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ABSTRACT
Cloud-based analytics now exposes an increasingly vast space of
design choices. Key axes include provisioning (static vs. ephemeral),
caching (capacity, tiering), scheduling (admission thresholds, paral-
lelism), and pricing (reserved, on-demand, spot); each choice materi-
ally affects cost and performance. To navigate this complexity with-
out deploying large-scale infrastructure, we present CloudGlide, a
white-box simulation framework for systematically exploring cloud
data analytics trade-offs. CloudGlide pairs a queueing-theoretic
model with a discrete-event simulator (DES), ingesting real-world
workload traces to provide cost and latency predictions under di-
verse configurations. Validated on industry traces and standard
benchmarks, CloudGlide approximates behavior across existing
architectures and supports rapid what-if analyses along the above
axes, all without the prohibitive costs of live deployments.
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1 INTRODUCTION
Modern cloud-based online analytical processing (OLAP) offers a
diverse array of systems, architectures, and pricing models. Pre-
viously distinct paradigms, such as Data Warehouse as a Service
(DWaaS) [11, 19, 50] and Query as a Service (QaaS) [5, 26] are
steadily converging. As shown in Fig. 1, DWaaS platforms increas-
ingly embrace pay-per-use scaling [47], while QaaS providers offer
provisioned capacity [28], blurring cost and resource control bound-
aries and expanding the design space for optimization.

On-demand scaling readily handles spiky, unpredictable work-
loads yet leaves newly spawned nodes cache-cold, degrading per-
formance and inflating costs if the burst is short [47]. Choosing an
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Figure 1: Landscape and trends for cloud-based OLAP

ill-suited queueing or scaling policy can further inflate delays by up
to 7× for the same workload [8]. Caching further complicates mat-
ters: opting for more DRAM over slower tiers can lead to latency
and cost swings of up to 20× [36], though some workloads see only
marginal gains [62]. Pricing adds yet another axis: adjusting the
ratio of reserved to on-demand virtual machines can shift cost by
30–50% [33], while spot instances can reduce spend by up to 70% at
the risk of preemptions and scheduling challenges [34].

Given these complexities, it is extremely difficult to anticipate
latency and cost outcomes for a given workload without systematic
evaluation or a full-scale trial. This prompts a natural question:How
can system developers systematically evaluate these design
decisions before live deployments?

Existing approaches fall into three categories.Direct experimenta-
tion tests configurations end-to-end and yields ground-truth results,
but can demand substantial engineering effort and hundreds of dol-
lars in cloud fees [64]. In this vein, a TPC-H–based experimental
study compares DWaaS andQaaS across data access models, storage
formats, and scaling options [66], and the Cloud Analytics Bench-
mark likewise compares OLAP systems on cloud-relevant metrics
such as elasticity and monetary cost [69]. Second, ML-based auto-
tuning methods [3, 9, 48, 74] and data-driven frameworks [32, 64]
leverage historical telemetry to adapt resource allocations and scal-
ing policies in real-time. However, they typically operate as black
boxes—offering limited visibility in what-if scenarios—and require
substantial training data to generalize [2], making them less suitable
for exploratory, pre-deployment planning.

https://doi.org/10.14778/3773731.3773739
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Table 1: Comparison of DWaaS and QaaS Models

Aspect DWaaS QaaS

1 Resource
Provisioning

User selects
cluster size

No user-side
provisioning

2 Resource
Isolation

Isolated at the
cluster level

Per-job resources from
a shared pool

3 Data Access
and Caching

On-node DRAM
and SSD caching

Direct scan from object
storage; no caching

4 Billing
Model

Fixed rate based
on cluster uptime

Pay-per-use (e.g., CPU
time, scanned data)

White-box analytical modeling provides a transparent, low-cost
alternative to live trials, enabling first-order comparisons before
deployment via closed-form equations. While earlier white-box ap-
proaches looked at cost-optimal cloud compute placement [39, 72],
none have tried to model the broader design space spectrum. Con-
sequently, the design space of cloud-based OLAP remains largely
unexplored in academia.

Motivated by these challenges, and aided by recent industry
workload traces [52, 68, 71] and benchmarks [21, 65, 69] that expose
realistic workload patterns, we propose CloudGlide, a white-box
simulation framework that systematically evaluates diverse system
configurations fast and without requiring live system deployments.

CloudGlide is designed for workload-level what-if analyses (e.g.,
for capacity planning, autoscale policy, instance-mix exploration,
and offline prototyping), where decisions depend on aggregate
behavior across thousands of queries. Traditional cost estimators
rely on pre-execution query plans to predict runtime [38]. In con-
trast, CloudGlide assumes access to each query’s post-execution
resource footprint—CPU-seconds, scanned bytes, and shuffle (ex-
change) bytes—rather than the query plan. This information is
routinely available in audit logs or workload traces [73]. The result-
ing plan-agnostic design enables teams to evaluate and compare
provisioning, caching, and scaling strategies on their workloads
without touching user SQL, and to derive actionable insights.
We address three major obstacles in modeling cloud OLAP systems.

(1) C1: Providing a system-agnostic execution-engine baseline
for fair comparisons across OLAP architectures.

(2) C2: Balancing simplicity and accuracy when using closed-
form, queueing-theoretic equations to model and recon-
struct query execution from post-execution footprints.

(3) C3: Selecting representative workloads and leveraging re-
cent industry traces [52, 68, 71] for realistic evaluation.

Our contributions directly address these challenges. We begin
with a survey of modern OLAP architectures (§2), followed by
CloudGlide’s theoretical foundation that combines queueing the-
ory with discrete-event simulation (§3). We validate CloudGlide on
TPC-H and TPC-DS across varying data and cluster sizes, achieving
a median query-latency QERROR of 1.27. Targeted microbench-
marks—varying repetition and concurrency rates, and workload
management strategies—show that the simulator reproduces key
multi-query interaction trends (§4). Finally, we illustrate four design-
space studies that CloudGlide enables (§5). We also open source
CloudGlide [24] to foster further research in this evolving domain.

2 BACKGROUND: OLAP IN THE CLOUD
While the design space for cloud OLAP has explodedwith a plethora
of architectures offering diverse capabilities, we begin by presenting
an overview of the two extremes of the spectrum.We then examine
the evolving landscape and how these paradigms converge.

2.1 Endpoints: DWaaS and QaaS
Data-Warehouse-as-a-Service (DWaaS) and Query-as-a-Service
(QaaS) are two fundamental yet contrasting paradigms for cloud-
based analytics. DWaaS, exemplified by HANA Cloud [35, 42] or
Snowflake [19], relies on pre-provisioned hardware in a disaggre-
gated compute-storage architecture. QaaS, pioneered by BigQuery
[26], offers serverless query execution and pay-per-use pricing.
These models differ across four dimensions (see Tab. 1, Fig. 2):
1. Resource Provisioning: In DWaaS, users select and pay for a
dedicated cluster based on their workload needs, often specifying
the cluster size and node type. For example, Redshift offers three in-
stance types and four size options [6]. While this provisioning offers
predictable performance, it is prone to over or under-utilization [55],
especially whenworkload demands fluctuate. In contrast, QaaS does
not require user-side provisioning, as resources are dynamically
allocated from a shared pool on a per-query basis.
2. Resource Isolation: Both QaaS and DWaaS rely on virtualiza-
tion or containers for isolation, but differ in granularity. QaaS allo-
cates fine-grained resources from a shared pool—often by spawning
multiple containers or micro-VMs on the fly—maximizing resource
sharing and cost efficiency, at the expense of more complex sched-
uling and security measures (e.g., cgroups, chroot). DWaaS enforces
isolation more coarsely at the cluster level, hosting multi-tenant
workloads on dedicated hardware.
3. Data Access and Caching: Both architectures store primary
data in object storage [19, 43]. DWaaS leverages on-node resources
(DRAM and SSD) to cache parts of the dataset, thus reducing
object storage calls and enabling prefetching. This is especially
beneficial for repetitive queries, which account for 80% of Red-
shift workloads [47]. Systems like Firebolt [50] even cache data
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Figure 2: Different architectures for cloud-based systems
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Figure 3: CDF of Cloud Analytics Benchmark

in DRAM during ingestion. QaaS, on the other hand, scans data
directly from object storage over the network, increasing latency
compared to on-node caching but still maintaining competitive
throughput—particularly since DWaaS SSDs, while cost-effective,
are not high-end [70] and cloud network bandwidth has signifi-
cantly improved [22].
4. Billing Models: DWaaS employs a fixed billing model, charging
for cluster uptime regardless of workload intensity. In contrast,
QaaS uses a pay-per-use model, with costs determined either by
volume of data scanned ($5/TB as of mid-2025 [7, 29, 45]) or by
consumed compute resources, measured in units that abstract over
CPU time and query duration [28]. Although this approach aligns
costs with usage more closely, it makes cost control less predictable.
Performance. To evaluate the differences of DWaaS and QaaS in
practice, we ran the Cloud Analytics Benchmark [69] on a 1 TB
dataset and replayed 5,000 queries (10 CPU-h) over one hour on
Redshift with 𝑁 = {2, 4, 8} ra3.xlplus nodes (DWaaS) versus
Athena (QaaS). As Fig. 3a shows, a “right-sized” 4-node DWaaS
cluster achieves a 3× lower median latency than QaaS, but Athena’s
elasticity drives 99th-percentile latency down by over 8× (Fig. 3b).
These results confirm that DWaaS suits steady, predictable work-
loads, whereas QaaS excels at handling ad-hoc or large queries that
benefit from rapid, on-demand scaling—something that DWaaS
could only match through drastic over-provisioning.

2.2 Elastic Pool: Meeting in the Middle
Although DWaaS and QaaS represent two distinct extremes of
the cloud OLAP deployment spectrum, the boundaries between
them have become increasingly blurred. This convergence has led
to a hybrid approach, which we refer to as the Elastic Pool (EP)
architecture. Systems like Redshift Serverless [12] and BigQuery
Capacity Pricing [27] exemplify EP by maintaining a baseline of
always-on compute for steady performance, and scaling on demand
during bursts—blending DWaaS predictability with QaaS flexibility.
Comparative Evaluation. To evaluate the architectures in prac-
tice, we compare DWaaS, QaaS, and EP using two workload pat-
terns: (i) a steady 3 TB workload processed over 1 h, and (ii) an
800GB workload featuring two large bursts during the same period.
We use Redshift with 4 ra3.xlplus nodes for DWaaS, Athena for
QaaS, and Redshift Serverless (32 processing units) for EP, ensuring
comparable overall compute capacity. As shown in Fig. 4, the steady
workload produces a clear Pareto front. While DWaaS was the most
cost-effective choice, its throughput lagged behind EP and QaaS
by 13% and 30%, respectively. In the bursty scenario, however, the
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Figure 4: Architecture Tradeoffs for Different Workloads

QaaSmodel emerged as a clear winner for both cost and throughput,
delivering results 20% faster and 10% cheaper than EP.
Beyond a Simple Midpoint. EP is not merely a compromise be-
tween DWaaS cost-efficiency and QaaS elasticity; it exposes a pol-
icy surface. Early EP features such as dynamic cluster resizing,
on-demand provisioning at peak times, and autostops after inactiv-
ity [11, 44] paved the way for greater flexibility. Recent innovations
have shifted away from traditional compute cluster abstractions,
allowing users to define a base compute capacity while autoscaling
manages workload surges, thus preserving control without sacri-
ficing adaptability [47, 58]. Meanwhile, QaaS enhancements, such
as alternative pricing models, capacity reservations, and compute
limits [28], are delivering more predictable performance and cost.

This progressive convergence on autoscaling from both DWaaS
and QaaS (see Fig. 1) opens new questions in resource management:
RQ1: When should an EP system trigger additional resources ver-

sus queue incoming jobs?
RQ2: What impact do these scaling decisions have on meeting

Service Level Objectives (SLOs)?
RQ3: For autoscaled EP resources, is it more efficient to eagerly

populate data caches (DWaaS-style) or rely on ad-hoc net-
work fetches (QaaS-style)?

Prior work analyzed the cost benefits of waiting and scaling poli-
cies in compute pools [8, 48]. However, to the best of our knowledge,
no study has yet systematically addressed these configuration trade-
offs, leaving the broader design space of autoscaling systems largely
unexplored in academia. In §3, we demonstrate how CloudGlide
systematically captures and explores these dimensions.

2.3 Alternatives
While Function-as-a-Service (FaaS) has been explored as an alter-
native to QaaS for analytics [17, 46, 51], it has limitations. Unlike
QaaS, which supports stateful serverless query processing, FaaS is
stateless, constraining inter-function communication. Moreover, its
cost model pays off for a narrow set of workloads, due to the high
expense of GET/PUT operations on object storage [46]. Even with
proposed workarounds such as ephemeral caching [36], alternative
isolation approaches for state sharing [62], and tiered storage archi-
tectures [16], FaaS has not achieved commercial traction for OLAP
workloads and is therefore not considered further in this paper.

Self-hosted solutions (Infrastructure-as-a-Service) [10, 40, 61]
deploy analytics software on cloud infrastructure, providing an
alternative to fully managed services. They can operate as a DWaaS
system or offer QaaS-style, on-demand query processing. Therefore,
the same optimization principles extend to these deployments, and
CloudGlide is equally well-suited for modeling them.



3 ANALYTICAL MODELING & SIMULATION
Problem Scope.Modern cloud-based OLAP systems present a vast
design space, spanning resource provisioning (fixed, ephemeral com-
pute), concurrency handling (queueing, scaling), caching strategies,
and pricing models (fixed-rate vs pay-per-use). Direct experimenta-
tion can be both time- and cost-prohibitive, while learned predic-
tors demand extensive historical data. As a result, developers lack
a lightweight tool for rapidly evaluating cost and latency tradeoffs.
Intended Use Case. To address this gap, CloudGlide is built pri-
marily for offline capacity planning and what-if exploration. By
ingesting full query traces together with per-query resource pro-
files, it lets teams explore the design space in a query plan-agnostic
manner, making it applicable even when query plans are confiden-
tial or unavailable. While its focus is offline analysis, CloudGlide
could optionally run in a lightweight “look-ahead” mode alongside
a production autoscaler to inform real-time scaling decisions.

To support these scenarios effectively, our approach has to: cap-
ture query execution and resource interplay (in isolation and un-
der concurrency); remain architecture-agnostic to compare DWaaS,
QaaS, or EP under a single baseline; and leverage real workload
traces for practical relevance.

3.1 Theoretical Foundations
In CloudGlide, we combine a queueing-theory model with a disc-
rete-event simulator. Queueing theory helps encapsulate query exe-
cution and basic concurrency effects—modeling how queries queue
up and share resources—while our simulator extends it to handle
time-varying workloads (e.g., bursty arrivals, on-demand scaling).

OLAP queries often involve multiple resource-intensive stages:
some are dominated by data retrieval bandwidth (I/O-bound), others
perform non-trivial computations (CPU-bound), and in distributed
environments, the shuffle stage—where data is redistributed across
nodes—can also become a significant bottleneck [53]. To capture
these dynamics, we treat each stage (I/O, CPU, shuffle) as a limited-
capacity resource shared by all active queries. When the number of
simultaneous queries exceeds a stage’s capacity, additional queries
wait in a queue until resources free up. Concretely, we model query
execution as a fork-join-like structure, an established abstraction for
representing parallel sub-tasks that eventually merge [67]. Within
this framework, each query consists of three stages: an I/O stage
that scans data from storage (governed by data size 𝐷 , bandwidth,
and caching), a CPU stage that processes the data (limited by CPU
load and available compute), and a shuffle stage that redistributes
data across compute operations (constrained by the network).

We assume that a query’s total work—its CPU-seconds and data
size—remains constant even as parallelism scales with additional
nodes or vCPUs. In most cloud OLAP engines, operator selection
depends on SQL and table statistics—not on cluster size—so scaling
from four to eight nodes, for example, typically only increases each
operator’s parallelism (e.g., more partitions) rather than altering
the physical operators in the query plan [1, 13]. While some systems
choose different join strategies (e.g., broadcast vs. shuffle) for small
tables, these decisions hinge on table size, which does not change
with configuration. In our TPC-H evaluation (§4), we observed
no physical-operator changes across 2-, 4-, and 8-node clusters;
scanned bytes remained identical, and CPU-seconds varied by only

7% (2 → 4) and 12% (2 → 8), both within normal run-to-run
variance. By contrast, shuffle volume increases with parallelism [20].
Adaptive re-optimization, where the query plan topology changes
in-flight requires plan knowledge and is beyond CloudGlide’s scope.

The classical fork–join model defines total service time as the
slowest of its overlapping stages (here I/O, CPU, shuffle). This can un-
derpredict when stages do not fully coincide. Analysis on Snowset
indicates high overlap: for a sample of tenants, a query’s dominant
phase accounts for 80–85% of total latency on average [71], with
the remaining 15–20% often attributable to blocking operators [76]
or coordination delays.

To span the spectrum—from no stage overlap to near-full stage
overlap—we compare five lightweight service-time estimators and
later select the simplest that meets our accuracy/robustness targets
(§4). Mental model: let 𝑇io,𝑇cpu,𝑇sh denote the isolated stage times
computed from footprints and stage capacities; let 𝛿 ≥ 0 be a
per-query fixed overhead (parsing/coordination delay), 𝑝 ≥ 1, and
𝑘 ∈ N. We report ˆ︁𝑇• = 𝑇• + 𝛿 for each estimator:

𝑇max = max
(︁
𝑇io, 𝑇cpu, 𝑇sh

)︁
(1)

𝑇cpu-only = 𝑇cpu (2)
𝑇sum = 𝑇io +𝑇cpu +𝑇sh (3)
𝑇pm =

(︁
𝑇
𝑝

io +𝑇
𝑝
cpu +𝑇

𝑝

sh
)︁1/𝑝 (4)

𝑇mw =

𝑘∑︂
𝑖=1

max
(︁
𝑇io,𝑖 , 𝑇cpu,𝑖 , 𝑇sh,𝑖

)︁
(5)

Intuition.Max assumes strong stage overlap (optimistic without 𝛿);
CPU-only is useful when compute dominates and as a sanity check;
Sum assumes no overlap (pessimistic bound); Power-mean inter-
polates between sum (𝑝=1) and max (𝑝→∞), tuning the assumed
overlap; Multi-wave models multiple shuffle–compute “waves” by
chaining 𝑘 fork–join phases.

We compare all variants in §4.1 and then adopt the simplest
model that meets our accuracy and robustness targets. Below, we
detail how each of the three stages is modeled.

3.1.1 I/O Stage. In the I/O stage, datamay be retrieved fromDRAM,
SSD, or object storage (e.g., S3 [4]). Because multiple queries share
storage and network channels, we adopt a fair-share model: if𝑀io
queries are actively scanning, each receives 1/𝑀io of the available
bandwidth on that tier. This is a simple, optimistic baseline. In
practice, richer bandwidth allocators are often used (e.g., Dominant
Resource Fairness (DRF) [25], Weighted Fair Queueing (WFQ) [49])
to improve tail latency and isolation. CloudGlide allows swapping
in any such policy in place of fair sharing.

Let 𝐷 (in GiB) be the amount of data each query scans, and
𝑃DRAM, 𝑃SSD, and (1 − 𝑃DRAM − 𝑃SSD) be the probabilities that a
data block is retrieved from DRAM, SSD, or remote storage, respec-
tively. Suppose there are 𝑁 nodes in the cluster, each with read
bandwidths DRAM-BW, SSD-BW, and Net-BW for DRAM, SSD,
and the network. Consequently, the expected service time of the
I/O stage for a single query is:

𝑇io = 𝑀io
[︂
𝑃DRAM

𝐷
𝑁×DRAM-BW + 𝑃SSD

𝐷
𝑁×SSD-BW

+
(︁
1 − 𝑃DRAM − 𝑃SSD

)︁
𝐷

𝑁×Net-BW

]︂
.

(6)



Table 2: Comparison of Cloud OLAP Architectures in CloudGlide

Parameter DWaaS Elastic Pool (EP) QaaS

Pricing 𝑁 ×𝑇 × 𝑅node (Eq. (12))
∑︁𝑇s
𝑖=1 𝑐𝑖 ·

𝑅unit
3600 (Eq. (13)) 𝐷 × 𝑃scan (Eq. (14))

Caching Fixed: 𝑃DRAM, 𝑃SSD Warm-up: 𝑃DRAM (𝑛) = 𝑃∗ (1 − 𝑒−𝛾𝑛) (Eq. (7)) None: 𝑃DRAM = 𝑃SSD = 0
Isolation Shared (𝑀io, 𝑀sh ≥ 1) Shared (𝑀io, 𝑀sh ≥ 1) Dedicated;𝑀io = 𝑀sh = 1
Resources Fixed (𝑐) Dynamic 𝑐 (𝑡) Per-query 𝑐𝑞
I/O Time 𝑇io (Eq. (6)) 𝑇io with cache warm-up (Eq. (7)) 𝑇

QaaS
io = 𝐷

Net-BW (Eq. (8))
CPU Time 𝑇cpu (Eq. (9)) + 𝑇spill (Eq. (10)) Eq. (9) with time-varying 𝑐 (𝑡) + Eq. (10) Eq. (9) with per-query 𝑐𝑞
Shuffle Time 𝑇sh (Eq. (11)) 𝑇sh (Eq. (11)) 𝑇sh (Eq. (11))

In practice, workloads often exhibit data skew: some nodes han-
dle disproportionately large scans [15]. To account for this, users
can lower the effective per-tier bandwidths in the configuration
(e.g., reduce Net-BW by 10–20% to reflect observed hotspots).

In an EP system, new nodes start with cold caches. As ephemeral
nodes often live only briefly, they may not receive enough repeated
queries to amortize cache warm-up [62]. When a node processes
many queries, its caches warm toward a steady-state hit rate. We
model this with a simple exponential: let 𝑛 be the number of queries
a node has served, and 𝑃∗ the steady-state DRAM hit probability.
Then

𝑃DRAM (𝑛) = 𝑃∗
(︁
1 − 𝑒−𝛾𝑛

)︁
. (7)

Here 𝛾 > 0 controls the warm-up speed (we observe 𝛾 ∈ [0.05, 0.2]
in our experiments). The exponential captures diminishing returns:
once a cache is warm, additional queries yield minimal benefit [62].

In contrast, QaaS environments typically launch ephemeral con-
tainers that do not retain cache state—thus, we set 𝑃DRAM = 𝑃SSD =

0 for those queries, reducing 𝑇io to simply:

𝑇
QaaS
io = 𝐷

Net-BW . (8)

This underscores why short-lived nodes and ephemeral services
may never benefit substantially from caching, unlike longer-lived
resources in DWaaS or EP that process many queries per node.

3.1.2 CPU Stage. In the CPU stage, the processing work is divided
into sequential and parallelizable components [30]. Following Am-
dahl’s principle [57], let𝑇0 be the runtime on a single core and 𝑃 the
parallelizable fraction. The sequential part (1 − 𝑃)𝑇0 is unaffected
by parallelism, while the parallel part corresponds to𝑊 := 𝑃 𝑇0
core-seconds of compute. We discretize𝑊 into unit core-second
tasks and assume the query receives 𝑐eff effective cores under time
slicing (its CPU share, optionally capped per query). Up to 𝑐eff tasks
are active per second. Hence,

𝑇cpu = (1 − 𝑃)𝑇0 + ⌈𝑃 𝑇0 ⌉𝑐eff
. (9)

Example. If 𝑇0=100 and 𝑃=0.9, the sequential share is 10 s. With
𝑐eff=10, the parallel part is ⌈0.9 · 100⌉/10 = 9 s, for a total of 19 s.

During a query’s execution, the effective core share 𝑐eff may
change as other queries arrive/finish or the system scales; as ex-
plained later in §3.2, the simulator updates 𝑐eff at each event and
drains the remaining parallel work at the new rate.

Beyond CPU time, CloudGlide also tracks each query’s mate-
rialized working set

(︁
𝑓mem𝐷

)︁
in memory, where 𝐷 (GiB) is the

query’s data volume and 𝑓mem ∈ [0, 1] is the fraction kept resident.

Let Memnode denote per-node memory capacity. If the aggregate
resident set of concurrent queries on a node exceeds Memnode, the
overflow Δspilled (GiB) is spilled to SSD. We model the resulting
extra I/O time as

𝑇spill =
Δspilled
SSD-BW , (10)

We add this penalty to the CPU stage time
(︁
𝑇cpu ← 𝑇cpu +𝑇spill

)︁
.

CloudGlide does not fully model out-of-memory operators; any
nonzero Δspilled incurs this disk-spill penalty [37].

3.1.3 Shuffle Stage. Many OLAP queries redistribute (shuffle) in-
termediate data across nodes (e.g., joins, global aggregations). Let
𝐷sh (GiB) be the data exchanged among 𝑁 nodes, each with per-
node network bandwidth Net-BW. Ideally, aggregate bandwidth
scales to 𝑁×Net-BW.With𝑀sh queries shuffling concurrently, each
query receives 1/𝑀sh of this total, yielding:

𝑇sh =
𝑀sh 𝐷sh

𝑁×Net-BW . (11)

In practice, sub-linear speedups can arise from partitioning or
synchronization overheads. Some engines (e.g., BigQuery [43]) use
a dedicated shuffle service to scale bandwidth separately from com-
pute, yet high concurrency can still saturate this layer and make it
a bottleneck [43].

3.1.4 Architectural Differences. Building on the fork–join-based
queueing network from §3.1 (C1), we extend the framework to
capture how DWaaS, EP, and QaaS differ along the four dimensions
in §2 (C2); Tab. 2 summarizes the parameters.
1. Resource Provisioning. DWaaS uses a fixed cluster of 𝑁 nodes
(total 𝑐 cores). EP autoscales, exposing a time-varying capacity 𝑐 (𝑡).
QaaS provisions per-query capacity 𝑐𝑞 on demand.
2. Resource Isolation. In DWaaS/EP, in-flight queries share I/O
(𝑀io concurrent scans) and network (𝑀sh shuffles). CPU capacity
is time-sliced among active queries (see Eq. (9)). In QaaS, each
query is granted dedicated slots (𝑀io=𝑀sh=1). In practice, however,
noisy-neighbor effects may still appear [41, 56].
3. DataAccess andCaching.DWaaSmaintains steadyDRAM/SSD
hit rates (𝑃DRAM, 𝑃SSD), EP warms caches over time (Eq. (7)), and
QaaS always reads from object storage (𝑃DRAM = 𝑃SSD = 0). All
follow the same I/O latency model (Eq. (6)).
4. Billing Model: From a customer’s perspective, each architec-
ture’s cost reduces to a simple closed-form expression:

PriceDWaaS = 𝑁 ×𝑇 × 𝑅node, (12)

PriceEP = (
𝑇∑︂
𝑖=1

𝑐𝑖 ) × 𝑅unit
3600 (13)
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Table 3: Key Configurable Parameters in CloudGlide (essential inputs in bold)

Category Parameters (Symbols)

Query-Level Data (𝐷);CPU time (𝑇0);Arrival time; Shuffled data (𝐷sh); Materialized fraction(𝑓mem); Overflow (Δspilled)
Workload-Level Parallel fraction (𝑃); Cache warm-up rate (𝛾); Steady-state hit rates (𝑃∗DRAM, 𝑃

∗
SSD).

Hardware Number of nodes (𝑁 );CPU cores per node (𝑐node); Total cores (𝐶=𝑁 𝑐node);Memory per node (Memnode);
DRAM bandwidth (DRAM-BW); SSD bandwidth (SSD-BW); Network bandwidth (Net-BW); Node type.

Scaling Scaling policy (threshold-based, etc.); scale-up/down trigger; cold-start delay; instance type (on-demand/spot).
Scheduling Queue discipline (e.g., FCFS, SJF); concurrency limit.
Cost & Pricing DWaaS $/node-hour rate (𝑅node); EP unit rate (𝑅unit); QaaS $/TB scan rate (𝑃scan) ; reserved/spot discounts
Model Variants Offset constant (𝛿); Power-mean exponent (𝑝); Multi-wave count (𝑘)

PriceQaaS = 𝐷 × 𝑃scan (14)

Here, 𝑁 is the number of nodes, 𝑇 the total uptime (h), 𝑅 the
per-node rate, 𝑐𝑖 the compute units at second 𝑖 , 𝐷 the data scanned
(TB), and 𝑃scan the per-TB scan rate.

Real-world OLAP billing breaks down into granular line items,
such as compute (on-demand vs. spot), storage, I/O, and data trans-
fer, rather than an all-in-total bill. CloudGlide handles either de-
tailed component pricing or a single effective rate.
Why a simulator? Closed-form queueing models capture only
steady-state trends and do not handle dynamic scaling or more real-
istic bursty arrivals [68]. By embedding these aspects in a discrete-
event framework, CloudGlide replays realistic workloads while
adapting resources over time—addressing both C2 and C3.

3.2 Discrete-Event Simulation (DES)
CloudGlide’s DES proceeds as follows (see Fig. 5):
1. Query Arrivals: Queries enter the system according to an input
trace; each arrival enqueues an arrival event.
2. Query Forking: On arrival, a query is either admitted (if re-
sources permit) or queued. Admitted queries spawn three stage-
completion events (I/O, CPU, shuffle), with service times from the
closed-form models (Eqs. (6), (9) and (11)).
3. Service-Time Updates: In DWaaS/EP, whenever a stage admis-
sion or completion event fires, we “lazily” recompute the remaining
service times of queries sharing that resource via our closed-form
model ( Tab. 2 ). On an admission, each active stage’s resource share
shrinks; on a completion, the freed capacity immediately reduces
the estimated remaining times of the survivors. In QaaS, per-query
resources are dedicated, so no recalculation is needed.

4. Scaling Policy: In EP mode, crossing the queue-length threshold
enqueues a scale-up or scale-down event. These adjust available I/O,
CPU, and shuffle slots (and apply cache warm-up for new nodes
via Eq. (7)), after a cold-start delay. DWaaS and QaaS skip this step.
5. Logging: On completion, we log per-query latency and cost
(Eqs. (12) to (14)) and aggregate mean and tail metrics for analysis.
Implementation & Simulation Cost. CloudGlide is written in
1,000 lines of Python. Its “lazy-recalculation” strategy—updating re-
maining service times only upon an event and for affected queries—
ensures that runtime scales linearly with the number of events
processed. On a single core of an AMD Ryzen 7 PRO 6850U (32GiB
RAM), it processes over 10,000 queries/s, while peak memory usage
stays below 50MiB for 10K queries, 300MiB for 50K, and 3 GiB
for 3 M. Processing a 50K-query Snowset trace takes 5 s, and the
largest Snowset workload (3M queries) completes in under 6min.

3.3 Essential Parameters and Calibration Effort
Essential Parameters and Calibration Effort: Targeted at OLAP
system developers, CloudGlide requires only each query’s observed
resource footprints (CPU-seconds, scanned and shuffled data) plus
cluster specs and pricing; essential inputs are in bold in Tab. 3.

Per-query metrics are accessible in cloud OLAP systems via audit
logs or system tables (e.g., BigQuery’s INFORMATION_SCHEMA,
Redshift’s STL) and in public workload traces [68, 71]. Hardware
data are likewise public for DWaaS/EP; when DRAM-BW, SSD-BW,
or Net-BW are not exposed (e.g., on Vantage.sh [70]), our repository
offers zero-touch SQL microbenchmarks to infer them [24].
Other Parameters:When workload-level inputs are missing, we
use empirically grounded defaults from the Snowset trace and our



experiments: cache hit rates are set to 𝑃∗DRAM = 0.7, 𝑃∗SSD = 0.2,
aggregated across Snowset [71]. Parallel fraction is set to 𝑃 = 0.95
based on average CPU-bound behavior in our experiments, and
warm-up rate is set to 𝛾 = 0.02 (≈ 50 queries to reach steady state).
When richer telemetry is available, users can override the defaults.
We include a sensitivity analysis of these defaults (§4.2).

For scheduling and scaling, we mimic industry practice. Our
default autoscaler adds nodes when the queue length exceeds 50%
of capacity—akin to Concurrency Scaling [11, 19]. We pair this with
a hybrid FCFS+SJF scheduling policy (inspired by AutoWLM [59]).
Extensibility and System Comparison. CloudGlide can be ex-
tended to a new target system in three steps: (1) ingest per-query
resource footprints, (2) specify or infer hardware and bandwidth
parameters, and (3) optionally plug in custom scheduling, scal-
ing, or cost logic to yield a fair-share baseline for within-engine
what-if analyses. It requires no deep system expertise, and only core
workload and hardware information are mandatory; workload-level
parameters can be refined via targeted microbenchmarks to boost
fidelity. While CloudGlide does not model engine-specific opera-
tor implementations, one can compare systems of the same family
(e.g., two DWaaS platforms) directly by feeding each system’s own
per-query traces—letting variations in the query resource foot-
prints drive the comparison. Moreover, because for most queries
the choice of physical operators is preserved across cluster sizes,
CloudGlide generalizes from a single calibration to arbitrary config-
urations without plan visibility. The DES then adjusts parallelism,
bandwidth, and cache state—capturing both Amdahl’s Law and
the longer shuffle phases—to adjust the simulation under each sce-
nario. CloudGlide is inherently future-proof: as the cloud landscape
evolves—with new architectures and hardware tiers—it can adapt
simply by tuning a few parameters or adding minimal glue code.
Aspects Not Modeled. Firstly, CloudGlide models read-only que-
ries. Additionally, CloudGlide abstracts each query into just three re-
source stages—I/O, CPU, and shuffle—and does not capture operator-
level internals or dynamic plan rewrites. Similarly, our fair-share
network model treats throughput as a pooled resource and omits
fine-grained effects (e.g., per-flow congestion control), which can
affect latency under high load. Furthermore, we assume gradual
cache warm-up and near-uniform data access; heavy data skew or
rapid cache thrashing may incur larger slowdowns than a single
“skew factor” can express. A more detailed, plan-aware, or stochas-
tic simulator could address these limitations in future work.

4 EXPERIMENTAL EVALUATION
We now evaluate CloudGlide’s single- and workload-level accuracy.
We focus on four main questions:
(1) Model Fidelity (§4.1)—Which execution-model variant best ap-

proximates query processing across different classes of queries?
(2) Concurrency Effects (§4.2)—How well does CloudGlide reflect

queueing and resource contention under concurrent workloads?
(3) Scheduling & Scaling (§4.2)—Do CloudGlide’s autoscaling and

scheduling policies reproduce trends seen in real cloud systems?
(4) Robustness (§4.2)—How sensitive are CloudGlide’s predictions

to imperfect estimates of workload parameters?
Benchmarks &Workloads.We evaluate CloudGlide on two axes:
(1) Single-query benchmarks, to stress different query shapes:

Figure 6: Snowset Patterns 1–5 Query Arrival Timeline

• TPC-H (all 22 queries) at SF∈ {50, 85, 125, 200, 350}.
• TPC-DS (all 99 queries) at SF100.
• Resource-Balance queries [63], CPU- vs I/O-focused

mixes drawn from TPC-DS and JOB.
(2) Multi-query workloads, capturing temporal dynamics:

• CAB [69], a 5 000+ query mix of TPC-queries.
• Snowset Trace Patterns with varied temporal profiles

(Fig. 6) [68, 71]. Figure 6 shows their arrival trends, which
we will refer to by the codes 1-CON (constant), 2-BUR
(short bursts), 3-SPI (one large spike), 4-CON_O (constant
with outlier activity), and 5-REG (regular repeated jobs).
• Redbench query streamswith varied repetition rates [65].

Experimental Setup and Target Systems.We evaluate CloudGli-
de on representative cloud services: DWaaS (Redshift, Snowflake)
andQaaS (BigQuery, Athena). For DWaaS–like baselines, we param-
eterize two hardware profiles using provider pricing: c5d.2xlarge
(8 vCPUs, 16 GiB RAM, $2.50/hr) to approximate Snowflake, and
ra3.xlplus (4 vCPUs, 32 GiB RAM, $1.086/hr) for Redshift pricing,
based on documentation [6, 70]. Following measurement-based
guidelines [39], we assume 80% of peak network bandwidth; ≈ 280
MB/s for c5d.2xlarge (scaled from 100Gbit/s link of bigger c5d in-
stances [70]) and 156 MB/s for ra3.xlplus (from 10 Gbit/s equivalent
bigger instance). DRAM throughput is sustained at 20 GB/s per
node, in line with dual-channel DDR4-2400 measurements [31]. For
EP-style offerings (e.g., Redshift Serverless), we model each Virtual
Processing Unit as 1 vCPU + 8 GiB RAMwith ≈ 39 MB/s of network
throughput (one-quarter that of ra3.xlplus) [12].

In QaaS, queries run on short-lived slots without persistent
caches; we use scan-based pricing of $5 per TB (mid-2025 on-
demand rates) [5, 28]. Unless stated otherwise, CloudGlide uses
𝑃 = 0.95 (parallel fraction) and 𝛾 = 0.02 (cache warm-up) across all
experiments, which were their empirically measured defaults. This
uniform configuration ensures that each synthetic replay uses the
same settings, enabling direct comparison with real-system results.

4.1 Query Processing Model Evaluation
To evaluate CloudGlide’s execution-time models and identify when
higher-fidelity modeling is required, we compare our five variants
sum, cpu, max, pm (𝑝 = 1.5), and mw (𝑘 = 3) (Eqs. (1) to (5)) against
measured runtimes on TPC-H (22 queries × 5 scale factors × 3
cluster sizes) and TPC-DS (3 cluster sizes × 99 queries at SF 100).

In Fig. 7a, we show each estimator’s QERROR distribution as a
violin plot. sum and cpu exhibit heavy upper tails, with worst-case
QERRORs above 5. max reduces these extremes (median 1.35 on
TPC-H, 1.29 on TPC-DS). The power-mean estimator (pm) strikes
the best balance: its median QERROR is 1.28 (TPC-H) and 1.26
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(TPC-DS), and its 90th percentile remains <2 on both benchmarks.
Finally,mw performs similarly on TPC-DS—albeit with a few larger
outliers—but underperforms on TPC-H, where both pm and max
achieve lower QERROR.

Signed relative error (Fig. 7b) reveals a mild systematic bias
toward under-prediction, with outliers on both sides of zero. TPC-
H’s errors are more tightly clustered (IQR ≈ 0.15 in signed error),
while TPC-DS shows greater spread, reflecting more diverse query
shapes. As QERROR directly captures multiplicative deviation, we
retain it as our principal accuracy metric for the rest of the study.

We next verify the stability of the most accurate estimators,
pm and max, across cluster sizes. Figure 7c plots their QERROR on
Redshift hardware as we vary the number of nodes𝑛 ∈ {2, 4, 8}. The
median QERROR remains ≈ 1.3 for all 𝑛, with an absolute change
Δmedian < 0.1 across these scales, indicating that our node-level
parameters extrapolate reliably with 𝑛.

Figure 7d presents model accuracy across TPC-H scale factors
𝑠 ∈ [50, 350]. Smaller scale factors exhibit higher median QER-
RORs (≈ 1.44 at SF = 50), while larger factors improve toward
≈ 1.24. However, at SF = 350, the QERROR distribution develops a
heavier upper tail, suggesting more complex execution behavior or
unmodeled overheads at the largest scale factor.

Next, we analyze model fidelity by runtime (Fig. 8a). Short
queries (< 1 s) are dominated by fixed overheads and are poorly
suited to overlap-centric models. Here, max performs best: the
minimum offset prevents underestimation on tiny jobs without
inflating QERROR, yielding the lowest median and tail among all
estimators for sub-second queries. As runtimes increase to the 1–5 s
range, max’s fixed offset becomes overly conservative (median
QERROR ≈ 1.5), while pm, which we use for queries with runtime
≥ 1 s, recovers to ≈ 1.3. For long-running queries (> 10 s), pm
converges, reaching a median QERROR of ≈ 1.25, confirming that
its assumptions hold best once fixed overheads are amortized.

We then examine query complexity (Fig. 8b) as a function of
scanned data or operator counts. For Scan, bins correspond to total
input size (0–1GiB, 1–5GiB); for Agg and Join, they indicate the

number of aggregations or joins (1, 2–3, and ≥ 4 aggregations; 1–2,
3–9, and ≥ 10 joins). Larger scans are modeled more accurately
(median QERROR ≈ 1.2) as estimates scale linearly with input size.
Aggregation-heavy queries stress the simple pipeline model and
median QERROR rises to 1.67 for ≥ 4 aggregations. Join-rich queries
fall in between (median QERROR ≈ 1.43), as multi-table joins are
still pipelined; here, mw occasionally outperforms pm, reflecting
its ability to model multiple “waves” of overlapping phases.

To isolate pure shuffle-volume effects, Fig. 8d plots QERROR
against the shuffled data. For highly shuffle-intensive queries, mw
reduces the 75th percentile error by≈ 0.4 relative to pm, albeit at the
cost of underperforming on simpler, low-shuffle jobs. This confirms
that higher-fidelity (multi-wave) models yield measurable benefits
when explicit phase repetition is present, but may otherwise overfit.

Finally, Fig. 8c groups queries by their dominant resource
(CPU, I/O, or mixed) using the Resource-Balance set (queries from
JOB and TPC-DS). CPU-bound queries exhibit the widest spread—
their 75th percentile QERROR reaches ≈ 1.87. I/O-bound queries
are easier to predict (median ≈ 1.34), while mixed queries lie in
between, with lower medians but higher outliers. The coexistence
of long I/O and CPU phases allows phase overlap to absorb small
misestimations on either side, narrowing the overall distribution.

Overall, pm maintains the lowest median and tail QERROR
across runtime, size, and complexity, and we adopt it as the de-
fault execution-time model in the remaining experiments.
Outliers and Failure ModesWhile overall accuracy remains high,
a small set of queries deviate noticeably. A manual query plan
inspection of outlier queries (14, 24, 43, 58, 63, 71, 74 from TPC-DS)
reveals two recurring outlier patterns: (i) Deeply nested CTEs and
multi-stage materialization, which trigger repeated “flush-and-
rescan” cycles violate our single-pass assumption; and (ii) Complex
joins and aggregations—queries with ≥ 5 such operators—where
even mw fails to capture execution behavior accurately.

Additional experiments also identified complex user-defined
functions (UDFs) as another outlier class, where per-tuple interpre-
tation costs inflate CPU time beyond the scope of the current phase
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Figure 9: Execution time under concurrency.

model. Incorporating explicit materialization penalties, per-tuple
UDF overheads, and heuristics for detecting deep CTE chains are
promising directions to further narrow these accuracy gaps.

4.2 Concurrent Benchmarks
After validating CloudGlide’s accuracy on isolated queries, we
test whether its per-query models, combined with queueing and
resource-sharing logic, remain valid under concurrent execution.
ConcurrencyTesting.Weevaluate contentionmodeling by launch-
ing identical TPC-H Q1 (SF 15) instances in parallel and recording
wall-clock response times (Fig. 9a). As concurrency increases, mea-
sured latencies rise by up to 8×, yet CloudGlide tracks the trend
closely: the median prediction error remains within 10% across all
load levels, validating its resource-sharing logic.
Workload Spikes. Performance unpredictability often stems from
transient concurrency spikes. We evaluate this using a synthetic
benchmark that injects bursts of 10, 25, or 40 queries within a
20 s window. As shown in Fig. 9b, although spikes are inherently
hard to model, CloudGlide closely predicts median latencies (within
20%). Accuracy degrades in the tails, as the model does not capture
straggler behavior or fairness heuristics under high contention.
Scheduling - Caching. We next evaluate DRAM hit rates and
scheduling dynamics using two workloads. Figure 11a shows Red-
bench results, where queries with increasing repetition in their
plans execute progressively faster due to higher cache reuse. Cloud-
Glide captures this trend through its modeled hit rates, with a me-
dian underestimation of ≈ 16%. Figure 11b tracks queued queries at
30 s intervals during a 5min spike (2-BUR); while CloudGlide repro-
duces the overall queue trajectory, it underpredicts peak backlog by
up to 20%. Overall, these results show that CloudGlide effectively
captures the key caching and scheduling trends.
Scale-Out in DWaaS and EP.We run CAB on Snowflake (2–16
nodes) to assess scale-out behavior (Fig. 10a). Latency predictions
converge within 20% at 8 nodes; smaller clusters (2–4) show up
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Figure 11: Repetition and queueing

to 30% underestimation due to transient bursts and CPU satura-
tion beyond our idealized resource-sharing approach. On Redshift
Serverless (Fig. 10b), CloudGlidemaintains ≤ 25% runtime error and
≤ 10% cost error while scaling capacity from 8–128 vCPUs. Smaller
elastic tiers (8–16 vCPUs) remain hardest to predict, as ephemeral
rapid resource transitions amplify contention.

Finally, we evaluate autoscaling on Redshift Serverless, trigger-
ing scale-out when the queue length exceeds 50% of CPU cores. As
shown in Fig. 12, CloudGlide reproduces the observed scale-up in-
tervals within 1–2min of actual triggers, and predicts costs within
10%. While the simplified time-slicing model can underestimate
latencies under contention, CloudGlide effectively captures scaling
trends across workloads.
Sensitivity Analysis. Figure 13a shows how three representative
queries (Q2 I/O, Q5 CPU, and Q9 Shuffle) respond when each stage’s
parameters vary between −30% to +30%. Compared to Redshift
baselines, Q5 (CPU-bound) exhibits the largest deviation, indicating
higher sensitivity to CPU parameters, while Q2 (I/O-bound) and
Q9 (shuffle-heavy) are less affected.

The ablation in Fig. 13b quantifies how individual workload-level
parameters affect mean QERROR on a 4-node ra3.xlplus Redshift
cluster. Starting from a baseline of 1.31, eliminating the spilled-data
penalty raises QERROR by 5%, while reducing the CPU parallel frac-
tion adds 16%. Disabling SSD caching further increases error by 27%,
and removing DRAM caching drives a dramatic 78% jump. Finally,
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(a) Per-query sensitivity.

Step Q (%)

Baseline 1.31 —
Δspill (5.37 to 0 GiB) 1.38 5
P (0.95→ 0.90) 1.52 16
𝑃∗SSD (0.20→ 0.00) 1.66 27
𝑃∗DRAM (0.70→ 0.00) 2.33 78
sum (pm→ sum) 3.12 138

(b) Workload-level ablation.

Figure 13: (a) CloudGlide sensitivity to estimate noise; (b) Ab-
lation of workload parameters and their effect on QERROR.
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replacing the power-mean with the sum estimator more than dou-
bles QERROR (by 138%). Ablation results underscore that caching
and stage-overlap modeling are the primary accuracy levers.

5 DESIGN DECISIONS EXPLOREDWITH
CLOUDGLIDE

We now analyze four key design decisions that developers face
when building or tuning cloud OLAP systems and show howCloud-
Glide informs them: RQ1 (scaling vs. queueing), RQ2 (SLO-driven
resource management), RQ3 (caching in EP), and a comparative
evaluation of DWaaS, QaaS, and EP under varied workloads.

5.1 Use Case 1: Scaling vs. Queueing
Scenario & Developer Challenge. We evaluate how scaling com-
pares with queueing under a 15 s mean-latency SLO during load
spikes. A developer considers:
• Queue Only (NS): run a fixed-size cluster and queue excess

queries—lower cost, longer waits.
• Scale-Out via triggers: Q (queue-based), add nodes when queue

length exceeds 𝑞∗; R (reactive), provision when utilization 𝑢 >𝑢∗;
P (predictive), allocate resources before an anticipated burst.

CloudGlide’s Role.We replay a mixed workload combining 1-CON
and 2-BUR (Sect. 4), i.e., steady arrivals plus burst phases. Supported
schedulers are FCFS, SJF, and MLQ (Multi-Level Queue) with four
priority levels. CloudGlide simulates scheduling–scaling pairs (e.g.,
SJF–R) under a non-scaling baseline (NS) or with one of the scaling
triggers (Q, R, P). For each configuration, it logs concurrency, queue
length, and mean/tail latencies, and identifies settings that meet
the 15 s SLO at minimum cost. For scale-out, developers choose the
condition (e.g., queue length >𝑞∗, CPU utilization 𝑢 >𝑢∗) and the
step size (add +1 node per action vs. larger steps).

Setup: 2-node Redshift cluster; queue threshold 𝑞∗ = 8 (cluster
vCPU count); reactive trigger uses CPU utilization with 𝑢∗=0.70;
predictive trigger P fires when the 10 s moving-average of arrivals
has a positive slope and the projected queue length exceeds 𝑞∗.
Insights. Figures 14a to 14c show different scheduling policies in
non-scaling (-NS) setups. As expected, SJF reduces mean latency
by preventing short-query starvation, albeit at the cost of higher
tail latencies.

Under a scalable system, more factors arise: Fig. 14d demon-
strates how queue-based, reactive (CPU-driven), and predictive
triggers trade off performance and cost. Queue-based triggers are
simple but may react too late once the cluster saturates; reactive
triggers respond faster but depend on the monitored resource (CPU
vs. I/O); predictive triggers can pre-empt bursts but risk overshoot
if demand stabilizes. In practice, –Q handles mild bursts, while –R or
–P keep latencies below the 15 s SLO at an added cost of +30–100%.
The Pareto frontier shows up to 2× cost differences and 2.5× latency
variation across scheduling–scaling pairs.

CloudGlide reproduces both the relative ordering of schedul-
ing policies and their absolute cost–latency magnitudes (Figs. 14a
to 14d). For a representative scaling configuration SJF–R, its P50
latency error is ≤ 15% and its cost MAPE is ≤ 8%.

5.2 Use Case 2: SLO-Driven Resource Allocation
Scenario & Developer Challenge. While serverless implies a
scale-to-zero architecture, real-world QaaS systems run on shared
pools of finite resources (e.g., a baseline of 400 slots). They must
serve both short-running queries (e.g., with a target 10 s SLO) and
more lenient long-running queries. Overprovisioning is costly;
underprovisioning risks SLO violations for short-running jobs. To
mitigate sudden bursts, developers may use spot instances at a
discount price, but if they are reclaimed, the query is interrupted
and restarts at the baseline pool.
CloudGlide’s Role. We simulate three policies for short queries:

• Strict Priority (A): preemptive scheduling on the 400 baseline
slots, where short jobs always preempt long jobs to protect the
10 s SLO at peak times.

• Fixed Ratio (B): reserve a static fraction 𝑟 of baseline slots for
short jobs (e.g., 𝑟 = 0.5⇒ 200/400 slots).

• Slot Scaling (C): Dynamically provision additional spot slots at
lower cost and fall back to on-demand slots when spot capacity
is reclaimed; reclaimed queries restart on the baseline pool.

Workloads: two mixes of short/long queries with different spike
profiles: moderate bursts (Patterns 1-CON+2-BUR) and larger, longer
spikes (Patterns 1-CON+3-SPI).
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Figure 16: Caching vs. No Caching: Latency–cost tradeoffs across DWaaS, QaaS, and EP configurations.
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Figure 17: Performance-cost tradeoffs for different configurations: DWaaS, Autoscaling DWaaS, Elastic Pool, and QaaS.

Insights. Under moderate load (Fig. 15a), Strict Priority (A) strug-
gles to keep short queries under the 10 s SLO. Despite the preemp-
tion, multi-tenancy leads to excessive stalling on shared resources.
Fixed Ratio (B) meets the 10 s SLO when 𝑟 is sufficiently large by
dedicating a fraction of baseline slots to short jobs. Slot Scaling (C)
lowers mean latency by elastically adding capacity, but frequent
reclaims inflate tails due to restarts. An on-demand option could
yield the best short-query latency but at a significantly higher cost.
Across policies, the same workload exhibits up to 2× cost and 3×
latency variation.

Under heavier bursts (Fig. 15b), Fixed Ratio (B) becomes less
effective as the spike saturates the reserved fraction. Strict Priority
(A) fares better short-term (preemptions effectively free all slots for
newly arriving queries) but penalizes long jobs. Slot Scaling (C) or
on-demand capacity can maintain the SLO, yet require substantially
more resources, with frequent reclaims also worsening tail latencies.
Cost and performance differences grow to 4× and 2.5×, respectively,
suggesting that when such spikes are common, raising the baseline
capacity can be cheaper and steadier than repeatedly relying on
spot/on-demand bursts.

On BigQuery, our simulated short-query latencies under Policy
B matched measured latencies within 15%, and cost deviations were
under 5% across all spot/interruption scenarios.

5.3 Use Case 3: Caching Considerations
Scenario. A developer observes rising I/O times in a DWaaS cluster
with 32GiB DRAM as repetitive queries push mean latency beyond
a 10 s SLO. The developer must decide whether to (i) expand DRAM

capacity, (ii) switch to an autoscaling Elastic Pool (EP) system and
tune cache warm-up behavior, or (iii) migrate to QaaS (no caching)
to restore sub-10 s performance.
Workloads.We evaluate caching behavior using arrival times from
1-CON and 2-BUR to capture steady and bursty access patterns. Each
workload replays 100 queries with varying repeatability to balance
cold and hot queries, using datasets of 50GB (steady) and 200GB
(I/O-intensive). Experiments run on a 2-node Redshift cluster (𝑁 =

2) with ra3.xlplus nodes.
CloudGlide’s Role. CloudGlide models three caching options: scal-
ing DRAM from 32→ 64GiB (raising hit rate 0.70→ 0.80); varying
the hypothetical EP warm-up rate 𝛾 ; and using a QaaS setup with
no caching. It estimates latency and cost to quantify how cache size
and warm-up dynamics shape overall performance–cost trade-offs.
Insights. As expected, QaaS cannot match DWaaS performance
under low concurrency (Fig. 16a). However, under sustained usage
and as Fig. 16b shows, the pay-per-use model incurs a clear cost
premium relative to the fixed DWaaS configuration. Increasing
DRAM from 32 → 64GiB and boosting the hit rate 𝑃∗DRAM from
0.7 → 0.8 reduces average latency 𝐿avg by nearly 2× (Fig. 16c).
Similarly, improving the EP cache warm-up rate from 𝛾 = 0.05 to
𝛾 = 0.2 significantly lowers average latency during bursts (Fig. 16d).

Overall, for repetitive workloads, scaling DRAM or enabling
autoscaling with a tuned cache warm-up mechanism can sharply
reduce I/O times. CloudGlide quantifies these gains before hardware
or service-level changes are deployed in production.

On Redshift, ourmodel’s latency predictions for increasedDRAM
configurations deviated by less than 15%, cost projections stayed



within 6% of the actual increase from larger node types, and repeti-
tive query latencies aligned within 27% of measured values.

5.4 Use Case 4: Architecture Comparison
Scenario. A BI team must choose between four architectures—
DWaaS, Autoscaling DWaaS, QaaS, and EP—to balance cost and
latency for their workloads. Autoscaling DWaaS expands or shrinks
DWaaS cluster size in response to load, EP allocates compute from
a shared pool across tenants, offering finer-grained elasticity.
CloudGlide’s Role. CloudGlide simulates all four architectures un-
der identical arrival traces, logging per-query latencies 𝐿avg, 𝐿95 and
cost to map their performance–cost Pareto fronts (Fig. 17a–Fig. 17e).
Workloads. We evaluate the workloads from Sect. 4, each process-
ing a 10 CPUh load and scanning 10 TB of data over two hours.
Insights. Constant Loads (1-CON, 5-REG). A fixed DWaaS cluster
is most cost-efficient, typically 1.7–2× cheaper than autoscaling
DWaaS or QaaS at comparable latency. For example, the fixed clus-
ter costs $10 at 𝐿avg = 5.5 s, whereas autoscaling (𝑁max = 8) costs
$18 for 𝐿avg = 4.5 s—only ≈ 18% faster but 80% more expensive.
Spiky Loads (2-BUR, 3-SPI). Serverless and EP configurations
yield 1.5–6× lower latency than fixed DWaaS clusters for compara-
ble or moderately higher cost by elastically scaling capacity during
bursts. QaaS, in particular, delivers the largest latency gains un-
der short, spike-heavy workloads, as idle fixed capacity in DWaaS
inflates the effective cost per query.
Mixed Workloads (4-CON_O). Here’s where it gets more interest-
ing: autoscaling DWaaS cuts tail latencies by up to 50% relative
to a minimal fixed cluster, while increasing overall cost by only
20%–30%. Those occasional heavy queries make short-term scale-
outs more efficient than maintaining an oversized cluster.
Overall Pareto Frontier. Each architecture was Pareto-optimal
under at least one workload pattern and configuration—no single
design dominated across all conditions. Systematically exploring
these workload–capacity trade-offs in CloudGlide reveals which
patterns each architecture handles best and by how much. Across
all patterns, CloudGlide’s cost–latency Pareto fronts closely match
empirical results on Redshift, Redshift Serverless, and BigQuery,
with mean latency error below 21% and mean cost error below 7%.

6 RELATEDWORK
While database research has long focused on operator-level cost
models and on-premises performance tuning, cloud analytics bring
new challenges—elastic compute, pay-per-use pricing, and multi-
tenancy—that call for cost-aware, pre-deployment tools.

CloudGlide brings together three research strands—operator-
level models, whole–job predictors, and cost- or queue-centric cloud
analytical models—into a framework that captures both query ex-
ecution and workload/resource management. To our knowledge,
CloudGlide is the first end-to-end simulator for cloud OLAP.
Operator–level models From System R’s per-operator formu-
las [60] and Volcano/Cascades’ rule-based optimizer [30], through
cache/TLB-aware scans and joins [18] and RDMA-optimized hash
joins [14], decades of work have produced cost models to predict
the runtime of a query plan under isolated, fixed-hardware assump-
tions. In contrast, CloudGlide is query plan-agnostic: it collapses
operator detail into three stages (I/O, CPU, shuffle) using per-query

resource footprints, then layers on concurrency and elastic scaling.
By calibrating once with these footprints—rather than predicting
them—CloudGlide builds a stable baseline and can simulate com-
plex, dynamic what-if scenarios even when the plan is hidden.
Whole-job predictors. Big-data tools (e.g., PerfOrator [54], Spark-
Tune [13]) advanced modeling to distributed setups by regressing
runtimes on disk, CPU, and network “bricks” for a known DAG, but
remained engine-specific and assumed fixed clusters. CloudGlide
adopts their stage-level resource accounting while dispensing with
a static DAG: it feeds per-query footprints into an M/M/𝑐 (𝑡) queue-
ing network whose server count can scale every second.
Cost- and queue-centric cloud analytical models. Prior white-
box models for the cloud condense entire workloads into a handful
of metrics—scanned data, processing-seconds—and then optimize
VM selection [33] or tuning rules in an M/M/𝑚 queue [8]. They
rely on closed-form estimates for steady-state throughput and cost.
CloudGlide embraces their cost-optimization ethos but adds time-
varying arrivals and per-query resource footprints. This temporal
dimension enables quantifying performance and cost trade-offs
across diverse, workload-specific scenarios, as demonstrated in §5.
Black-box Models. Black-box approaches use historical logs to
train ML or sampling models that tune indexes, memory, or VM
types without revealing system internals [2, 3, 9, 23, 32]. Recent
extensions apply cost-aware auto-tuning and dynamic query place-
ment in production [64, 75] and route queries across engines via
learned profiles (e.g., BRAD [74]). These methods excel at online
adaptation but demand extensive training data and offer limited
pre-deployment what-if visibility. CloudGlide fills this gap with a
transparent, parameterized simulator for offline trade-off analysis.
Key differences. Unlike operator models (plan-based), big-data
predictors (fixed DAGs), cloud models (no temporal information),
and black-box ML solutions (data-heavy, opaque, online-focused),
CloudGlide’s simulator (i) requires no query plan, (ii) works across
engines and architectures, (iii) captures elastic scaling, pricing, and
bursty arrivals, and (iv) supports fast, offline what-if analyses.

7 CONCLUSION & FUTUREWORK
We presented CloudGlide, a white-box simulation framework for
modeling performance–cost trade-offs in cloud OLAP architectures.
In the cloud, performance and cost are inseparable; with princi-
pled assumptions and light calibration, CloudGlide provides clear
insights into the impact of parameters like caching, scheduling,
and scaling. To our knowledge, it is the first framework to unify
multiple OLAP architectures under an intuitive model. Validation
on real systems shows that CloudGlide reproduces production be-
havior without costly live testing and supports what-if analyses of
current and hypothetical configurations. Overall, our results show
that, with the right structure, a transparent white-box model can go
surprisingly far while remaining interpretable and fast to iterate.
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