
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Writing an NVMe Driver in Rust

Tuomas Pirhonen

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Writing an NVMe Driver in Rust

NVMe-Treiber in Rust

Author: Tuomas Pirhonen
Supervisor: Prof. Dr. Thomas Neumann
Advisor: Simon Ellmann, M.Sc.
Submission Date: April 15, 2024

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, April 15, 2024 Tuomas Pirhonen

Abstract

Today’s SSDs are capable of performing millions of I/O operations per second (IOPS).
However, while capable, traditional Linux I/O APIs and even newer asynchronous APIs
often fall short of achieving the lowest possible latency and highest throughput due to
their dependence on kernel-based I/O paths, which introduce significant overheads.
The Storage Performance Development Kit (SPDK) offers a solution through its user
space driver model, eliminating this overhead, but at the cost of increased complexity
and potential safety concerns due to its C codebase.

Recognising these challenges, we present a novel user space driver written in Rust,
a language that promises memory safety without sacrificing performance, employing
zero-copy I/O and simple abstractions. With this, we aim to enable an easier way to
assess individual NVMe features and I/O path optimisations. We show that, despite
the stripped-down design of the driver, we achieve SPDK-like throughput and latency.
Our work undertakes a comparative analysis between vroom, our proposed NVMe
driver, and SPDK, as well as the Linux I/O APIs, intending to simplify access to
high-performance storage technologies.

iii

Contents

Abstract iii

1 Introduction 1

2 Background 3
2.1 PCI Express . 3
2.2 Memory-Mapped I/O . 4
2.3 Direct Memory Access . 4
2.4 Non-Volatile Memory Express . 5
2.5 Rust . 8

3 Related Work 9
3.1 SPDK . 9
3.2 Redox . 9
3.3 RedLeaf . 10
3.4 Linux . 10

4 Implementation 11
4.1 User Space Drivers . 11
4.2 Memory-Mapped I/O . 11
4.3 Direct Memory Access . 12
4.4 Architecture . 13
4.5 Driver Initialisation . 15
4.6 I/O Operations . 16

5 Evaluation 18
5.1 Setup . 18
5.2 Throughput . 19
5.3 Latency . 24

6 Conclusion 27

List of Figures 28

iv

Contents

List of Tables 29

Listings 30

Bibliography 31

v

1 Introduction

In the age of PCIe Gen 5.0 NVMe SSDs, we have storage devices capable of exceeding
one million I/O operations per second (IOPS). However, with Linux’s standard file I/O
API (p)read and (p)write, achieving this level of throughput is not possible, requiring
over 100 threads to “get good throughput on a modern SSD” [9]. Modern asynchronous
I/O libraries, such as libaio and io_uring, have offered improvements by diminishing
the kernel gap, thus reaching closer to the physical limits of the SSD. However, these
still pay performance penalties by interacting with the operating system kernel, like
context switching and interrupt handling [2]. Maximising the throughput of an SSD
requires circumventing the kernel entirely, which has led to the adoption of user space
drivers such as SPDK’s NVMe driver.

With this in mind, why write our own driver when SPDK exists? The SPDK codebase
itself is complex and extensive, posing a barrier of entry into understanding its inner
workings as well as understanding how to optimise storage I/O paths, with SPDK’s
hello_world.c1 example coming in at 511 lines. It is also written in C, where critical
errors, such as memory leaks or segmentation faults, are easily created in a lapse of
judgement. While C remains the language used for the Linux kernel, it isn’t necessarily
the ideal language for driver development. In 2017, Cutler et al. analysed bugs in the
Linux kernel which enabled arbitrary code execution and found that of 65, 40 bugs
stemmed from invalid memory accesses, such as use-after-frees [1]; it was found that
39 of these bugs stemmed from device drivers [4].

In this thesis, we posit that it is feasible to develop a driver that achieves comparable
performance to SPDK, with a simplified API and less code, while leveraging the
benefits of a memory-safe programming language. Thus, we want to offer a platform
that simplifies the exploration of NVMe and SSD capabilities and creates a driver where
unsafe code is kept to a minimum. To this end, we will explore the development and
evaluation of a user space storage driver written in Rust, a language that guarantees
memory safety without any performance downfalls.

In chapter 2, we will review all the relevant background information, looking at
how communicating with PCIe devices works, the NVMe specification, and the Rust
programming language. Then, we will elaborate on other relevant I/O APIs and NVMe

1https://github.com/spdk/spdk/blob/0680c7a27bd3950f0b7abb21effde66d5da7976e/examples/
nvme/hello_world/hello_world.c

1

https://github.com/spdk/spdk/blob/0680c7a27bd3950f0b7abb21effde66d5da7976e/examples/nvme/hello_world/hello_world.c
https://github.com/spdk/spdk/blob/0680c7a27bd3950f0b7abb21effde66d5da7976e/examples/nvme/hello_world/hello_world.c

1 Introduction

driver implementations in chapter 3. We present the implementation in chapter 4. We
go over the driver’s architecture, as well as driver-specific implementations, after which
we show how I/O operations are handled.

Finally, we analyse the driver’s performance in chapter 5, looking at its throughput
and latency while also comparing it to SPDK and the aforementioned Linux I/O APIs.

2

2 Background

Before getting into the details of our driver, some concepts central to any NVMe driver
need to be explained in detail first: how communicating with PCIe devices works with
Memory-Mapped I/O and Direct Memory Access, the NVMe specification itself, and
our programming language of choice, Rust.

2.1 PCI Express

Nowadays, all peripherals, from NVMe SSDs to USB hubs, are connected to the
computer via the Peripheral Component Interconnect Express (PCIe) interface. PCIe
builds upon PCI and PCI-X, defining the specifications for how the computer and
peripheral devices interact.

These devices are connected via lanes over the PCIe bus, with transmit and receive
channels. For higher throughput, the specification allows for devices with up to 32
lanes, each lane providing a raw bandwidth of 32 Gbit/s as of PCIe Gen 5.0 [15]. PCIe
uses a TCP-like protocol for reliable data transmission with features like flow control,
congestion avoidance, and acknowledgements, as well as packets.

Configuring PCIe devices is done by accessing the PCI configuration space, depicted
by Figure 2.1, a standardised register space containing information and memory
addresses of the PCI(e) device. For instance, we can disable interrupts or enable direct
memory access (DMA) by configuring the “Command Register” accordingly.

3

2 Background

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

Vendor ID Device ID Command Register Status Register0x00

Revision
ID

Class Code
Cache
Line

Latency
Timer

Header
Type

BIST0x08

Base Address 0 Base Address 10x10

Base Address 2 Base Address 30x18

Base Address 4 Base Address 50x20

Base Address Registers

CardBus
Subsystem vendor

ID
Subsystem ID0x28

Expansion ROM Base Address
Cap.

Pointer
Reserved0x30

Reserved
Interrupt

Line
Interrupt

Pin
MIN GNT MAX LAT0x38

Figure 2.1: Structure of PCIe configuration space

2.2 Memory-Mapped I/O

Memory-mapped I/O (MMIO) is a method of performing I/O operations between the
CPU and peripheral devices in a computer. Using MMIO, the memory and register
of a PCIe device share the same address space as main memory, allowing these to
be addressed the same way as main memory, i.e. using CPU instructions like mov.
Historically, peripherals were accessed using port-mapped I/O with specific in and
out instructions to access the device’s I/O ports via an I/O bus or pins.

The subsystem uio in Linux exposes the device’s memory, Base Address Registers
(BARs), as well as other required interfaces as files in the pseudo-filesystem sysfs.

2.3 Direct Memory Access

Passing data between hosts and PCIe devices is typically done through direct memory
access (DMA); this allows peripheral devices to initiate access to main memory inde-
pendently of the CPU. I/O performance can be improved by not involving the CPU in
expensive memory transfers, giving it headroom to perform other operations.

Unlike on older hardware architectures, PCIe does not require a DMA controller
(third-party DMA); instead, we can enable “bus mastering” (first-party DMA) for PCIe

4

2 Background

devices, which is necessary to allow the device to issue memory or I/O requests.
Typically, DMA requires the use of physical addresses; as such, bus masters can write

to any address in main memory. The modern way of performing DMA is to use virtual
addresses in conjunction with an input-output memory management unit (IOMMU).
Using the IOMMU, DMA operations between a PCIe device and main memory are
translated from bus addresses to virtual addresses, which then get translated to a
physical address [20]. On Linux, the Virtual Function I/O (VFIO) driver framework
enables the use of IOMMU for non-privileged, safe user space device drivers [11].

2.4 Non-Volatile Memory Express

Non-Volatile Memory Express (NVMe) itself “is an open collection of standards and
information to fully expose [. . .] non-volatile memory in all types of computer environ-
ments”1. Relevant for us is the NVMe specification, an open logical device interface
specification for accessing non-volatile storage media attached via the PCIe bus. NVMe
was designed to capitalise on the low latency and parallelism of SSDs, providing
improvements over older storage interfaces such as SATA or SAS in speed and latency.
This specification defines several key components:

• NVMe commands: the basic units of work that the host system uses to commu-
nicate with the NVMe device. These commands may involve I/O operations or
administrative tasks. These submission entries contain the command opcode,
an identifier, and values about the command, e.g. data pointers for read/write
operations. The structure of such a command can be seen in Figure 2.2

• Submission Queues (SQ): The host system places commands here to be processed
by the NVMe device. Each NVMe device can support multiple SQs, enabling
parallel command processing.

• Completion Queues (CQ): The NVMe device places completion entries, notifying
that commands have been processed. Each completion queue is associated with a
submission queue; however, the specification allows multiple submission queues
to be associated with a single completion queue.

The specification supports 1 administrative submission and completion queue pair
and up to 65535 I/O submission and completion queues, in theory allowing for high
scalability and the ability to handle high volumes of I/O requests. Both the submission
and completion queue operate as ring buffers, supporting up to 65536 entries and 65535

1https://nvmexpress.org/about/

5

https://nvmexpress.org/about/

2 Background

Empty

Empty

Submission entry

. . .

Submission entry

Empty

base address

head

tail

0 31

Opcode Flags Command ID

Namespace ID

Reserved

Metadata pointer

Data pointer 1

Data pointer 2

Command dword 10

Command dword 11

Command dword 12

Command dword 13

Command dword 14

Command dword 15

Figure 2.2: Example queue and structure of the NVMe submission entry

outstanding requests. Due to the command identifier being 16 bits in size, the NVMe
controller supports up to 65536 outstanding requests at a time.

Submission and completion queues operate similarly to a Consumer-Producer pattern,
e.g. in the case of an SQ, the host produces requests and adds them to the queue for the
NVMe device to consume. For the SQ, we keep track of a tail pointer as the producer,
pointing to the following free slot and a head pointer, pointing to the next slot to be
consumed. We only keep track of the head pointer for the CQ.

Submitting requests to the NVMe device is done by constructing and then inserting
a submission entry into the queue and updating the corresponding doorbell register to
the new tail value, notifying the NVMe device of the newly submitted request. Upon
completion, the NVMe controller will post a completion entry into the completion
queue belonging to the submission queue. The completion entries contain the com-
mand identifier, the status of the operation, and other command-specific information.
After processing the completion, the host then updates the doorbell register of the
completion queue to the new value of head to signal that the completion entry has been
acknowledged and processed. Depending on how the driver configures the NVMe
controller, the device may send an interrupt signal upon completion.

Depending on the amount of data, different data pointers are passed to the command

6

2 Background

NVMe Command

PRP 1

PRP 2

d ptr[0]

d ptr[1]

Page 1

Page 2

Page 3

Page 4

PRP Entry 1

PRP Entry 2
...

PRP Entry n

PRP Entry 1

PRP Entry 2
...

PRP Entry n

PRP List 1

PRP List 2

PRP List n...

Figure 2.3: Visualisation of the PRP lists in NVMe commands

for reading and writing. The addresses passed to the data pointers are called Physical
Region Page (PRP), which is nothing more than a pointer to a physical memory page.
Another data structure for describing data buffers is the Scatter Gather List (SGL);
however, these are not supported by all NVMe SSDs, while PRPs are.

For I/O operations sized less or equal to one page (by default 4 KiB), we pass the
physical address to Data pointer 1 (d_ptr[0]). For requests which cross one memory
boundary, we set d_ptr[0] to the physical address and Data pointer 2 (d_ptr[1]) to the
address of the second block of data, e.g. d_ptr[0] + nvme_page_size for contiguous
memory. Once the I/O operation spans more than two pages, a pointer to a PRP list
is passed to d_ptr[1]; this is depicted in Figure 2.3. A PRP list is a list of PRP entries
where the last entry points to the following PRP list, essentially an array of pointers.

7

2 Background

2.5 Rust

Memory bugs remain amongst the most exploited vulnerabilities [12], and companies
such as Google have begun to transition away from C and C++ towards using memory-
safe languages, like Java, Rust or Go [7]. Meanwhile, an effort exists to integrate Rust
into the Linux kernel spearheaded by the Rust for Linux project2, with Linux adopting
support for the programming language with release 6.1.

Rust3 is a modern systems programming language focusing on safety, speed and
concurrency. It was designed to provide memory and thread safety guarantees through
a unique ownership model without any performance pitfalls. These safety checks are
done at compile time, eliminating common bugs like null-pointer dereferences and data
races. Furthermore, Rust is a compiled language without a garbage collector, leading to
much better performance than interpreted languages and less overhead than languages
with a garbage collector.

With all these factors in mind, Rust seems to be an ideal programming language for
developing (user space) device drivers where safety and efficiency are paramount.

2https://rust-for-linux.com/
3https://www.rust-lang.org/

8

https://rust-for-linux.com/
https://www.rust-lang.org/

3 Related Work

Writing device drivers is nothing new; as such, we will go over the user space NVMe
drivers implemented by SPDK, Redox and Redleaf, the latter two also written in
Rust like vroom. Additionally, we will look at what I/O APIs Linux offers for high
throughput.

3.1 SPDK

Originally developed by Intel, the Storage Performance Development Kit (SPDK)
provides a large set of tools libraries for high-performance storage applications, at the
centre of which is its NVMe driver. The driver itself is poll-based, zero-copy, and runs
in user space. By eliminating interrupts and system calls entirely, SPDK achieves the
highest performance out of all modern storage APIs [2]. However, its added complexity
raises the question of whether it’s possible to write a user space, poll-based driver in
Rust that achieves similar performance while also focusing on simplicity.

3.2 Redox

Redox is a Unix-like operating system written entirely in Rust to be a “robust, reliable
and safe general-purpose operating system” [17]. Its development began in 2015 by
Jeremy Soller and is still being actively worked on at the time of writing.

Redox is based on a microkernel architecture, so many operating system function-
alities run in user space, especially drivers. Its design focuses on minimalism and
modularity, emphasising implementing as much of the operating system in user space
as possible, improving system stability and security. Currently, Redox’s NVMe driver
employs an interrupt-driven architecture and supports asynchronous I/O to the NVMe
device, using Future’s for interrupt handling.

There have been no performance evaluations of Redox’s NVMe driver at the time of
writing.

9

3 Related Work

3.3 RedLeaf

Like Redox, RedLeaf [16] is also a microkernel operating system written in Rust.
Developed by the University of Utah’s Mars Research Group in 2020, RedLeaf’s NVMe
user space driver shares a similar structure to Redox’s driver. Their benchmark results
show that the RedLeaf driver can achieve an I/O throughput within 1% of and, in some
cases, even exceeding what SPDK achieves [13]. It is important to note that Redleaf’s
driver was only tested in its sequential reading and writing performance.

3.4 Linux

Linux provides various APIs for handling I/O operations, the most prominent for
asynchronous I/O being libaio and io_uring; the latter is still being actively worked
on and improved upon.

With the use of libaio, applications can access block devices asynchronously. This
centres around the two system calls io_submit() and io_getevents(). As the names
suggest, the former submits I/O requests to the kernel, while the latter retrieves I/O
completions. With two system calls required per request, there comes significant
overhead from context switches, with data being copied from kernel to user space and
vice versa.
io_uring, on the other hand, “implements a shared memory-mapped, queue-driven

request/response processing framework” [2] by implementing a submission and com-
pletion ring which is mapped into user space and shared with the kernel. An application
can add submissions to the submission ring without any system calls; however, by
default, it notifies the kernel about new entries in the ring with io_uring_enter(),
similar to updating the submission queue doorbell in the NVMe specification. As the
completion queue is mapped into user space, it is also possible to poll for completions
by polling for new entries in the completion ring, the alternative is to wait for new
completions with io_uring_enter(). io_uring can also spawn a kernel thread, which
polls for new submissions; thus, it can handle I/O without system calls. In this mode,
io_uring can achieve performance within 10% of SPDK, albeit at a higher CPU usage,
requiring CPU cores for the polling threads to achieve higher throughput [2].

10

4 Implementation

Our driver implementation takes architectural inspiration from the driver implemented
in Redox, as well as notes from SPDK; additionally, many utility functions are adapted
from those in ixy.rs [3]. All NVMe commands and directives are implemented based
on Revision 1.4 of the NVMe Specification [14]. The source code can be found at
https://github.com/bootreer/vroom.

4.1 User Space Drivers

Like SPDK, vroom runs entirely in user space and implements zero-copy I/O operations,
as well as a poll-based architecture; SPDK1 being the de-facto standard for NVMe
devices in high throughput environments. To write a user space driver, we use all the
concepts explained in chapter 2. The driver can access the device after memory mapping
device files from user space, which offers more flexibility, simplicity, and stability
over kernel drivers; with access to debugging tools and overall fewer restrictions,
the development of user space drivers is much easier, and the ability to use any
programming language is also guaranteed. User space drivers are also less likely to
cause system crashes or kernel panics due to bugs; faults in user space can often be
handled gracefully, improving overall system stability. By avoiding context switches,
these drivers can reduce overall latency and increase throughput.

Given these advantages, we chose to develop a user space NVMe driver rather than
kernel space.

4.2 Memory-Mapped I/O

Listing 4.1 shows how to implement memory-mapping a PCIe resource in Rust. In
this example, we open the resource0 file with read and write access and pass the
file descriptor and its length to libc::map. As libc::mmap directly calls mmap(2), the
function call is wrapped in an unsafe block. The BARs are mapped as shared memory,
so changes to the mapped memory are also written back to the file and vice-versa. If

1https://spdk.io

11

https://github.com/bootreer/vroom
https://spdk.io

4 Implementation

Listing 4.1: Memory mapping a PCIe resource in Rust

pub fn map_resource(pci_addr: &str) -> Result<(*mut u8, usize), Error> {
let path = format!("sys/bus/pci/devices/{}/resource0", pci_addr);

let file = fs::OpenOptions::new().read(true).write(true).open(&path)?;
let len = fs::metadata(&path)?.len() as usize;

let ptr = unsafe {
libc::mmap(

ptr::null_mut(),
len,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_SHARED,
file.as_raw_fd(),
0,

) as *mut u8
};

if ptr.is_null() || len == 0 {
Err("pci␣mapping␣failed".into())

} else {
Ok((ptr, len))

}
}

the function returns a null pointer or the length of the file is 0, we return an error.
Otherwise, the pointer and the file length are returned as a pair.

4.3 Direct Memory Access

We use DMA to enable the transfer of data between the host system and the NVMe
device. We initialise DMA memory for all submission and completion queues, as well
as buffers that the device can read from and write to. As PCIe devices access memory
via physical addresses independently of the CPU, we require the buffers we use for
DMA to stay in main memory. We can use mlock(2) to guarantee a memory page
is locked in main memory; however, the mapping is not static for 4 KiB pages, the
standard page size on Linux. Instead, we make use of 2 MiB huge pages for this, where

12

4 Implementation

the physical addresses are pinned in Linux [5]. Enabling the usage of huge pages on
the operating system is done with the shell script setup-hugetlbfs.sh, which creates
a mount point for huge pages and writes a number of huge pages to sysfs files. Now
we can allocate memory by creating the file in the newly mounted directory and then
memory map the file with mmap(2) and lock it in memory with mlock(2) by using the
appropriate bindings in the libc crate. We then derive the physical memory address of
the page through /proc/self/pagemap.

pt
e
is
so
ft
-d
ir
ty

pa
ge

ex
cl
us
iv
el
y
m
ap
pe
d

fil
e-
pa
ge

or
sh
ar
ed
-a
no
n

pa
ge

sw
ap
pe
d

pa
ge

pr
es
en
t

0 54 63

Page Frame Number zero

Figure 4.1: Fields of a pagemap entry when the page is present in main memory

The pagemap contains one 64-bit value for each virtual page; our huge page is in
main memory, so the pagemap entry is structured as depicted Figure 4.1. Finding the
relative index of the page is done by taking the virtual address of it and dividing it by
the page size, which we use to locate the corresponding pagemap entry. Constructing
the physical address from the pagemap entry and the virtual address is done by taking
the Page Frame Number (Bits 0-54), multiplying that by the page size to get the physical
address of the page, to which we add (addr % pagesize), the offset within the physical
page. For 2 MiB pages, this offset is 0. Listing 4.2 shows how this is done in Rust.

One of the reasons vroom needs to run as root is due to requiring CAP_SYS_ADMIN
to read the Page Frame Numbers ever since the Rowhammer vulnerability exploit, i.e.
from Linux 4.0 onwards.

For DMA, we define the struct Dma<T>, with which we can allocate a memory-mapped
huge page, encapsulating its virtual address type *T and physical address. We also
define the trait DmaSlice, which allows us to iterate over chunks of the DMA memory
and use a subsection of the memory via slicing. This trait is used for zero-copy I/O
operations.

4.4 Architecture

Our overall goal was to design a lightweight driver where external dependencies are
kept to a minimum. As such, we only require the crates libc for bindings to C library

13

4 Implementation

Listing 4.2: Translating a virtual address to its physical address

fn virt_to_phys(addr: usize) -> Result<usize, Error> {
let pagesize = unsafe { libc::sysconf(libc::_SC_PAGESIZE) } as usize;

let mut file = fs::OpenOptions::new()
.read(true)
.open("/proc/self/pagemap")?;

file.seek(io::SeekFrom::Start(
(addr / pagesize * mem::size_of::<usize>()) as u64,

))?;

let mut buffer = [0_u8; mem::size_of::<usize>()];
file.read_exact(&mut buffer)?;

let phys = unsafe {
mem::transmute::<[u8; mem::size_of::<usize>()], usize>(buffer)

};
Ok((phys & 0x007F_FFFF_FFFF_FFFF) * pagesize + addr % pagesize)

}

14

4 Implementation

functions and byteorder for reading different-sized integers and to avoid unnecessary
unsafe code from working with raw bytes.

Listing 4.3: NvmeDevice struct definition

pub struct NvmeDevice {
pci_addr: String,
addr: *mut u8, // BAR address
len: usize, // BAR length
dstrd: u16, // Doorbell stride
admin_sq: NvmeSubQueue, // Queues
admin_cq: NvmeCompQueue,
io_sq: NvmeSubQueue,
io_cq: NvmeCompQueue,
buffer: Dma<u8>, // 2MiB of buffer
prp_list: Dma<[u64; 512]>, // PRP list
pub namespaces: HashMap<u32, NvmeNamespace>,
pub stats: NvmeStats,
q_id: u16,

}

The entry point to accessing an NVMe device on our driver is the NvmeDevice
struct (Listing 4.3). Like in Redox, we designed this struct to be able to handle all
NVMe operations, i.e. Administrative and I/O capabilities; however, as we haven’t
implemented async, we handle the request submission and completion polling from
beginning to end, meaning requests currently operate synchronously.

To enable multithreaded I/O processing, we have defined NvmeQueuePair, so, akin
to SPDK, each thread can have its own queue pair to handle reading and writing
without needing locking access to a single instance of NvmeDevice. With the queue
pair, submissions and completions can be handled independently of one another. Each
queue pair encapsulates a unique identifier, a completion and submission queue. With
unique identifiers, we guarantee each queue pair only writes to its corresponding
doorbell registers, thus enabling lock-free multithreaded I/O to the NVMe device.

4.5 Driver Initialisation

In this section, we will go over the initialisation process of the driver, looking at what
happens within the function init() in lib.rs and the functions it calls; this function
returns an instance of NvmeDevice if nothing goes wrong.

Before any configuration and initialisation are done, we check if the PCIe device has

15

4 Implementation

the class id 0x0108: 0x01 for mass storage device, 0x08 the NVMe subclass. We then
unbind the kernel driver from the NVMe device by writing the PCIe address of the
device to the unbind file in sysfs. This is followed by enabling the bus master and
disabling interrupts by setting the appropriate bits in the PCI command register, thus
enabling DMA and disabling interrupts entirely, as our driver is poll-based. At this
point, we also initialise all the relevant structs required for the driver, e.g. admin and
I/O queues.

The BARs of the NVMe device are then mapped into main memory, as described
in section 4.2. We then follow the initialisation procedure described in the NVMe
specification. First, we disable the controller by setting the EN (enable) bit to 0 in the CC
(Controller Configuration) register. We wait for the ready bit in the CSTS (Controller
Status) register to be set to 0, after which we can configure the controller. Configuring
the controller involves setting register values to those we require, such as the attributes
of the admin queues and command entries. All relevant offsets for the registers are
stored in the enum NvmeRegs32 and NvmeRegs64. After all the configuration is set, the
controller is re-enabled by setting the EN bit to 1. Now, the NVMe controller is ready to
process admin submissions.

Listing 4.4: Writing to a 32 bit register

fn set_reg32(&self, reg: u32, value: u32) {
assert!(reg as usize <= self.len - 4, "memory␣access␣out␣of␣bounds");
unsafe {
std::ptr::write_volatile(
(self.addr as usize + reg as usize) as *mut u32, value

);
}

}

Although we use unsafe functions to access the BARs of the NVMe device, with
an assertion guard, we can make sure that all accesses to the registers are not out of
bounds; shown by Listing 4.4 for writing to 32-bit registers.

After this, we request an I/O completion queue, followed by a request for an I/O
submission queue so the NvmeDevice can do I/O operations. Finally, we identify the
namespaces, storing these in a HashMap in the NvmeDevice.

4.6 I/O Operations

As all commands are processed through submission and completion queues, we have
defined the structs NvmeSubQueue, and NvmeCompQueue, which store a NvmeCommand

16

4 Implementation

array, and NvmeCompletion array each on a huge page. The submission entry being 64
bytes in size means that at most 1024 entries fit on a 2 MiB huge page; for simplicity, we
have not implemented queues spanning multiple pages. Thus, the maximum number
of outstanding submissions we currently support is 1023 per queue.

Name Zero-Copy Struct

read() Yes NvmeDevice
write() Yes NvmeDevice
read_copied() No NvmeDevice
write_copied() No NvmeDevice
batched_read() No NvmeDevice
batched_write() No NvmeDevice

submit_io() Yes NvmeQueuePair

Table 4.1: I/O methods in vroom

Table 4.1 contains an overview of all the methods responsible for reading or writing.
We pass references to impl DmaSlice to the zero-copy methods, which are iterated over
in chunks of 8196 KiB, as larger chunks require the use of PRP lists. We avoid building
PRP lists for each request for now, as these require DMA-able memory. Additionally,
submit_io() returns the number of requests added to the submission queue, as it is
the caller’s responsibility to make sure completions are handled with complete_io().

As for the non-zero-copy methods, we pass [u8] slices, which are copied chunk-wise
to the DMA buffer in NvmeDevice for writes or copied from for reads. For these methods,
we can iterate over the data buffer in larger chunks, more specifically 512 KiB chunks,
as we have already constructed a PRP list for the DMA buffer in the initialisation of
NvmeDevice. The batched read and write methods split the requests into smaller chunks
and submit these in batches, taking advantage of the parallel nature of NVMe SSDs.

Aside from the data buffer, the user also passed the logical block address (LBA) for
the I/O operation. The length of data written is derived from the size of the buffer.

17

5 Evaluation

We need to benchmark its performance to evaluate whether vroom loses out on
performance due to a more straightforward design and fewer optimisations. In this
chapter, we analyse vroom’s performance, i.e. throughput and latency, while comparing
it to other I/O engines.

5.1 Setup

All benchmarks are run on a system with an Intel Xeon E5-2660 with 251 GiB of RAM
running Ubuntu 23.10 with a 1 TB Samsung Evo 970 Plus NVMe SSD, which has a 1 GB
cache; the throughput and bandwidth limits of the SSD are noted in Table 5.1.

In the following sections we will compare our driver’s performance with the datasheet
numbers in Table 5.1, as well as against other storage engines: libaio, io_uring, SPDK
and the Linux file I/O API pread/pwrite (psync). Each storage engine is tested by
running a read or write workload over 900 seconds for single-threaded I/O and 60
seconds for multithreaded I/O, with I/O unit sizes of 4 KiB. We tested random I/O
instead of sequential I/O, as achieving good random read and write performance is
generally more challenging.

The NVMe controller is aware when a device is empty and thus processes read
requests without performing any read operations. On an empty drive, the reported
read performance will be much higher. Hence, all read tests are done on a full drive,
i.e. each LBA has been written to at least once.

Mode Configuration Throughput

Sequential Read - 3500 MB/s
Sequential Write - 3300 MB/s

Random Read
QD 1 Thread 1 19 KIOPS
QD 32 Thread 4 600 KIOPS

Random Write
QD 1 Thread 1 60 KIOPS
QD 32 Thread 4 550 KIOPS

Table 5.1: Samsung Evo 970 Plus performance limits as per the datasheet [19]

18

5 Evaluation

Listing 5.1: fio configuration

[global]
io_engine={spdk,io_uring,libaio,psync}
rw={randread,randwrite,read,write}
blocksize=4k
direct=1
norandommap=1
runtime=900

numjobs={1,4}
queue_depth={1,32}
group_reporting=1

For writes, the SSD is cleared beforehand, such that it is in a comparable state for
each test. Full NVMe SSDs report worsened write performances due to wear-levelling
and write amplification, where the NVMe controller performs garbage collection and
internally reorders data.

We use the Flexible I/O tester fio1 to test the performance capabilities of libaio,
io_uring and psync, and in some cases SPDK. In Figure 5.4, Figure 5.5 we use numbers
from SPDK’s own spdk_perf_tool tool, as their fio plugin introduces some overhead;
for Figure 5.6, Figure 5.7, Figure 5.8 we use log files fio creates.

We use the fio configuration in Listing 5.1, with the Linux storage engines perform-
ing I/O to the NVMe as a block device. The same parameters were used when testing
with spdk_perf_tool.

Our driver, vroom, is tested using our own time-based workload simulating the same
workloads started by fio, performing reads and writes to random block-aligned LBAs.

5.2 Throughput

In this section, we will analyse the throughput capabilities of our NVMe driver and
how changing parameters affect performance. Afterwards, we will compare vroom’s
throughputs with those of the other I/O engines.

Observing the throughput trend over time in Figure 5.1, we see the write throughput
begin at a heightened rate, at around 800 thousand IOPS (KIOPS) and after approxi-
mately 40 seconds, decreasing to approximately 200 KIOPS. The SSD has a so-called

1https://github.com/axboe/fio

19

https://github.com/axboe/fio

5 Evaluation

“TurboWrite” buffer region of 42 GB, which allows for faster writes by simulating a
Single Level Cell NAND [18]. This allows for lower write latencies, so heightened write
throughputs, as long the buffer is not fully saturated. Samsung states in their data
sheet that random writes after this have a throughput of 300 KIOPS [19]. Averaged
over 900 seconds, we achieve 255 KIOPS when writing to an empty drive. On the other
hand, read throughput stays relatively constant throughout the entire test, at around
440 KIOPS, 160 KIOPS below the datasheet value.

0 10 20 30 40 50 60 70 80 90 100 110 120

200

300

400

500

600

700

800

Time [s]

T
h
ro
u
gh

p
u
t
[K

IO
P
S
]

Write
Read

max. write

max. read

Figure 5.1: vroom’s random read and write throughputs over time, QD32T4

To investigate the effects the number of threads and queue depth (QD) have on
throughput, we performed multiple tests with different parameters on the read through-
put rather than write to minimise variance.

Observing how the number of threads impacts the throughput in Figure 5.2, we see
the throughput double each time we double the number of threads until 16 threads;
afterwards, we see gains become more minor. With a queue depth of 32, we see an
increase in throughput until 8 threads, after which the throughput plateaus at around
460 KIOPS. As our CPU has 40 hardware threads, we would expect diminishing returns
or even regression by increasing the number of threads beyond 40.

20

5 Evaluation

1 2 4 8 16 32 64

0

100

200

300

Threads

T
h
ro
u
g
h
p
u
t
[K

IO
P
S
]

(a) Queue depth 1

1 2 4 8 16 32 64

0

100

200

300

400

500

Threads

T
h
ro
u
g
h
p
u
t
[K

IO
P
S
]

(b) Queue depth 32

Figure 5.2: Threads vs. IOPS; vroom random read

When increasing the queue depth, we can notice a similar growth where the IOPS
doubles each time the queue depth doubles in size until QD16 in Figure 5.3; at QD64,
the throughput is higher than at 64 threads with QD1 by approximately 80 KIOPS. By
increasing queue depth, we achieve higher throughput than increasing the amount of
threads when using a queue depth of 32. Here, we reach a plateau with a queue depth
of 256 with a throughput of around 480 KIOPS. With this Samsung SSD, there is no
need to implement queues deeper than 256. Increasing queue depth leads to better
performance than increasing the threads when comparing “queue depths”, i.e. QD32T4
(≈ QD128= 32 · 4)) has a lower throughput than QD128T1.

21

5 Evaluation

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

500

Queue depth

T
h
ro
u
gh

p
u
t
[K

IO
P
S
]

Figure 5.3: Queue depth vs. IOPS; vroom random read

read write

10

20

30

40

50

60

70

80

90

100

110

120

130

14.5

128

14.4

126

12.5

57.7

10.4

39.2

12.7

60.8

19

60

T
h
ro
u
gh

p
u
t
[K

IO
P
S
]

SPDK vroom

io uring libaio
psync Data sheet

Figure 5.4: Random read (900 s) and write (900 s) throughput; Queue depth 1

Comparing the throughput of I/O engines in terms of synchronous I/O, i.e. single-
threaded with a queue depth of 1, we see the user space drivers performing above the
kernel-based APIs. Looking at read throughput in Figure 5.4, none of the I/O engines

22

5 Evaluation

read write
0

50

100

150

200

250

300

350

400

450

500

550

600

650

436

608

444

604

438

589

437

569
600

550

T
h
ro
u
g
h
p
u
t
[K

IO
P
S
]

SPDK vroom

io uring libaio

Data sheet

Figure 5.5: Random read (60 s) and write (60 s) throughput; Queue depth 32, 4 Threads

come within 20% of the maximum achievable throughput of the SSD, performing
between 10 KIOPS and 15 KIOPS, with SPDK and vroom performing comparably at
14.5 KIOPS and 14.4 KIOPS, respectively. In terms of write performance, we see psync
and io_uring right around 60 KIOPS, while libaio performs considerably below the
limit of the SSD. Both SPDK and vroom achieve IOPS numbers doubling the limit
stated by Samsung, at 128 KIOPS and 126 KIOPS, respectively.

As Samsung has not specified the test parameters and environment used, likely they
did not perform these read tests on a fully utilised drive or write tests on an empty one.
This means they would likely expect higher IOPS than we observe for reads, as the
NVMe controller would access unwritten areas, increasing the overall IOPS number. For
writes, the NVMe controller performs garbage collection when overwriting non-empty
areas, introducing some overhead and, thus, resulting in fewer IOPS overall.

As NVMe SSDs are able to process a multitude of requests in parallel, we also analyse
multithreaded read and write performances; specifically, we used 4 threads, each with
a queue depth of 32, without explicitly batching requests. psync, as it only allows
synchronous I/O, cannot be tested with these parameters.

Like in the previous test, all storage engines perform pretty closely in terms of read
as we see in Figure 5.5, here all within 1% of one another, with vroom being the most
performant at 444 KIOPS; however none come close to the QD32T4 600 KIOPS limit in
the datasheet. Interestingly, once we introduce deeper queues and multithreading, the
system call overhead does not affect libaio and io_uring to the same degree as for
synchronous I/O when reading.

23

5 Evaluation

0 10 20 30 40 50 60 70 80 90 100 110 120

200

400

600

800

Time [s]

T
h
ro
u
gh

p
u
t
[K

IO
P
S
]

SPDK
vroom

io uring
libaio

max. write

Figure 5.6: QD32T4 random write throughput over time

Over 900 seconds, all I/O engines achieve similar throughputs on average. As
observed in Figure 5.1, the overall write throughput decreases immensely once the SSD’s
write buffer is saturated. Over longer write workloads, the performance disparities
become negligible. Due to this, we look at the average write throughput over 60 s rather
than 900 s. Averaged over 60 s, all I/O engines surpass the 550 KIOPS “ceiling”, with
the user space drivers performing marginally better than the kernel bound storage
engines. Similarly to Figure 5.4, libaio achieves the lowest throughput for writes.

When we look at how the throughput changes over time in Figure 5.6, similar
to the observation of Figure 5.5, we see SPDK and vroom both ahead in terms of
peak throughput, achieving around 800 KIOPS, while io_uring and libaio have a
throughput of approximately 570 KIOPS and 500 KIOPS, respectively. Here, it is clear
that once the “TurboWrite” buffer is fully saturated, the SSD becomes the bottleneck,
where each I/O engine performs nearly identically with a throughput of around
200 KIOPS. Also note that Figure 5.6 uses IOPS logs from fio, so realistically, the
throughput of SPDK would likely be higher than vroom initially.

5.3 Latency

As expected, the user space drivers achieve higher throughput numbers than the rest.
SPDK and our driver achieve IOPS numbers within 1% of one another while being
noticeably more performant than the Linux I/O APIs, especially when writing. System

24

5 Evaluation

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

100

10−2

10−4

Latency [µs]

C
C
D
F

SPDK
vroom
io uring
libaio
psync

90th percentile

99th percentile

99.99th percentile

99.999th percentile

(a) Random read

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

100

10−2

10−4

Latency [µs]

C
C
D
F

SPDK
vroom
io uring
libaio
psync

90th percentile

99th percentile

99.99th percentile

99.999th percentile

(b) Random write

Figure 5.7: Tail latencies

25

5 Evaluation

calls, and the consequent context switches cause this difference. This is especially
visible in Figure 5.7, where the tail distribution of the I/O latencies is plotted; here,
all I/O engines share a similar distribution, however, offset by a certain amount. The
system call overhead from psync and io_uring introduces around 10 µs over SPDK
and vroom, while libaio seemingly has some extra internal overhead adding in total
20 µs over vroom and SPDK.

Figure 5.8 confirms our takeaways from the observations of Figure 5.7: we also
see vroom and SPDK achieving nearly identical latency values. io_uring and psync
are, on average, slower by 9 µs and 8 µs, respectively, while libaio trails io_uring by
approximately 13 µs for reads and 7 µs for writes.

0 20 40 60 80 100 120 140 160 180

psync

libaio

io uring

vroom

SPDK

77.46

91.89

78.66

69.15

69.19

104.65

104.64

89.77

80.3

79.71

136.35

153.74

135.59

128.79

129.63

Latency [µs]

Average 99th percentile 99.99th percentile

(a) Random read

0 10 20 30 40

psync

libaio

io uring

vroom

SPDK

15.42

23.16

16.26

7.92

7.71

16.51

26.14

17.87

8.16

10.39

33.91

39.82

33.72

20.08

20.88

Latency [µs]

Average 99th percentile 99.99th percentile

(b) Random write

Figure 5.8: Latencies

26

6 Conclusion

In this thesis, we have presented vroom, a novel user space and poll-based NVMe
driver written in Rust. Our evaluations have shown here that developing a user space
NVMe driver in a higher-level programming language with SPDK-like performance is
feasible while simultaneously containing fewer lines of driver code overall. We reach
comparable throughput speeds as SPDK while outperforming the Linux kernel I/O
APIs by avoiding the kernel altogether.

Future Work There are still many aspects in the driver where optimisations can be
investigated, such as the effect of prefetching pages for I/O operations or implementing
IOMMU support, so root privileges are not required to start the driver and measure the
performance impact it may have. Investigating the performance impacts of interrupts
compared to polling and comparing different interrupt methods are also open topics.

As vroom does not support all NVMe features, we can still add many features to
the driver, like supporting SGLs and comparing them to PRP lists or using the NVMe
controller’s onboard memory buffer.

With libaio not being actively worked on, the last commit being made two years
ago [10], and io_uring exhibiting enough security concerns that Google disabled the
use of the storage engine on all production servers [6], and the containerd runtime
disabling io_uring system calls [8] altogether, there lacks an I/O engine which is safe,
performant and simple to use at the same time; extending vroom by a block device and
filesystem layer could serve to fill this gap.

27

List of Figures

2.1 Structure of PCIe configuration space . 4
2.2 Example queue and structure of the NVMe submission entry 6
2.3 Visualisation of the PRP lists in NVMe commands 7

4.1 Fields of a pagemap entry when the page is present in main memory . 13

5.1 vroom’s random read and write throughputs over time, QD32T4 20
5.2 Threads vs. IOPS; vroom random read 21
5.3 Queue depth vs. IOPS; vroom random read 22
5.4 Random read (900 s) and write (900 s) throughput; Queue depth 1 . . . 22
5.5 Random read (60 s) and write (60 s) throughput; Queue depth 32, 4 Threads 23
5.6 QD32T4 random write throughput over time 24
5.7 Tail latencies . 25
5.8 Latencies . 26

28

List of Tables

4.1 I/O methods in vroom . 17

5.1 Samsung Evo 970 Plus performance limits as per the datasheet [19] . . . 18

29

Listings

4.1 Memory mapping a PCIe resource in Rust 12
4.2 Translating a virtual address to its physical address 14
4.3 NvmeDevice struct definition . 15
4.4 Writing to a 32 bit register . 16

5.1 fio configuration . 19

30

Bibliography

[1] C. Cutler, M. F. Kaashoek, and R. T. Morris. “The benefits and costs of writing
a POSIX kernel in a high-level language.” In: Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation. OSDI’18. Carlsbad, CA,
USA: USENIX Association, 2018, 89–105. isbn: 9781931971478.

[2] D. Didona, J. Pfefferle, N. Ioannou, B. Metzler, and A. Trivedi. “Understanding
modern storage APIs: a systematic study of libaio, SPDK, and io_uring.” In:
Proceedings of the 15th ACM International Conference on Systems and Storage. SYSTOR
’22. Association for Computing Machinery, 2022, 120––127. isbn: 9781450393805.
doi: 10.1145/3534056.3534945.

[3] S. Ellmann. ixy.rs source code. 2018. url: https://github.com/ixy-languages/
ixy.rs (visited on 04/10/2024).

[4] P. Emmerich, S. Ellmann, F. Bonk, A. Egger, E. G. Sánchez-Torija, T. Günzel, S.
di Luzio, A. Obada, M. Stadlmeier, S. Voit, and G. Carle. “The Case for Writing
Network Drivers in High-Level Programming Languages.” In: 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS).
2019, pp. 1–13. doi: 10.1109/ANCS.2019.8901892.

[5] P. Emmerich, M. Pudelko, S. Bauer, and G. Carle. “User Space Network Drivers.”
In: Proceedings of the Applied Networking Research Workshop. ANRW ’18. Mon-
treal, QC, Canada: Association for Computing Machinery, 2018, 91–93. isbn:
9781450355858. doi: 10.1145/3232755.3232767.

[6] Google. Learnings from kCTF VRP’s 42 Linux kernel exploits submissions. 2023. url:
https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-
linux.html (visited on 04/12/2024).

[7] Google. Secure by Design: Google’s Perspective on Memory Safety. 2024. url: https://
security.googleblog.com/2024/03/secure-by-design-googles-perspective-
on.html (visited on 04/10/2024).

[8] V. Goyal. containerd commit a48ddf4. 2023. url: https://github.com/containerd/
containerd/commit/a48ddf4a208b24eadea82f0eac62e236f2acf004 (visited on
04/12/2024).

31

https://doi.org/10.1145/3534056.3534945
https://github.com/ixy-languages/ixy.rs
https://github.com/ixy-languages/ixy.rs
https://doi.org/10.1109/ANCS.2019.8901892
https://doi.org/10.1145/3232755.3232767
https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://security.googleblog.com/2024/03/secure-by-design-googles-perspective-on.html
https://security.googleblog.com/2024/03/secure-by-design-googles-perspective-on.html
https://security.googleblog.com/2024/03/secure-by-design-googles-perspective-on.html
https://github.com/containerd/containerd/commit/a48ddf4a208b24eadea82f0eac62e236f2acf004
https://github.com/containerd/containerd/commit/a48ddf4a208b24eadea82f0eac62e236f2acf004

Bibliography

[9] G. Haas, M. Haubenschild, and V. Leis. “Exploiting Directly-Attached NVMe
Arrays in DBMS.” In: CIDR. 2020.

[10] libaio source code. url: https://pagure.io/libaio (visited on 04/12/2024).

[11] Linux Kernel documentation. VFIO - "Virtual Function I/O".

[12] MITRE Corporation. 2023 CWE Top 10 KEV Weaknesses. 2024. url: https://cwe.
mitre.org/top25/archive/2023/2023_kev_list.html (visited on 04/10/2024).

[13] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zellweger, and A.
Burtsev. “RedLeaf: Isolation and Communication in a Safe Operating System.” In:
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 21–39. isbn: 978-1-939133-19-9. url: https:
//www.usenix.org/conference/osdi20/presentation/narayanan-vikram.

[14] NVM Express, Inc. NVM Express Base Specification Rev. 1.4. 2019. url: https:
//nvmexpress.org/wp- content/uploads/NVM- Express- 1_4- 2019.06.10-
Ratified.pdf (visited on 04/10/2024).

[15] PCI-SIG. PCI Express Base Specification Rev. 5.0, Version 1.0.

[16] RedLeaf. url: https://mars-research.github.io/projects/redleaf/ (visited
on 04/03/2024).

[17] Redox. url: https://redox-os.org/ (visited on 04/03/2024).

[18] Samsung Electronics Co., Ltd. Samsung Solid State Drive TurboWrite Technol-
ogy. 2013. url: https://images- eu.ssl- images- amazon.com/images/I/
914ckzwNMpS.pdf (visited on 04/10/2024).

[19] Samsung Electronics Co., Ltd. Samsung V-NAND SSD 970 EVO Plus Data Sheet.
2021. url: https://download.semiconductor.samsung.com/resources/data-
sheet/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev.3.0_10129514059241.
pdf (visited on 04/10/2024).

[20] Storage Performance Development Kit. Direct Memory Access (DMA) From User
Space. url: https://spdk.io/doc/memory.html (visited on 04/11/2024).

32

https://pagure.io/libaio
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://mars-research.github.io/projects/redleaf/
https://redox-os.org/
https://images-eu.ssl-images-amazon.com/images/I/914ckzwNMpS.pdf
https://images-eu.ssl-images-amazon.com/images/I/914ckzwNMpS.pdf
https://download.semiconductor.samsung.com/resources/data-sheet/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev.3.0_10129514059241.pdf
https://download.semiconductor.samsung.com/resources/data-sheet/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev.3.0_10129514059241.pdf
https://download.semiconductor.samsung.com/resources/data-sheet/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev.3.0_10129514059241.pdf
https://spdk.io/doc/memory.html

	Abstract
	Introduction
	Background
	PCI Express
	Memory-Mapped I/O
	Direct Memory Access
	Non-Volatile Memory Express
	Rust

	Related Work
	SPDK
	Redox
	RedLeaf
	Linux

	Implementation
	User Space Drivers
	Memory-Mapped I/O
	Direct Memory Access
	Architecture
	Driver Initialisation
	I/O Operations

	Evaluation
	Setup
	Throughput
	Latency

	Conclusion
	List of Figures
	List of Tables
	Listings
	Bibliography

