

x86 Intrinsics Cheat Sheet

Jan Finis finis@in.tum.de

Bit Operations								
Boolean Logic		[Bit Shifting & Rotation					
Bool XOR	Bool AND	Bool NOT AND	Bool OR		Arithmetic Shift Right	Logic Shift Left/Right		Rotate Left/ Right
SSE XOT sil28,ps[SSE],pd mi xor sil28 (mi a,mi b)	sse and sil28,ps[sse],pd mi and sil28(mi a,mi b)	sse andnot si128,ps[sse],pd mi andnot_si128(mi a,mi b)	SSE OT si128,ps[SSE],pd mi or si128(mi a,mi b)		SSE2 Sra[i] epi16-64 NOTE: Shifts elements right	SSE2 Sl/rl[i] epi16-64 NOTE: Shifts elements left/		x86 [1] rot [<i>W</i>] 1/ <i>r</i> (u16-64) NOTE: Rotates bits in a <i>left</i> /
Selective Bit Moving Change the position of selected bits, zeroing out remaining ones					while shifting in sign bits. The i version takes an immediate as count. The version without i takes the lower 64bit of an SSE register.	right while shifting in zeros. The i version takes an immediate as count. The version without i takes the lower 64bit of an SSE register.		right by a number of bits specified in i. The 1 version is for 64-bit ints and the w version for 16-bit ints. u64 _lrotl(u64 a)
Bit Scatter (Deposit)	Bit Gather (Extract)	Movemask	Extract Bits		mi srai_epi32(mi a,ii32 i) mi sra_epi32(mi a,mi b)	mi slli_epi32 (mi a, ii i) mi sll_epi32 (mi a, mi b)		
вм12 pdep u32-64	BMI2	sse2 movemask epi8,pd,ps[sse]	вм11 bextr u32-64		Variable Arithmetic Shift	Variable Logic Shift		
NOTE: Deposit contiguous low bits from a to dst at the corresponding bit locations specified by mask m; all other bits in dst are set to zero.	NOTE: Extract bits from a at the corresponding bit locations specified by mask m to contiguous low bits in dst; the remaining upper bits in dst are set to zero.	NOTE: Createsa bitmask from the most significant bit of each element. i movemask_epi8 (mi a)	NOTE: Extracts 1 bits from a starting at bit s. u64 Destr_u64(u64 a,u32 s,u32 1) (a > s) & ((1 << 1)-1)		AVX2 Sl/rav epi32-64 NOTE: Shifts elements left/ right while shifting in sign	AVX2 <u>sl/rlv</u> epi32-64 NOTE: Shifts elements left/ right while shifting in zeros.		Bit Scan Forward/Reverse
u64_pdep_u64 (u64 a, u64 m)	u64 _pext_u64 (u64 a, u64 m)				shifted by an amount specified by the corresponding element in b.	by an amount specified by the corresponding element in b.		x86 _bit_scan_forward /reverse (i32)
Bit Masking set	t or reset a range of bits	mi slav epi32 (mi a, mi b) mi sllv epi32 (mi a, mi b) NOTE: Returns the index of the lowes t/highest bit set the 32bit in a. Undefined				NOTE: Returns the index of the <i>lowes t/highest</i> bit set in the 32bit in t a. Undefined if		
Zero High Bits	Reset Lowest 1-Bit	Mask Up To Lowest 1-Bit	Find Lowest 1-Bit		Bit Counting	Count specific ranges of 0 or 1 bits		a is 0. i32 bit scan forward (i32 a)
BMI2 bzhi u32-64	BMI1 blsr u32-64	BMI1 blsmsk u32-64	BMI1 blsi u32-64		Count 1-Bits (Popcount) _{I≤64}	Count Leading Zeros		Count Trailing Zeros
NOTE: Zeros al bits in a higher than and including the bit at in dex i. u64 <u>bohi</u>_u64 (u64 a, u32 i) det := a $\mathbf{IF}(i[7];0] < 64)$	NOTE: Returns a but with the lowest1-bit set to 0. u64 _blsr_u64 (u64 a) (a-1) & a	NOTE: Returns an int that has all bits set up to and including the lowest 1-bit in a or no bit set if a is 0. u64 _blsmsk_u64(u64 a)	NOTE: Returns an int that has only the lowest 1-bit in a or no bit set if a is 0. u64 _blsi_u64 (u64 a) (-a) & a		POPCNT DODCNT u32-64 NOTE: Counts the number of 1-bits in a.	LZCNT LZCNT u32-64 NOTE: Counts the number of leading zeros in a.		BMT1 TZCNT u32-64 NOTE: Counts the number of trailing zeros in a.
dst [63:n] := 0		(a-1) ^ a			u32 popent_u64 (u64 a)	u64 _lzcnt_u64 (u64 a)	[u64 _tzcnt_u64 (u64 a)

Conversions								
Packed Conver	Convert all element	Reinterpet Casts	Rounding					
Convert Float 16bit ↔ 32bit CVT16 CVTX Y ph ↔ ps NOTE: Converts between 4x 16 bit floats and 4x 32 bit floats (or 8 for 256 bit mode). For the 32 to 16-bit conversion, a ro unding mode r must be specified. m cvtph_ps (mi a) mi cvtps ph (m a, i r) Single Flement	Pack With Saturation SSE2 pack[u]s epi16,epi32 NOTE: Packs ints from two input registers into one register halving the bitwidth. Overflows are handled using saturates to the unsigned integer type. mi pack_epi32(mi a,mi b)	Sign Extend SSE4.1 CVtX Y epi8-32 NOTE: Sign extends each element from X to Y. Y must be longer than X. mi cvtepi8_epi32 (mi a)	Zero Extend SSE4.1 CvtX Y epu8-32 - ep18-32 NOTE: Zero extends each element from X to Y. Y must be longer than X. mi cvtepu8_epi32 (mi a)	S/D/132 Conversion sse2 cvt[t]X Y epi32, ps/d NOTE: Converts packed elements from X to Y. If pd is used as source or target type, then 2 elements are converted, otherwise 4. The t version is only available when casting to int and performs a truncation instead of rounding. md cvtepi32 pd(mi. a)	128bit Cast 128 SSE2 castX Y sil28,ps/d NTE: Reinterpret cast from X to Y. No operation is generated. md castsil28 pd(mi. a) 128/256bit Cast 256 AVX castX Y pdl28+pd256, psl28+ps256, sil28+ps256, sil28+ss266, sil28+ss266, sil28+ss266, sil28+ss266, sil28+ss266, sil28+ss266, sil28+ss266, si	See also: Conversion to int performs rounding implicitly Round up (ceiling) SSE4.1 ceil ps/d, ss/d md ceil_pd(md a) Round down (floor) SSE4.1 floor ps/d, ss/d md floor_pd(md a)		
Single Conversion to Float with Fill I28 SSE2 CVtX Y si32-64, ss/d → ss/d NOTE: Converts a single element in b from X to Y. The remaining bits of the result are copied from a. Ind cvtsi64_sd(md a, 164 b) double(b[63:0]) (a[127:64] << 64)	Single Float to Int Conversion SSE Cvt [t] X Y ss/d \rightarrow si32-64 NOTE: Converts a single element from X (int) to Y (float). Result is normal int, not an SSE register! The tversion performs a truncation instead of rounding. i cvtss_si32 (m a)	Single 128-bit Int Conversion I28 SSE2 CVLX Y si32-128 NOTE: Converts a single integer from X to Y. Either of the type smustbe si128. If the new type islonger, the integer is zero extended. mi cvtsi32_si128(i a)	Single SSE Float to Normal Float Conversion I28 SSE2 CVtX Y ss-f32, sd-f64 NOTE: Converts a single SSE float from X (SSE Float type) to Y (normal float type). f cvtss_f32 (m a)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	hole. Reinterpret as from X to Y. if cas is from X to Y. if cas is from 128 to 256 bit, then the upper bits are undefined! No operation is generated. m128d castpd256 pd128(m256d a) 256 bit Cast 256 AVX castX Y ps, pd, s1256 NOTE: Reinterpret casts from X to Y. No operation is generated. m256 castpd ps (m256d a)	Round ssE4.1 round ps/d, ss/d NOTE: Rounds according to a rounding paramater r. mcl round_pd(mcl a, i r)		

				Arit	hmetics					
				Bas	sic Arithmetics					
Register I/O Loading data into an SSE register or storing data from an SSE register			Overview Version 2.2		Multiplication					
Load Loading data into an SSE register	Fences	Misc I/O	Introduction						Mul High with	
			This cheat sheet displays most x86 intrinsics supported by Intel processors. The following intrinsics were omitted:		Carryless Mul	Mul	MulLow	Mul High	Downed & Coole	

Load Set Register Set Reversed Set reversed in the lowsking for the prove stored in the lowsking for the provestored in the lowsking for the prove stored	Fences Store Fence SSE sfence NOTE: Guaranteesthat every store instruction that precedes, in program order, is globally visible before any store instruction which follows the fence in program order. NOTE: Fetch the line of data from memory that contains a docation in the cache heirarchy specified by the locatify hint i. Load Fence NOTE: Guaranteesthat every store instruction which is probally visible before any load instruction which follows the fence in program order. NOTE: Guaranteesthat every load instruction which follows the fence in program order. V Ifence () More: Flush (v* ptr.) SE2 V Ifence () More: Flush (v* ptr.) SE2 Note: Guaranteesthat every memory access that every memory ac	This cheat sheet displays most x8 intrinsics supported by intel processors. The following intrinsics were entited: • double or disporting of instruction setsiles MM and 3DNOW! • And X23, at Viii of the smallable for one setting were entited: • intrinsics not supported by intel processors. The following intrinsics were entited: • intrinsics not supported by intel processors. The following intrinsics is attended in the future. • intrinsics not supported by intel processors. The following intrinsics is attended in the future. • intrinsics not supported by intel processors. The following intrinsics is attended in the future. • intrinsics intervent inter	Carryless Mul Exect Multiplication of two 64-bit multiplication of two 6
Image: Second	before any memory instruction which follows the fence in program order. v mfence ()	Interference of the intermediation of	Div/Sqrt/ReciprocalDivApprox. Reciprocal ssz div m rop ps (m a)Approx. Reciprocal Sqrt isz r sqrt ps,ss m rop ps (m a)Square Root ssz r sqrt ps,ss m rop ps (m a)Square Root ssz r sqrt ps,ss m rop ps (m a)Square Root ssz r sqrt m rop ps (m a)Square Root ssz r sqrt ps/d, ss/d m rop re (m a)Sgr ssz sqrt ps/d, ss/d m rop re (m a)Square Root ssz sqrt ps/d, ss/d m rop re (m a)Sgr ssz sqrt m rop re (m a)Sgr ssz sqrt ps/d, ss/d m rop re (m a)Sgr ssz sqrt m rop re (m a)Sgr re (m rop re (m
Image: Last size for the memory and spin (in the barkets) and the memory into the barkets) and in the memory into all states in the memory inthe memory into all states in the memory int			<section-header><section-header><section-header><section-header><section-header><section-header><complex-block></complex-block></section-header></section-header></section-header></section-header></section-header></section-header>
<section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	by cerver and a second	<section-header><section-header><section-header><section-header><section-header><complex-block></complex-block></section-header></section-header></section-header></section-header></section-header>