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ABSTRACT
Query optimization is a challenging process of DBMSs. When tack-
ling query optimization in the cloud, there exists a simultaneous
need of providing an optimal physical query execution plan, as well
as an optimal resource configuration among available ones. Cloud
computing features like resource elasticity and pricing make the
process of finding this optimal query plan amulti-objective problem,
with the monetary cost being an equally important factor to query
execution time. Apache Spark is a popular choice for managing big
data in the cloud. However, query optimization in its SQL module
(Spark SQL) involves a number of limitations due to the rule-based
nature of its optimizer, Catalyst. We propose a multi-objective cost
model for the extension of the query optimizer of Apache Spark,
aiming to minimize both objectives of query execution time and
monetary cost, as well as a methodology for exploring the space
of Pareto-optimal query plans and selecting one. The cost model is
implemented and tuned, and an experimental study is conducted
to validate its accuracy.
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1 INTRODUCTION
Query optimization is the most challenging step of query process-
ing. A query optimizer can either be rule-based, using heuristics
to convert the logical query plan to a physical one, or cost-based,
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using cost functions to compare alternative query plans and re-
turn the optimal according to its estimations. The architecture of a
cost-based query optimizer consists of three key stages that deter-
mine the quality of its predictions [9]: cardinality estimation, cost
modeling and plan enumeration.

The majority of works on query optimization aims to minimize
query execution time on fixed hardware, which is a valid assump-
tion in the on-premise world. Query processing in the Cloud, how-
ever, presents an extra challenge as alternative hardware instances
are available. Depending on the resource configuration that is used,
the execution might be completely different. Decision making in-
volves deciding on the type of the cluster, the number of instances
that will be used, their type, and their characteristics (e.g. RAM
size). In such a scenario, a query optimizer should be able to pick
both an optimal physical query execution plan, as well as a resource
configuration among available hardware instances, thus bridging
the gap between query and resource optimization [18].

In order to achieve this, optimizer costmodels should be hardware-
agnostic, being able to model the behaviour of a query plan in dif-
ferent clusters and systems. A hardware-agnostic cost model could
lead to lower costs as well as better resource efficiency [14].

Query optimization is usually associated with minimizing query
execution time. The performance of a query, however, can be evalu-
ated in terms of more objectives. Features of the cloud, like resource
elasticity and pricing increase the objectives that can be simultane-
ously optimized in a cloud setting [5]. Adding instances to achieve
maximum parallelization during query execution will in general
lead to lower execution times, but may also lead to much higher
monetary costs, as well as increased energy consumption. Mone-
tary cost is one of the most prevalent query optimization objectives
in the cloud [8, 10, 15]. Energy consumption has also been consid-
ered lately [13], as cloud providers yearn for reducing energy cost.
Other objectives that can be considered in multi-objective query
optimization are result precision [16], or data security.

Query optimization in big data systems, which are usually hosted
in the cloud, is particularly challenging. As a result, it is necessary
that the estimation components of query optimizers (cardinality
estimator, cost model) are accurate. One of the most popular big
data processing frameworks is Apache Spark, which is widely used
in research and industry. However, the query optimizer of Spark’s
SQL-based component, Spark SQL, has a limited cost model.

In this work, we propose a multi-objective cost model for Spark
SQL, for the objectives of query execution time and monetary cost.
For the time objective, we adopt an existing single objective cost
model [4] for Spark SQL, which shows promising accuracy. We also
conduct a detailed experimental study to validate it. For the money
objective, we introduce a formula in order to estimate the monetary
cost of a query, based on real cloud pricings.
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The cost model receives a query and a set of Spark application
configurations as an input, and returns the optimal query plans for
each configuration, resulting in a Pareto front. The returned plans
present different tradeoffs for the two objectives, and the user can
either select one or assign preference weights to the two objectives,
and be provided with a single query plan that best meets them.

We also conduct an experimental study on a private cloud envi-
ronment to validate the cost model accuracy and optimality for a
broadly adopted architecture, consisting of Spark, Yarn and HDFS.

Overall, the contributions of this work are the following:
• proposal of a multi-objective cost model for Spark SQL
• introduction of a formula for query monetary cost estimation
• reimplementation and validation of existing cost model for query
execution time estimation

• a detailed experimental study on a real private cloud environment
• a user-interactive method for exploring the space of alternative
query plans and choosing an optimal one
The rest of this paper is organized as follows. Related work is

discussed in Section 2. Section 3 describes the cost model that we
implemented. The experimental evaluation and its results follow in
Section 4, while Section 5 concludes the paper.

2 RELATEDWORK
Optimization in Spark The Spark SQL query optimizer, Catalyst
[3], is an extensible optimizer where new rules can be added. How-
ever, it is not ideal for cost-based query optimization. It only uses a
limited cost model, being unable to provide analytical estimations
for the execution time of a query plan. A number of research works
have focused on improving specific limitations of the Catalyst opti-
mizer [17].

Although Spark is highly configurable, its manual tuning is time
consuming and complex, due to the high-dimensional configura-
tion space. A lot of works provide frameworks for tuning Spark
applications [12, 15], in most cases with learned methods. The pro-
posed cost model can be useful in this perspective too, as apart
from producing optimal query plans, it can also be used for tuning
and comparing different application configurations.

Multi-objective query optimization Karampaglis et al. [6]
proposed a bi-objective query cost model suitable for query opti-
mization over a multi-cloud environment. It successfully provides
estimates of both the expected execution time and monetary cost.

A number of works have considered multi-objective query op-
timization in the cloud. Kllapi et al. [7] proposed a technique to
optimize dataflow scheduling on a set of containers and form one
schedule best meeting user constraints. Their work can also be
used for query optimization, when the execution of a query can
happen over multiple containers. Multi-objective parametric query
optimization [16] takes a different approach to query optimization,
which happens before runtime with the use of an exhaustive DP
algorithm, and models queries as functions of parameters.

3 COST MODEL AND IMPLEMENTATION
In this work, we propose a cost model for cost-based multi-objective
query optimization in Apache Spark. For the objective of query
execution time, we adopt a proposed cost model for Spark SQL
[4], which we also experimentally evaluated. For the objective of

Figure 1: System architecture

Catalyst C.M. Proposed C.M.

Query types ALL GPSJ
Cost based join selection YES YES

Tables and Columns statistics YES YES
Considers cluster topology NO YES

Based on system disk access time NO YES
Takes into account network speed NO YES

Analytic estimation of QET NO YES
Table 1: Comparison of Catalyst and proposed cost model
monetary cost, we introduced a cost estimation formula for a given
query plan. By combining them, we tackle query optimization as
a multi-objective optimization (MOO) problem and use different
methods to explore the space of Pareto-optimal query plans.

3.1 System Architecture
Figure 1 shows the system upon which the cost model operates.
The storage layer includes a number of datanodes inside an HDFS
filesystem. Data is processed in Spark, and Yarn is the resource
negotiator between HDFS and Spark. For data management, data
is stored in Apache Hive tables and accessed through Spark SQL
queries. As for the optimizer, an extended version of the Catalyst is
envisioned, operating cost-based by using the proposed cost model.
We implemented the cost model outside Spark and used it manually.

3.2 Cost Model Preliminaries
The proposed single-objective Spark SQL cost model [4] can provide
more than Catalyst when it comes to estimating query execution, as
highlighted by Table 1. It is based on disk access time and network
speed, as disk and network performance is critical in one-pass
workloads, like Spark SQL queries. It is a reconfigurable model,
that can be tuned for any (homogeneous) cluster and system. It
also performs traditional SQL optimizations by collecting table and
columns statistics. It is aware of the cluster topology, and takes
into account Spark application parameters that influence query
execution time. The Spark application parameters considered are
the number of Spark executors, and the number of executor cores.

One of its limitations is that it covers the class of Generalized
Projection, Selection, and Join (GPSJ) queries, which are a subset of
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SQL queries. This means that the use of specific SQL operators like
UNION ALL or OUTER JOIN are not supported by the cost model.
In addition to that, its use is also limited for homogeneous clusters.

The cost model is capable of analytically estimating the execu-
tion time of the five essential RDD transformations that occur in
Spark SQL GPSJ queries: (1) Full table scan (2) Full table scan and
broadcast (3) Shuffle hash join (4) Broadcast hash join (5) Group by.
Each of the transformations is modeled as a function in the cost
model code. Precisely modeling these operations is challenging,
so the cost model focuses on a set of basic bricks that determine
transformations and actions cost, for which it provides cost esti-
mates (Read, Write, Shuffle Read, Broadcast). Each one of these
functions receives a data table set as an input (or two, in case of
a join operator), as well as the table’s cardinality, size, partitions
and any filtering predicates. It returns the estimated time needed to
execute the transformation, the columns returned, the cardinality
and the adjusted size of the table set. The estimated execution time
for a query is obtained by summing up the time needed to execute
each RDD transformation forming the query physical plan.

3.3 Bi-objective cost model
In the Spark-Yarn-HDFS architecture, query execution involves two
parts. A user submits a query, and then specifies some parameters to
configure the Spark application. Spark application tuning, although
often done empirically, is a complex decision to make, as Spark
has a considerable number of parameters that can be configured.
One of the most critical parameters is the number of executors
that will be allocated for an application. Each Spark executor runs
within a Yarn container. Yarn containers are provided by Yarn on
demand at the start of each Spark Application. Each one hosts a
Spark executor as well as a number of cores that are assigned to it.
They are deallocated when the Spark application completes.

The second part of our cost model involves the prediction of
the monetary cost of executing a query. In a public IaaS cloud
platform, execution of a Spark SQL query requires renting a number
of computing instances to host the Spark executors, using them
during the runtime of a query and leasing them when execution is
completed. As a result, we make monetary cost estimations with
the following formula:

cost = ci(#executors) ∗ runtime ∗ hcost($/hour )/3600 (1)

ci represents the number of computing instances rented as a
function of the number of executors and hcost is the hourly cost
of using a single computing instance, which we divide by 3600 to
scalarize it to seconds. The formula assumes per-second billing.

To define the ci function, we need to assume a Spark application
deployment method. In our work, Spark application deployment
was well spread, as we assigned each executor on a different com-
puting instance, in order to achieve maximum parallelization. As a
result, ci(#executors) = #executors

In our experimental part, we used prices from Amazon EC2
instances. For an example of a Spark application with 4 executors
and 4 executor cores, we rent 4 homogeneous computing instances
with 4vCPUs each, for the time needed for the query to execute. If
we use a1.xlarge instances ($0.102 hourly cost) and the query takes
20 minutes to complete, its cost is estimated to be about $0.136.

3.4 Query plan enumeration
For a given query, the cost model is able to compare all valid query
plans. In our case, two alternative join operators are available and
we considere all their combinations, as well as all possible join
orderings. We base our monetary cost estimations on the price
of renting an a1.medium instance from Amazon EC2, considering
cases of renting from one to eight a1.medium instances for query
execution. The cost model is easily extensible therefore prices for
more computing instance types can be included, to compare differ-
ent cluster and application scenarios. As a result, our search space
for a query involving X join operations involves 2X join opera-
tor combinations, X ! join orderings, and 8*N available application
configurations, for N computing instance types. For example, for
TPC-H Query 3 that involves 3 join operations and considering only
one computing instance, results in 384 alternative query plans. The
search space can become much larger for more complex queries,
however our cost model is able to compare all plans for queries
with up to 6 joins with no significant optimization overhead.

For the case of even more complex queries, the search space can
be reduced significantly if we do not perform join reordering but
keep the join order that the Catalyst produces, and if we introduce
distributed query optimization heuristics for join selection [11].

In the experimental part, we also had to overcome the limitation
of Catalyst returning a single query plan and not providing alterna-
tives. By reconfiguring certain configuration parameters (disabling
broadcast joins, changing broadcast joins thresholds), we were able
to produce and compare more query plans.

3.5 Multi-objective optimization
We follow a three-step process for multi-objective optimization.

Step 1 First, we apply single-objective optimization to find the
optimal query plan in terms of execution time, for every available
system configuration. A single query plan is returned for each con-
figuration. As query monetary cost is dependent on execution time,
the fastest plan is also the cheapest, for a fixed system configura-
tion, which explains the reason behind this first step. The different
tradeoffs are created by the alternative configurations, and not by
alternative query plans inside a certain application setting.

Step 2 The second step is the multi-objective optimization one,
as all the query plans from the first step are compared in terms of
both objectives. Dominated plans are discarded, and the remaining,
Pareto-optimal plans are the output, forming a Pareto front. The
selected query plan will determine both the physical query plan
that will be executed, as well as the hardware configuration.

Step 3After the Pareto front is formed, the final step is the query
plan selection. As the number of alternative query plans can be
large, the process of presenting the alternatives to the user, and
assisting him/her to make a decision is challenging. In order to
reduce the number of alternatives presented to the user and take
into account budget and needs, price and latency filters can be
applied. The cost model can also be used in a user-interactive mode,
where the user submits preference weights to the objectives and
receives a single plan best meeting them. In that case the problem
is scalarized to a single-objective one, using the equation:

F (x) =
1

1 +w1 ∗ f1(x)
∗

1
1 + c ∗w2 ∗ f2(x)

(2)

72



IDEAS’22, August 22–24, 2022, Budapest, Hungary Michail Georgoulakis Misegiannis, Verena Kantere, and Laurent d’Orazio*

In order to normalize the values of time and money to the same
order of magnitude we use constant c. We set c to an empirical value
of 25000, so that 25 seconds of query execution are equivalent with a
monetary cost of 0.001 US $. The value for c was selected empirically
based on our experiments, in which execution time varied between
50-400 seconds depending on the query and configuration and
monetary cost between 0.001 - 0.01 US $ per query. In the case of
equal weights, a query plan near the middle of the Pareto curve is
selected, meaning that it does not prioritize any of the time-money
objectives over the other. The query plan that has the maximum
value for F is selected for execution. Before the user submits the
preferred weights, he/she can also be provided with a value showing
the time-money relationship for the selected weights.

4 EXPERIMENTAL EVALUATION
Methodology The single-objective cost model makes the following
assumptions, which our work inherits too:
• It covers the class of GPSJ queries
• It assumes uniform distribution of data in table sets
• It performs single query optimization, assuming a cold start
• It assumes operating on a homogeneous cluster

We evaluated the cost model for a main-memory scenario, assum-
ing that all data fits in memory, as well as intermediate results. We
also assumed exclusion of exogenous factors potentially affecting
cluster performance, and we calculated a Spark-Yarn initialization
overhead in each query, which we did not take into account.

For the evaluation of the costmodel, we follow a two stepmethod-
ology. First, we examine the estimation accuracy of the cost model.
Second, we evaluate the optimality of the cost model, aiming to see
if it can point to an optimal query plan among alternatives.

The cost model can be used to produce a Pareto front, including
plans that offer different time-money tradeoffs. The decision maker
can choose the query plan that best suits his/her needs or can use
the cost model in a user-interactive mode, and assign weights to
the objectives, in order to be provided with a single query plan.

Setup We conducted our experiments in Grid ’5000 [1], a large-
scale and flexible platform for experiment-driven research in com-
puter science, with a focus on parallel and distributed computing.

In our experiments Grid ’5000 was used as a private cloud, where
we deployed up to 8 homogeneous computing nodes, each one
containing 2 CPUs Intel Xeon E5-2630 v3, 8 cores/CPU, 128GB
RAM, 5x558GB HDD, 186GB SSD, and 2 x 10Gb Ethernet. Inside
our cluster, we set up an HDFS filesystem where each node worked
as a datanode, and our dataset was stored in the SSDs.

Experimental Evaluation The single-objective cost model was
reimplemented to model each one of the five RDD transformations.
For our experiments, we used TPC-H benchmark queries and its
dataset, scaled to 100GBs. The performance of the cost model was
validated for many different factors. This allowed us to fine-tune
the cost model for our system, and also re-evaluate it and observe
its strengths and inaccuracies. Figure 2 shows its performance for
a number of TPC-H queries (7.7% error) in a scenario with 4 Spark
executors and 4 executor cores. The estimations are quite accurate
with the exception of Query 10, where the execution time of a
number of broadcast joins is overestimated. Figure 3 shows that the
cost model is also able to capture the impact adding Spark executors

Figure 2: Execution time for different TPC-H queries

Figure 3: Query Execution times for different number of
Spark executors

Figure 4: Execution times for three alternative TPC-HQuery
2 query plans

has for query execution, with an error rate of 12.1%. The query
execution time values are an average for a set of TPC-H queries. A
more detailed evaluation of the cost model estimation accuracy can
be found in the thesis of Georgoulakis Misegiannis (2021), upon
which this paper is based [2].

Inaccuracies mainly have to do with the fact that the cost model
does not precisely model Spark data actions and transformations,
but only provides estimates on key operations. Furthermore, in
some cases it assumes linear relations between different factors
not considering heuristics or overkills that occur in Spark. Finally,
stochastic processes happening in the cluster might be influenc-
ing system characteristics like the read/write throughput or the
network speed, causing minor inaccuracies. As a result, tuning the
cost model for a given cluster was a challenging task.

In terms of optimality (prediction accuracy), the cost model
makes correct predictions for trivial cases. For complex queries,
when it did not point to the optimal plan, it was able to at least spot
the trends and propose a near-optimal query plan, having small
impact in query execution time. Figure 4 shows the performance
of the cost model on 3 alternative query plans for TPC-H Query
2 and a configuration involving 4 Spark executors and 4 executor
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Figure 5: The cost model corrects the Catalyst

Figure 6: Pareto Front of the optimal query plans

cores. As the table sets considered in Query 2 are quite small, the
query plan involving only broadcast joins performs better than
the alternatives. Shuffle joining in every case results in a slightly
worse execution time, whereas operating the first join with a shuffle
join operator and the other two with a broadcast one has similar
performance with the optimal case. The cost model gives equally
good estimates for the two best execution plans.

The cost model is able to make better choices than the Spark SQL
optimizer in many cases. For example, for a simple query involving
just a join operation (Fig. 5), we can see that a broadcast hash join
is a better choice, resulting in 8 seconds faster query execution
than using a shuffle hash join. However, the Catalyst by default
chooses to shuffle join these tables. The cost model is able to point
to the broadcast hash join as the better option. In the experimental
study, the cost model proved that it can be a "relevant first step
for turning Catalyst into a fully cost based optimizer", showing
significant estimation accuracy while staying on point when it
comes to optimality and prediction quality.

When it comes to performing multi-objective optimization, Fig-
ure 6 shows the outcome of the extended cost model for a scenario
with 3 alternative Spark application configurations with a varying
number of executors (2,4 and 8), and 4 executor cores.

The cost model returns the fastest query plan for each application
configuration, and then the plans are compared in terms of both
objectives. In that case, all three query plans are Pareto optimal and
form a Pareto front, as they present different time-money tradeoffs.
Thus, the problem is formulated to a multi-objective optimization
one. The user can either decide himself/herself which query plan
best fits his/her application, or can assign weights of preferences to
the objectives in the user-interactive mode of the cost model. For
the case ofw1 = w2, the plan with the 4 executors is picked. In case
ofw1 = 2 ∗w2, the plan with the 8 executors is picked, and in case
ofw2 = 2 ∗w1 the selected plan is the one with 2 executors, as the
time-money relationship changes each time.

5 CONCLUSION - FUTUREWORK
In this paper we proposed a multi-objective cost model for query
optimization in Spark SQL. We built on a promising proposed cost
model, which we extended with a formula for estimating the mone-
tary cost of query plans in Spark. The cost model is able to compare
query plans providing different time-money tradeoffs, and we also
introduce a method for assisting the user into picking a single
one. The cost model was implemented and tested, as a detailed
experimental study was conducted in a private cloud environment.

In the future, we aim to extend the cost model to consider het-
erogeneous resources. This will require modeling the execution
costs on different hardware, like GPUs. We also aim to explore more
optimization goals, like energy consumption, which is a critical
objective in green and sustainable data centers. Finally, a long term
goal is to try to integrate the cost model into the Catalyst.
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