. Alkowaileet, Sattam Alsubaiee, and Michael J. Carey. 2020. An LSM-
based Tuple Compaction Framework for Apache AsterixDB. PVLDB 13, 9 (2020),
1388–1400.

[4] Amazon Web Services. 2020. Amazon DocumentDB. https://aws.amazon.com/
documentdb. accessed: 2020-01-03.

[5] Apache Software Foundation. 2020. Apache Avro. https://avro.apache.org/.
accessed: 2020-01-04.

[6] Apache Software Foundation. 2020. Apache Parquet. https://parquet.apache.org.
accessed: 2020-01-03.

[7] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD.
1383–1394.

[8] Tahir Azim, Manos Karpathiotakis, and Anastasia Ailamaki. 2017. ReCache:
Reactive Caching for Fast Analytics over Heterogeneous Data. PVLDB 11, 3
(2017), 324–337.

[9] Mohamed Amine Baazizi, Houssem Ben Lahmar, Dario Colazzo, Giorgio Ghelli,
and Carlo Sartiani. 2017. Schema Inference for Massive JSON Datasets. In EDBT.
222–233.

[10] Spyros Blanas, Kesheng Wu, Surendra Byna, Bin Dong, and Arie Shoshani. 2014.
Parallel data analysis directly on scientific file formats. In SIGMOD. 385–396.

[11] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC.
61–76.

[12] Daniele Bonetta and Matthias Brantner. 2017. FAD.js: Fast JSON Data Access
Using JIT-based Speculative Optimizations. PVLDB 10, 12 (2017), 1778–1789.

[13] Tim Bray. 2017. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259.

[14] Luca Canali. 2017. Performance Analysis of a CPU-IntensiveWorkload in Apache
Spark. https://externaltable.blogspot.com/2017/09/performance-analysis-of-cpu-
intensive.html. Results presented at Spark Summit.

[15] Craig Chasseur, Yinan Li, and Jignesh M. Patel. 2013. Enabling JSON Document
Stores in Relational Systems. In WebDB. 1–6.

[16] Yu Cheng and Florin Rusu. 2014. Parallel in-situ data processing with speculative
loading. In SIGMOD. 1287–1298.

[17] Couchbase. 2019. Couchbase Under the Hood: An Architectural Overview. https:
//resources.couchbase.com/c/server-arc-overview.

[18] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In SIGMOD. 215–226.

[19] Alin Deutsch, Mary F. Fernández, and Dan Suciu. 1999. Storing Semistructured
Data with STORED. In SIGMOD. 431–442.

[20] Michael DiScala and Daniel J. Abadi. 2016. Automatic Generation of Normalized
Relational Schemas from Nested Key-Value Data. In SIGMOD. 295–310.

[21] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. PVLDB 13, 8 (2020),
1206–1220.

[22] Dominik Durner. 2019. JSON queries. https://github.com/durner/json-queries.
[23] Dominik Durner, Viktor Leis, and Thomas Neumann. 2019. On the Impact of

Memory Allocation on High-Performance Query Processing. In DaMoN. ACM,
21:1–21:3.

[24] Facebook. 2020. Using the Graph API. https://developers.facebook.com/docs/
graph-api/using-graph-api. accessed: 2020-01-04.

[25] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perloglog: the analysis of a near-optimal cardinality estimation algorithm. In
Discrete Mathematics and Theoretical Computer Science. 137–156.

[26] Sadayuki Furuhashi. 2020. MessagePack. https://msgpack.org/. accessed: 2020-
11-07.

[27] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Koss-
mann. 2019. Speculative Distributed CSV Data Parsing for Big Data Analytics. In
SIGMOD. 883–899.

[28] HackerNews. 2020. HackerNews Items API. https://github.com/HackerNews/
API/. accessed: 2020-01-07.

[29] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without
Candidate Generation. In SIGMOD. 1–12.

[30] Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki. 2011.
Here are my Data Files. Here are my Queries. Where are my Results?. In CIDR.
57–68.

[31] JSON Schema. 2020. Specification of the new draft. https://json-schema.org/
specification.html. accessed: 2020-01-04.

[32] Riyad Kalla. 2020. UBJSON. https://ubjson.org/. accessed: 2020-11-07.
[33] Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Ailamaki. 2016. Fast

Queries Over Heterogeneous Data Through Engine Customization. PVLDB 9, 12
(2016), 972–983.

[34] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: Fast Compilation and Fast Execution of Relational Queries in Umbra. The
VLDB Journal (2021).

[35] Adam Kirsch and Michael Mitzenmacher. 2008. Less Hashing, Same Performance:
Building a Better Bloom Filter. Random Structures & Algorithms 33, 2 (2008),
187–218.

[36] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage using both Vectorization and Compilation. In SIGMOD. 311–326.

[37] Geoff Langdale and Daniel Lemire. 2019. Parsing gigabytes of JSON per second.
The VLDB Journal 28, 6 (2019), 941–960.

[38] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB
9, 3 (2015), 204–215.

[39] Yinan Li, Nikos R. Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein, and
Donald Kossmann. 2017. Mison: A Fast JSON Parser for Data Analytics. PVLDB
10, 10 (2017), 1118–1129.

[40] Zhen Hua Liu and Dieter Gawlick. 2015. Management of Flexible Schema Data
in RDBMSs - Opportunities and Limitations for NoSQL -. In CIDR.

[41] Zhen Hua Liu, Beda Christoph Hammerschmidt, and DougMcMahon. 2014. JSON
data management: supporting schema-less development in RDBMS. In SIGMOD.
1247–1258.

[42] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis of
Web-Scale Datasets. PVLDB 3, 1 (2010), 330–339.

[43] Tova Milo. 2019. Getting Rid of Data. https://vldb2019.github.io/files/VLDB19-
keynote-2-slides.pdf. VLDB Keynote.

[44] MongoDB, Inc. 2019. MongoDB Architecture Guide. https://www.mongodb.com/
collateral/mongodb-architecture-guide.

[45] MongoDB, Inc. 2020. Mongo CXX Driver. https://github.com/mongodb/mongo-
cxx-driver/tree/r3.5.1.

[46] Tobias Mühlbauer,Wolf Rödiger, Robert Seilbeck, Angelika Reiser, Alfons Kemper,
and Thomas Neumann. 2013. Instant Loading for Main Memory Databases.
PVLDB 6, 14 (2013), 1702–1713.

[47] Thomas Neumann and Michael Freitag. 2020. Umbra: A Disk-Based System with
In-Memory Performance. In CIDR.

[48] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2018. Filter
Before You Parse: Faster Analytics on Raw Data with Sparser. PVLDB 11, 11
(2018), 1576–1589.

[49] Daniel Parker. 2019. JsonCons. https://github.com/danielaparker/jsoncons.
[50] Christina Pavlopoulou, E. Preston Carman Jr., Till Westmann, Michael J. Carey,

and Vassilis J. Tsotras. 2018. A Parallel and Scalable Processor for JSON Data. In
EDBT. 576–587.

[51] PostgreSQL Global Development Group. 2020. JSON Functions and Operators.
https://www.postgresql.org/docs/11/functions-json.html. accessed: 2020-01-03.

[52] PostgreSQL Global Development Group. 2020. JSON Types. https://www.
postgresql.org/docs/11/datatype-json.html. accessed: 2020-01-03.

[53] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam J. Storm, and Liping Zhang. 2013. DB2 with
BLU Acceleration: So Much More than Just a Column Store. PVLDB 6, 11 (2013),
1080–1091.

[54] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. De-
Witt, and Jeffrey F. Naughton. 1999. Relational Databases for Querying XML
Documents: Limitations and Opportunities. In VLDB. 302–314.

[55] Splunk Inc. 2020. The Data-to-Everything Platform. https://www.splunk.com/.
accessed: 2020-01-17.

[56] Tableau. 2020. Tableau Hyper API. https://help.tableau.com/current/api/hyper_
api. accessed: 2020-01-04.

[57] Daniel Tahara, Thaddeus Diamond, and Daniel J. Abadi. 2014. Sinew: a SQL
system for multi-structured data. In SIGMOD. 815–826.

[58] Archive Team. 2020. The Twitter Stream Grab - 2020.06. https://archive.org/
details/archiveteam-twitter-stream-2020-06. accessed: 2020-10-12.

[59] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive
- A Warehousing Solution Over a Map-Reduce Framework. PVLDB 2, 2 (2009),
1626–1629.

[60] Twitter. 2020. Developer Guide. https://developer.twitter.com. accessed: 2020-
01-03.

[61] Twitter. 2020. Tweet Timeline. https://developer.twitter.com/en/docs/tweets/
data-dictionary/guides/tweet-timeline. accessed: 2020-01-07.

https://aws.amazon.com/documentdb
https://aws.amazon.com/documentdb
https://avro.apache.org/
https://parquet.apache.org
https://externaltable.blogspot.com/2017/09/performance-analysis-of-cpu-intensive.html
https://externaltable.blogspot.com/2017/09/performance-analysis-of-cpu-intensive.html
https://resources.couchbase.com/c/server-arc-overview
https://resources.couchbase.com/c/server-arc-overview
https://github.com/durner/json-queries
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://msgpack.org/
https://github.com/HackerNews/API/
https://github.com/HackerNews/API/
https://json-schema.org/specification.html
https://json-schema.org/specification.html
https://ubjson.org/
https://vldb2019.github.io/files/VLDB19-keynote-2-slides.pdf
https://vldb2019.github.io/files/VLDB19-keynote-2-slides.pdf
https://www.mongodb.com/collateral/mongodb-architecture-guide
https://www.mongodb.com/collateral/mongodb-architecture-guide
https://github.com/mongodb/mongo-cxx-driver/tree/r3.5.1
https://github.com/mongodb/mongo-cxx-driver/tree/r3.5.1
https://github.com/danielaparker/jsoncons
https://www.postgresql.org/docs/11/functions-json.html
https://www.postgresql.org/docs/11/datatype-json.html
https://www.postgresql.org/docs/11/datatype-json.html
https://www.splunk.com/
https://help.tableau.com/current/api/hyper_api
https://help.tableau.com/current/api/hyper_api
https://archive.org/details/archiveteam-twitter-stream-2020-06
https://archive.org/details/archiveteam-twitter-stream-2020-06
https://developer.twitter.com
https://developer.twitter.com/en/docs/tweets/data-dictionary/guides/tweet-timeline
https://developer.twitter.com/en/docs/tweets/data-dictionary/guides/tweet-timeline


[62] Zhiyi Wang, Dongyan Zhou, and Shimin Chen. 2017. STEED: An Analytical
Database System for TrEE-structured Data. PVLDB 10, 12 (2017), 1897–1900.

[63] Dong Xie, Badrish Chandramouli, Yinan Li, and Donald Kossmann. 2019. Fish-
Store: Faster Ingestion with Subset Hashing. In SIGMOD. 1711–1728.

[64] Yelp. 2019. Yelp Dataset Challenge. https://www.yelp.com/dataset/challenge.
accessed: 2019-11-20.

https://www.yelp.com/dataset/challenge

	Abstract
	1 Introduction
	2 Design Overview
	2.1 Challenges
	2.2 Leveraging Implicit Document Structure

	3 Extraction
	3.1 JSON Tiles
	3.2 Tile Partitions and Tuple Reordering
	3.3 Frequent Itemset Mining
	3.4 Value Types and Key Paths
	3.5 Nested Objects and Arrays in JSON Tiles

	4 Integration
	4.1 Accessing JSON Attributes
	4.2 Push Down of Access Expressions
	4.3 Cast Rewriting
	4.4 Storing the JSON Tiles Header
	4.5 Access Expression Evaluation
	4.6 Optimizer Integration
	4.7 Updates
	4.8 Skip Tiles Without Matches
	4.9 Date and Time Extraction

	5 Binary JSON Format
	5.1 JSONB Storage Format
	5.2 Detection of Numerics in Strings
	5.3 Two-Pass Transformation Algorithm
	5.4 Accessing Elements

	6 Experimental Evaluation
	6.1 Combined TPC-H JSON
	6.2 Combined Yelp
	6.3 Twitter
	6.4 Shuffled TPC-H
	6.5 Tile and Partition Size
	6.6 Optimizations for JSON Tiles
	6.7 Micro Benchmark
	6.8 Data Loading and Storage Consumption
	6.9 JSON Binary Formats with Nesting

	7 Related Work
	8 Conclusion
	References

