
Embedded SQL
10

• After completing this chapter, you should be able to

. work with programming language (PL) interfaces to an

RDBMS, the basis for database application development,

. develop (simple) programs that use Embedded SQL,

Syntax of Embedded SQL, how to preprocess/compile C

programs containing embedded SQL statements, usage of

host variables, error handling, indicator variables, etc.

. explain the use of cursors (and why they are needed to

interface with a PL).

Embedded SQL
11

Overview

1. Introduction and Overview

2. Embedded SQL

Introduction (1)
12

• SQL is a database language, but not a programming

language.

. Complex queries (and updates) may be expressed using

rather short SQL commands.

Writing equivalent code in C would take significantly more

time.

. SQL, however, is not functionally complete.

Not every computable function on the database states is

expressible in SQL. Otherwise, termination of query

evaluation could not be guaranteed.

Introduction (2)
13

• SQL is used directly for ad-hoc queries or one-time updates

of the data.

• Repeating tasks have to be supported by application

programs written in some PL.

Internally, these programs generate SQL commands which are

then shipped to the DBMS.

• Most database users do not know SQL or are even unaware

that they interact with a DBMS.

• Even if a user knows SQL, an application program might be

more effective than the plain SQL console.

Think of visual representation of query results or sanity

checks during data entry.

Introduction (3)
14

• Languages/tools widely used for database application

programming:

. SQL scripts,

Like UNIX shell scripting language but interpreted by

non-interactive SQL console.

. C with Embedded SQL,

. C with library procedure calls (ODBC),

. Java with library procedure calls (JDBC),

. Scripting languages (Perl/DBI, PHP (LAMP),

Python/DB-API, . . .),

. Web interfaces (CGI, Java Servlets, . . .).

Introduction (4)
15

• Almost always, developers work with more than one language

(e.g., C and SQL) to develop an application.

This leads to several problems:

. The interface is not smooth: type systems differ and the

infamous impedance mismatch problem occurs.

Impedance mismatch: SQL is declarative and set-oriented.

Most PLs are imperative and record- (tuple-) oriented.

. SQL commands are spread throughout the application code

and can never be optimized as a whole database workload.

. Query evaluation plans should be persistently kept inside the

DBMS between program executions, but programs are

external to the DBMS.

Introduction (5)
16

• Note that these problems could be avoided with real

database programming languages, i.e., a tight integration of

DBMS and PL compiler and runtime environment.

Proposed solutons:

. Persistent programming languages (e.g., Napier88,

Tycoon, Pascal/R [Pascal with type relation]),
. stored procedures,

Application code stored inside DBMS, DBMS kernel has

built-in language interpreter or calls upon external interpreter.

. object-oriented DBMS,

OODBMS stores methods (behaviour) along with data.

. deductive DBMS.

DBMS acts as huge fact storage for a Prolog-style PL.

Making Good Use of SQL
17

• Way too often, application programs use a relational DBMS

only to make records persistent, but perform all computation

under the control of the PL.

Such programs typically retrieve single rows (records)

one-by-one and perform joins and aggregations by themselves.

• Using more powerful SQL commands might

. simplify the program, and

. significantly improve the performance.

There is a considerable overhead for executing an SQL

statement: send to DBMS server, compile command, send

result back. The fewer SQL statements sent, the better.

Example Database
18

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith ...

102 Michael Jones (null)

103 Richard Turner ...

104 Maria Brown ...

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel.Alg. 10

H 2 SQL 10

M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10

101 H 2 8

101 M 1 12

102 H 1 9

102 H 2 9

102 M 1 10

103 H 1 5

103 M 1 7

Embedded SQL
19

Overview

1. Introduction and Overview

2. Embedded SQL

Embedded SQL (1)
20

• Embdedded SQL inserts specially marked SQL statements

into program source texts written in C, C++, Cobol, and

other PLs.

• Inside SQL statements, variables of the PL may be used

where SQL allows a constant term only (parameterized

queries).

Insert a row into table RESULTS:

EXEC SQL INSERT INTO RESULTS(SID, CAT, ENO, POINTS)

VALUES (:sid, :cat, :eno, :points);

. Here, sid etc. are C variables and the above may be

emdbedded into any C source text.

Embedded SQL (2)
21

Compilation/linkage of Embedded SQL programs

C program with Embedded SQL (*.pc)

DBMS-supplied precompiler

��

Pure C program with procedure calls (*.c)

Standard C compiler (e.g., gcc)

��

Object code (.o)

(Dynamic) linker (ld, ld.so)

��

DBMS library

uujjjjjjjjjjjjjjj

Executable program

A Mini C Recap (1)
22

• The C programming language was designed by Dennis Ritchie

around 1972 at Bell Labs.
Traditional first C program.

#include <stdio.h>

int main (void)

{

printf ("Hello, world!\n"); /* \n = newline */

return 0;

}

Execution starts at mandatory procedure main. Return value 0

is a signal to the OS that the execution went OK (also see

exit()). Header file "stdio.h" contains declaration of library

function printf used for output. Braces ({, }) enclose nested

statement blocks.

A Mini C Recap (2)
23

• In C, a variable declaration is written as

〈Type〉 〈Variable〉 ;

Declare integer variable sid:

int sid; /* student ID */

• There are integer types of different size, e.g., long and short.

The type short (or short int) typically is 16 bits wide:

−32768 . . . 32767. Type int corresponds to the word size of

the machine (today: 32 bits). Type long is at least 32 bits

wide. Integer types may be modified with the unsigned prefix,

e.g., unsigned short has the range 0 . . . 65535.

A Mini C Recap (3)
24

• The type char is used to represent characters (today,

effectively an 8 bit value).

The type unsigned char is guaranteed to provide the value

range 0 . . . 255.

Declaration of an array of characters a[0]..a[19]:

char a[20];

• In C, strings are represented as such character arrays. A null

character (’\0’) is used to mark the string end.

String "xyz" is represented as a[0] = ’x’, a[1] = ’y’,

a[2] = ’z’, a[3] = ’\0’.

A Mini C Recap (4)
25

• Variable assignment:

sid = 101;

• Conditional statement:
if (retcode == 0) /* == is equality */

printf ("Ok!\n");

else

printf ("Error!"\n);

• C has no Boolean type but uses the type int instead to

represent truth values: 0 represents false, anything else

indicates true.

A Mini C Recap (5)
26

• Print an integer (printf: print formatted):
printf ("The current student ID is: %d\n", sid);

First argument is a format string that determines number and

type of further arguments. Format specifiers like %d (print int

in decimal notation) consume further elements in order.

• Read an integer (%d: in decimal notation):
ok = scanf ("%d", &sid);

&sid denotes a pointer to variable sid. Since C knows call by

value only, references are implemented in terms of pointers.

Library function scanf returns the number of converted format

elements (here 1 if no problems occur). Trailing newlines are

not read.

A Mini C Recap (6)
27

• Suppose that variable name is declared as

char name[21];

• In C, variable assignment via = does not work for strings

(arrays), instead use the library function strncpy (declared in

header file "string.h"):

strncpy (name, "Smith", 21);

The C philosophy is that = should correspond to a single

machine instruction. In C, the programmer is responsible to

avoid string/buffer overruns during copying. This is the source

of nasty bugs and security holes. strncpy never copies more

characters than specified in the last argument.

A Mini C Recap (7)
28

• To read an entire line of characters (user input) from the

terminal, use

fgets (name, 21, stdin);

name[(strlen (name) - 1] = ’\0’; /* overwrite ’\n’ */

The second argument of fgets specifies the maximum number

of characters read (minus 1). A trailing newline is stored and a

’\0’ is placed to mark the string end. stdin denotes the

terminal (if not redirected). Library function strlen does the

obvious.

Host Variables (1)
29

• If SQL is embedded in C, then C is the host language. C

variables which are to be used in SQL statements are referred

to as host variables.

• Note that SQL uses a type system which is quite different

from the C type system.

For example, C has no type DATE and no C type corresponds to

NUMERIC(30).

• In addition, C has no notion of null values.

• Even if there is a natural correspondence between an SQL

type and a C type, the value storage format might be

considerable different.

Think of endianness, for example.

Host Variables (2)
30

• Oracle, for example, stores variable length strings (SQL type

VARCHAR(n)) as a pair 〈length information, array of

characters〉. C uses ’\0’-terminated char arrays.

• Oracle stores numbers with mantissa and exponent (scientific

notation) with the mantissa represented in BCD (4 bits/digit).

C uses a binary representation.

• Type/storage format conversion has to take place whenever

data values are passed to/from the DBMS.

. The precompiler can help quite a lot here, but some work

remains for the programmer.

Host Variables (3)
31

• The DBMS maintains a translation table between internal

types and external types (host language types) and possible

conversions between these.

• In Embedded SQL, many conversion happen automatically,

e.g., NUMERIC(p), p < 10, into the C type int (32 bits).

Also, NUMERIC(p,s) may be mapped to double, although

precision may be lost.

• For VARCHAR(n), however, the program either prepares C a

struct that corresponds to the DBMS storage format or

explicitly states that a conversion to ’\0’-terminated C

strings is to be done.

Host Variables (4)
32

• The precompiler must be able to extract and understand the

declaration of the host variables.

• Usually, the Embedded SQL precompiler does not fully

“understand” the C syntax (with all its oddities).

Correct C declaration syntax?

unsigned short int short int unsigned

unsigned int short int unsigned short

short unsigned int int short unsigned

• Thus, variable declarations relevant to the precompiler must

be enclosed in EXEC SQL BEGIN DECLARE SECTION and EXEC
SQL END DECLARE SECTION.

Host Variables (5)
33

• The declaration section might look as follows:

EXEC SQL BEGIN DECLARE SECTION;

int sid; /* student ID */

VARCHAR first[20]; /* student first name */

char last[21]; /* student last name */

EXEC SQL VAR last IS STRING(20);

EXEC SQL END DECLARE SECTION;

. sid is a standard C integer variable, the DBMS will

automatically convert to and from NUMERIC(p).

. last is a standard C character array (string).

The conversion to/from this format is explicitly requested

(note: due to ’\0’-termination, max. string length is 20).

Host Variables (6)
34

• VARCHAR first[20] is not a standard C data type.

. The precompiler translates this declaration into

struct { unsigned short len;

unsigned char arr[20];

} first;

which is a C type whose memory layout exactly matches

the DBMS-internal VARCHAR(20) representation.

. The conversion from a standard C char array s could be

done as follows:

first.len = MIN (strlen (s), 20);

strncpy (first.arr, s, 20);

Host Variables (7)
35

• The variables in the DECLARE SECTION may be global as well

as local.

• The types of these variables must be such that the

precompiler can interpret them.

Especially, non-standard user-defined types (typedef) are not

allowed here.

• In SQL statements, host variables are prefixed with a colon

(:) and may thus have the same name as table columns.

Error Checking (1)
36

• Similar coding guidelines apply whenever the program

interacts with the operating system or with the DBMS: after

every interaction check for possible error conditions.

• One possibility to do this is to declare a special variable

char SQLSTATE[6];

• As required by the SQL-92 standard, if this variable is

declared, the DBMS stores a return code whenever an SQL

statement has been executed.

SQLSTATE contains error class and subclass codes. First

two characters "00" indicate “okay” and, for example,

"02" indicates “no more tuples to be returned”.

Error Checking (2)
37

• An alternative is the SQL communication area sqlca (a C

struct) which can be declared via

EXEC SQL INCLUDE SQLCA;

. Component sqlca.sqlcode then contains the return code,

for example, 0 for “okay”, 1403: “no more tuples”.

. Component sqlca.sqlerrm.sqlerrmc contains the error

message text, sqlca.sqlerrm.sqlerrml contains its

length:

printf ("%.*s\n", sqlca.sqlerrm.sqlerrml,

sqlca.sqlerrm.sqlerrmc);

Error Checking (3)
38

• The precompiler supports the programmer in enforcing a

consistent error checking discipline:

EXEC SQL WHENEVER SQLERROR GOTO 〈Label〉;
or

EXEC SQL WHENEVER SQLERROR DO 〈Stmt〉;

. The C statement 〈Stmt〉 typically is a C procedure call to

an error handling routine (any C statement is allowed).

• Such WHENEVER SQLERROR declarations may be cancelled via

EXEC SQL WHENEVER SQLERROR CONTINUE;

Example Database (recap)
39

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith ...

102 Michael Jones (null)

103 Richard Turner ...

104 Maria Brown ...

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel.Alg. 10

H 2 SQL 10

M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10

101 H 2 8

101 M 1 12

102 H 1 9

102 H 2 9

102 M 1 10

103 H 1 5

103 M 1 7

Example (1)
40

/* program to enter a new exercise */

#include <stdio.h>

EXEC SQL INCLUDE SQLCA; /* SQL communication area */

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR user[128]; /* DB user name */

VARCHAR pw[32]; /* password */

VARCHAR cat[1];

int eno;

int points;

VARCHAR topic[42];

EXEC SQL END DECLARE SECTION;

...

Example (2)
41

...

/* called in case of (non-SQL) errors */

void fail (const char msg[])

{

/* print error message */

fprintf (stderr, "Error: %s\n", msg);

/* close DB connection */

EXEC SQL ROLLBACK WORK RELEASE;

/* terminate */

exit (1);

}

...

Example (3)
42

...

int main (void)

{

char line[80];

/* catch SQL errors */

EXEC SQL WHENEVER SQLERROR GOTO error;

/* log into DBMS */

strncpy (user.arr, "grust", 128);

user.len = strlen (user.arr);

strncpy (pw.arr, "******", 32);

pw.len = strlen (pw.arr);

EXEC SQL CONNECT :user IDENTIFIED BY :pw;

...

Example (4)
43

...

/* read CAT, ENO of new exercise */

printf ("Enter data of new exercise:\n");

printf ("Category (H,M,F) and number (e.g., M6): ");

fgets (line, 80, stdin);

if (line[0] != ’H’ && line[0] != ’M’ &&

line[0] != ’F’)

fail ("Invalid category");

cat.arr[0] = line[0];

cat.len = 1;

if (sscanf (line + 1, "%d", &eno) != 1)

fail ("Invalid number");

...

Example (5)
44

...

/* read TOPIC of new exercise */

printf ("Topic of the exercise: ");

fgets ((char *) topic.arr, 42, stdin);

topic.len = strlen (topic.arr) - 1; /* remove ’\n’ */

/* read MAXPT for new exercise */

printf ("Maximum number of points: ");

fgets (line, 80, stdin);

if (sscanf (line, "%d", &points) != -1)

fail ("Invalid number");

...

Example (6)
45

...

/* show read exercise data */

printf ("%c %d [%s]: %d points\n",

cat.arr[0], eno, title.arr, maxpt);

/* execute SQL INSERT statement */

EXEC SQL INSERT INTO

EXERCISES (CAT, ENO, TOPIC, MAXPT)

VALUES (:cat, :eno, :topic, :points);

/* end transaction, log off */

EXEC SQL COMMIT WORK RELEASE;

...

Example (7)
46

...

/* terminate program (success) */

return 0;

/* jumped to in case of SQL errors */

error:

EXEC SQL WHENEVER SQLERROR CONTINUE;

fprintf (stderr, "DBMS Error: %.*s\n",

sqlca.sqlerrm.sqlerrml,

sqlca.sqlerrm.sqlerrmc);

EXEC SQL ROLLBACK WORK RELEASE;

exit (EXIT_FAILURE);

...

Simple Queries (1)
47

• The above example shows how to pass values from the

program into the DBMS (e.g., for INSERT).

• Now the task is to extract values from the database into

host variables.

• If is it guaranteed that a query can return at most one

tuple, the following may be used:

SELECT INTO: read student tuple specified by sid.

EXEC SQL SELECT FIRST, LAST

INTO :first, :last

FROM STUDENTS

WHERE SID = :sid

Simple Queries (2)
48

• It is an error if the SELECT INTO yields more than one row.

SELECT INTO using a “soft key”.

EXEC SQL SELECT SID

INTO :sid

FROM STUDENTS

WHERE FIRST = :first

AND LAST = :last

. The DBMS will execute the statement without warning as

long as there is at most one SID returned. A result of two

or more tuples will raise an SQL error.

Simple Queries (3)
49

• After issuing a SELECT statement, the program is expected to

check whether a row was found at all. (An empty result is no

error, but then the INTO host variables are undefined.)

1O

if (sqlca.sqlcode == 0)

... process returned tuple data ...

2O

EXEC SQL WHENEVER NOT FOUND GOTO empty;

EXEC SQL SELECT ... INTO ...;

... process returned tuple data ...

empty:

... no tuple returned ...

General Queries (1)
50

• In general, a SQL query will yield a table, i.e., more than a

single tuple. Since C lacks a type equivalent to the relational

table concept, the query result must be read tuple-by-tuple

in a loop.

. A DBMS-maintained cursor points into the table, marking

the next tuple to be read.

Declaring a SQL cursor:

EXEC SQL DECLARE c1 CURSOR FOR

SELECT CAT, ENO, POINTS

FROM RESULTS

WHERE SID = :sid

. Note: at this point, the query is not yet executed and the

value of :sid is immaterial.

General Queries (2)
51

• The next step is to open the cursor:

EXEC SQL OPEN c1;

. This initiates query evaluation and the then current value

of the query parameter :sid is used.

. The program may close the cursor and reopen it again with

a different value of :sid.

General Queries (3)
52

• The query result may then be read one tuple at a time into

host variables

FETCH

EXEC SQL WHENEVER NOT FOUND GOTO done;

while (1) { /* while (forever) */

EXEC SQL FETCH c1 INTO :cat, :eno, :points;

... process result tuple data ...

}

done:

... all tuples processed ...

General Queries (4)
53

• Other variants:

1O

EXEC SQL WHENEVER NOT FOUND DO break;

while (1) { /* while (forever) */

EXEC SQL FETCH c1 INTO :cat, :eno, :points;

... process result tuple data ...

}

... all tuples processed ...

2O

EXEC SQL FETCH c1 INTO :cat, :eno, :points;

while (sqlca.sqlcode == 0) {

... process result tuple data ...

EXEC SQL FETCH c1 INTO :cat, :eno, :points;

}

... all tuples processed ...

General Queries (5)
54

• The last step is to close the cursor:

EXEC SQL CLOSE c1;

. Open cursors allocate memory and, more importantly,

retain locks on the data which can get in the way of other

concurrent users.

Positioned Updates/Deletes
55

• A program can refer to the last tuple FETCHed in UPDATE and

DELETE commands:

EXEC SQL UPDATE RESULTS SET POINTS = :points

WHERE CURRENT OF c1;

. This is helpful if the new attribute value (here: points) is
computed by the C program (e.g., read from the terminal)

and not by an SQL query.

Null Values (1)
56

• If a column value in a query result can possibly yield NULL, the
program is required to declare two host variables: one variable

will receive the data value (if any), the other will indicate

whether the value is NULL.

. Such variables are called indicator variables (normally of C

type short).

. The indicator variable will be set ot -1 if NULL was returned

by the query (otherwise set to 0).

Null Values (2)
57

Cursor declared to fetch student data:

EXEC SQL DECLARE stud CURSOR FOR

SELECT FIRST, LAST, EMAIL

FROM STUDENTS;

• An indicator variable may be attached to any variable in an

SQL statment, e.g.:

EXEC SQL FETCH stud INTO :first, :last,

:email INDICATOR :null;

• It is an error to FETCH a NULL value without indicator variables

set up (this includes the result of aggregation fuctions!).

• Indicator variables may also be used during INSERT to insert

NULL column values into the DB.

Dynamic SQL (1)
58

• Up to here, table and column names were already known at

program compile time. At runtime, the current value of host

variables is inserted into these static SQL statements.

. In the case of static SQL, the precompiler checks the

existence of tables and columns (via lookups in the DBMS

data dictionary).

. In some systems (e.g., IBM DB2), static queries are already

optimized at compile time and the resulting query

evaluation plans are stored in the database.

Dynamic SQL (2)
59

• In contrast, it is possible to compose strings containing SQL

statements at runtime and then ship the string to the DBMS

for execution.

This is exactly how the the SQL console application is built.

• If the SQL command is not a query (whose result needs to be

consumed), dynamic execution works as follows:

EXEC SQL EXECUTE IMMEDIATE :sql_cmd;

Dynamic SQL (3)
60

• A problem of the dynamic SQL approach is that the command

has to compiled (into a query evaluation plan) every time it is

submitted to the DBMS. Query optimization may be costly.

The DBMS may cache recent query evaluation plans. These

may be reused if a query is re-issued (possibly with different

host variable values).

• If an SQL statement is executed several times with different

host variables values, the DBMS can be explicitly asked to

precompile (“prepare”) the query using EXEC SQL PREPARE
and then calling

EXECUTE ... USING 〈Variables〉;

Dynamic SQL (4)
61

• Note that, for dynamic queries, the result schema (tuple

format) is not known until runtime.

This rules out the use a construct like SELECT INTO.

• In this case, an SQL descriptor area (SQLDA) is used to

obtain information about the result columns (column names,

types)..

. The SQL DESCRIBE statement stores the number, names,

and datatypes of the result columns of a dynamic query in

the SQLDA.

The SQLDA also contains slots for pointers to variables which

will contain the retrieved data values (the FETCH host

variables).

Dynamic SQL (5)
62

• The sequence of steps:

1O Allocate an SQLDA (SQL-92: ALLOCATE DESCRIPTOR).

2O Compose the query string.

3O Compile the query using PREPARE.

4O Use OPEN to execute the query and open a result cursor.

5O Fill the SQLDA using DESCRIBE.

6O Allocate variables for the query result (place pointers in

SQLDA).

7O Call FETCH repeatedly to read the result tuples.

