61
Introduction to the Relational Model and SQL

e After completing this chapter, you should be able to:

> explain basic notions of the relational model:

» table/relation, row/tuple, column/attribute, column
value/attribute value,

> explain the meaning of keys and foreign keys,

> write simple SQL queries (queries against a single table).

62
Introduction to the Relational Model and SQL

Overview

1. The Relational Model, Example Database

63

The Relational Model (1)

e The relational model structures data in tabular form, /.e., a
relational database is a set of named tables.

A relational database schema defines: |
@ Names of tables in the database,

® the columns of each table, /.e., the column name
and the data types of the column entries,

® integrity constraints, /.e., conditions that data
entered into the tables is required to satisfy.

64

The Relational Model (2)

e Example: Assume a database maintaning information about a
small real-world subset: a company's departments and
employees.

e Two tables:

> EMP: information about employees.

> DEPT: information about departments.

Table DEPT

DEPTNO
10 | ACCOUNTING | NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 | OPERATIONS BOSTON

65

The Relational Model (3)

e The three columns of table DEPT have the following data
types:

> DEPTNO has data type NUMERIC(2), i.e., the column can
hold two-digit integer entries —99...99.
An integrity constraint can be used to exclude negative
department numbers.

> DNAME has type VARCHAR(14), i.e., the entries are character
strings of variable length of up to 14 characters.

> LOC has type VARCHAR (13).

66

The Relational Model (4)

e A relational database state (instance of a given schema)
defines a set of rows for each table.

e |n the now current state, table DEPT has four rows.

e The relational model does not define any particular order of
the rows (e.g., first row, second row).

Rows can be sorted for output, though.

e Each row specifies values for each column of the table.

Summary (1)

A relational table

67

68
Summary (2)

e A more theoretically inclined person would use the following
equivalent terminology:

> Table = relation

> Row = tuple
> Column = attribute

Summary (3)

e "“Old-style” practitioners might equivalently say:

> Row = record

69

> Column = field
> Table entry = field value
> Table = file

Keys (1)

e The column DEPTNO is declared as the key of table DEPT.

Relational Keys

A key always uniquely identifies a single row in its
associated table.

e Table DEPT, for example, already contains a row with key
DEPTNO = 10.

e |f one tries to add another row with the same value 10 for
DEPTNO, the DBMS responds with an error.

70

4

71
Keys (2)

e Keys are an example of constraints: conditions that the table

contents (database state) must satisfy in addition to the basic
structure prescribed by the columns.

e Constraints are declared as part of the database schema.

e More than one key can be declared for a table @
More keys?

e Keys and other constraints are treated in Chapter 2.

72

Another Example Table (1)

e Table EMP (data about employees) with the following columns:

v VvV Vv Vv Vv VvV VvV V

EMPNO: A unique number for every employee
ENAME: Employee name

JOB: Employee position (e.g., ENGINEER)
MGR: Direct supervisor of this employee
HIREDATE: Employee hire date

SAL: Employee salary

COMM: Commission (only for salespeople)

DEPTNO: Department of employee

Another Example Table (2)

Table EMP

EMPNO ENAME
7499 ALLEN
7521 WARD
7566| JONES|
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT|
7839 KING
7844 TURNER
7876| ADAMS
7900 JAMES
7902 FORD
7934 MILLER

SALESMA
MANAGER

SALESMA
MANAGER
MANAGER|
ANALYST]
IPRESIDENT]
SALESMAN|
CLERK
CLERK|
ANALYST|

CLERK

20-FEB-81
22-FEB-81
02-APR-81
28-SEP-81)
01-MAY-81
09-JUN-81
09-DEC-82
17-NOV-81
09-SEP-81
12-JAN-83
03-DEC-81
03-DEC-81

23-JAN-82

SAL

COMM

300
500

1400

73

DEPTNO

74
Foreign Keys (1)

e Physical pointers (memory addresses) are unknown to the
relational model.

e However, the relational model provides a kind of “logical
pointer.”

> For example, the column DEPTNO in table EMP refers to
column DEPTNO in table DEPT.

e Since DEPTNO is declared as a key in table DEPT, a department
number uniquely identifies a single row of DEPT.

e A value for DEPTNO (in table EMP) can be seen as a “logical
address” of a row in table DEPT.

75
Foreign Keys (2)

e By including a department number in table EMP, each row in
EMP “points to" a single row in table DEPT.

e |t is important for the integrity of the database, that the %
department numbers in EMP in fact occur in DEPT.

“Dangling pointers” !

If a row in table EMP contains a DEPTNO value of 70, the
reference “dangles.”

A DBMS, however, does not crash as would be the case
with real physical pointers (memory addresses). In SQL,
references are followed by comparing column values.

Nevertheless, such a column entry is a kind of error and
should be avoided. This is the purpose of foreign keys.

Foreign Keys (3)

e The relational model permits to declare column DEPTNO as a
foreign key that references table DEPT.

Foreign Keys |
> Then the DBMS will refuse

* an insertion into table EMP with a value for DEPTNO
that does not appear in DEPT,

 a deletion of a row in DEPT that is still referenced by
a row in EMP,?

« corresponding updates (changes) of DEPTNO values.

4|t might be reasonable to recursively delete all employees of that
department, too (cascading delete).

4

77
Foreign Keys (4)

e Table EMP also contains a second foreign key:

Column MGR contains the employee number of the employee’s
direct supervisor.

e This shows that

> it is possible that a foreign key refer to another row in the
same table (or even the same row),

> the foreign key column and referenced key may have
different names (here: MGR and EMPNO).

Null Values

e The relational model allows column entries to remain empty
(i.e., the column/row contains a null value).

e For example, in table EMP:

(D only salespeople have a commission,

(@ the company president has no supervisor.

e When a table schema is declared, we may specify for each
column whether null values are accepted or not.

e Null values are treated specially in comparisons.

78

79
Introduction to the Relational Model and SQL

Overview

2. Simple SQL Queries

Simple SQL Queries (1)

e Simple SQL queries have the following syntactic form:

SELECT - - -FROM- - - WHERE - - - J

> After FROM: comma-separated list of table names from
which to extract data.

> After WHERE: specify predicate (Boolean expression,
true/false) which selected rows are required to satisfy.
A missing WHERE-clause is equivalent to WHERE TRUE.

> After SELECT: define which columns appear in the result

table.
Note: SELECT * selects all columns

80

81

Simple SQL Queries (2)

Show the entire department table (all rows, all columns)
SELECT * FROM DEPT J

e Result:

DEPTNO

10 | ACCOUNTING | NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 | OPERATIONS BOSTON

e Equivalent formulation:
SELECT DEPTNO, DNAME, LOC FROM DEPT WHERE TRUE J

82

Simple SQL Queries (3)

e SQL is not case-sensitive, except inside string constants.

e The syntax of SQL is format-free (newlines, whitespaces, etc.
may be arbitrarily used).
Commonly found layout of SELECT-FROM-WHERE blocks

select deptno, dname, loc
from dept

83
Using Conditions (1)

To extract all data about the department in DALLAS
SELECT * FROM DEPT WHERE LOC = ’DALLAS’ J

e Result:

DEPTNO DNAME LOC
20 | RESEARCH | DALLAS

e String constants are enclosed in single quotes ().

e Inside string constants, SQL is case-sensitive. The following
will select 0 rows (empty result):

SELECT * FROM DEPT WHERE LOC = ’Dallas’ }

84
Using Conditions (2)

Print the name, job, and salary of all employees earning
at least $2500

SELECT ENAME, JOB, SAL
FROM EMP
WHERE SAL >= 2500

e Result:

JONES MANAGER | 2975
BLAKE MANAGER | 2850
SCOTT ANALYST | 3000
KING | PRESIDENT | 5000
FORD ANALYST | 3000

85
Using Conditions (3)

e SQL evaluates WHERE before SELECT:
The WHERE-clause may refer to columns which do not appear
in the result.
Print the employee number and name of all managers

SELECT EMPNO, ENAME
FROM EMP
WHERE JOB = ’MANAGER’

86
Pattern Matching (1)

e SQL also provides an operator for text pattern matching
allowing the use of wildcards:
Print the employee number and name of all managers

SELECT EMPNO, ENAME

FROM EMP
WHERE JOB LIKE ’MANAY’

> % matches any sequence of arbitrary characters,

> _ (underscore) matches any single character.

e Compare: UNIX shell globbing via * and 7.

87

Pattern Matching (2)

e The SQL keyword LIKE needs to be used for pattern
matching. The equals sign (=) tests for literal equality.

e The following is a legal SQL query but will return an @
empty result:

SELECT EMPNO, ENAME

FROM EMP
WHERE JOB = ’MANAY%’

Arithmetic Expressions

e SQL provides the standard arithmetic operators.
Print employee names earning less than $15,000 per year
SELECT ENAME

FROM EMP
WHERE SAL < 15000 / 12

88

e The predicate SAL * 12 < 15000 is equivalent (column

names act like variable identifiers in programming languages).

89
Renaming Output Columns

Print the yearly salary of all managers

SELECT ENAME, SAL * 12
FROM EMP
WHERE JOB = ’MANAGER’

JONES 35700
BLAKE 34200
CLARK 29400

e To rename the second result column:
SELECT ENAME, SAL * 12 [AS] YEARLY SALARY ... |

90
Logical Connectives (1)

e The Boolean operators AND, OR, NOT and parentheses () may
be used to construct more complex conditions.

Print name and salary of all managers and the president

SELECT ENAME, SAL
FROM EMP

WHERE JOB = ’MANAGER’ OR JOB = ’PRESIDENT’

e The query would not work as expected with AND instead of OR.

91
Logical Connectives (2)

e Without parentheses, AND binds stronger than OR (and NOT
binds stronger than AND).

Print name, salary of all well-paid managers and presidents

SELECT ENAME, SAL

FROM EMP

WHERE JOB = ’MANAGER’ OR JOB = ’PRESIDENT’
AND SAL >= 3000

e The system will parse the condition as ?P:

WHERE JOB = ’MANAGER’
OR (JOB = ’PRESIDENT’ AND SAL >= 3000)

92
Removing Duplicate Rows

e In general, queries can produce duplicate rows.

List all jobs
SELECT JOB FROM EMP

The DBMS processes this query by a loop over table EMP and
extracts the job of every employee. The same job name will be
extracted multiple times (and then printed by the SQL
console).
e Duplicate row elimination may be requested by adding the
keyword DISTINCT after SELECT:
List all distinct jobs
SELECT DISTINCT JOB FROM EMP J

93
Sorting Output Rows (1)

e The row ordering emitted by a SQL query is not
predictable, unless an explicit request for sorting is added.
Print employees names and salary, alphabetically
ordered by employee name

SELECT ENAME, SAL
FROM EMP
ORDER BY ENAME

e Some SQL implementations implement the ORDER BY-clause
on the SQL console level only: the row printing order is
changed.

94
Sorting Output Rows (2)

e The ORDER BY-clause permits multiple sorting criteria (useful
only if one or more columns contain duplicate entries).

Print employees who earn $2000 at least, ordered
by department number and descending salaries

SELECT DEPTNO, ENAME, SAL
FROM EMP

WHERE SAL >= 2000
ORDER BY DEPTNO, SAL DESC

v

e SQL orders lexicographically (here: first by DEPTNO, then by
SAL).

e Sort order is ascending (ASC) by default.

95
Outlook: Joining Tables

e SQL allows to combine data from different tables.
Print employees in the RESEARCH department

SELECT ENAME

FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO
AND DNAME = ’RESEARCH’

o Conceptually, SQL evaluates the WHERE-predicate for every
combination of rows from both tables (cross product).

e Since column name DEPTNO appears in both tables,
disambiguate the column reference by prefixing the table name
(“dot notation™).

SQL Quiz (1)

Table EMP

EMPNO ENAME
7499 ALLEN
7521 WARD
7566| JONES|
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT|
7839 KING
7844 TURNER
7876| ADAMS
7900 JAMES
7902 FORD
7934 MILLER

SALESMA
MANAGER

SALESMA
MANAGER
MANAGER|
ANALYST]
IPRESIDENT]
SALESMAN|
CLERK
CLERK|
ANALYST|

CLERK

20-FEB-81
22-FEB-81
02-APR-81
28-SEP-81)
01-MAY-81
09-JUN-81
09-DEC-82
17-NOV-81
09-SEP-81
12-JAN-83
03-DEC-81
03-DEC-81

23-JAN-82

SAL

COMM

300
500

1400

96

DEPTNO

SQL Quiz (2)

e Formulate the following queries in SQL:
Who has employee KING as direct supervisor?

Who has a salary between $1000 and $2000 (inclusive)?
Print name and salary and order the result by names.

SQL Quiz (3)

Which employee names consist of exactly four characters?

Print name, salary, department of all employees who work
in department 10 or 30 and earn less than $1500.

SQL Quiz (4)

Which jobs occur in which departments?

99

100
Introduction to the Relational Model and SQL

Overview

3. Historical Remarks

101
Relational Model: History

e The relational model (RM) was proposed by Edgar F. Codd
(1970).

It was the first data model that was theoretically defined prior
to implementation. Codd won the Turing Prize in 1981.

e First implementations (1967):

> System R (IBM)
> Ingres (Mike Stonebraker, UC Berkeley)

e First commercial systems: Oracle (1979), Ingres (19807),
and IBM SQL/DS (1981).

102
Reasons for Success (1)

o Much simpler than earlier data models.

One core concept: finite relation (set of tuples).

e Easily understandable, even for non-specialists:
Relations correspond to tables.

e The theoretical model fits well with common implementation
techniques:
A relation is an abstraction of a file of records.

e The relational model features set-oriented operation. In
earlier models, record-to-record navigation was explicit.

103
Reasons for Success (2)

e Declarative query language.

A SQL query expresses the format and conditions that
resulting tuples need to respect. The RDBMS contains a
query optimizer that derives an efficient query evaluation plan
(i.e., an imperative program that evaluates the query) from this
declarative specification. In earlier models, programmers had to
explicitly think about the use of indexes and many more details.

e The relational model has a solid theoretical foundation.

It is tightly connected to first-order logic.

104
Standards

e First standard 1986,/87 (ANSI/ISO).

This was late as there were already several SQL systems on the
market. The standard was the “smallest common
denominator”, containing only the features common to existing
implementations.

e Extension to foreign keys etc. in 1989 (SQL-89).

This version is also called SQL-1. All commercial
implementations today support SQL-89, but also features
significant extensions.

e Major extension: SQL-2 (SQL-92) (1992).

Standard defines three levels, “entry”, “intermediate”, “full.”
Oracle 8.0, SQL Server 7.0 have entry level conformance.

105

Future

e Current standard: SQL-99.

SQL-99 is a preliminary version of the SQL-3 standard. Until
12/2000, the volumes 1-5 and 10 appeared (2355 pages; the
SQL-2 standard, which is not completely implemented yet had

587 pages).
e Some features in the upcoming SQL-3:
> User-defined data type constructors:

= LIST, SET, ROW to structure column values
> OO features (e.g., inheritance, subtables).

> Recursive queries.

