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ABSTRACT

Data processing systems find themselves crushed between two
moving tectonic plates: the usage plate driven by the system’s users
and their requirements; and the environment plate driven by vari-
ous technological changes. We argue that the existing status quo of
constantly adapting and thus bloating the system’s implementation
is simply unsustainable in the long run. We further argue that now
is the right time to take a step back and establish the foundations
of future-proof data processing systems that can easily adapt to
different workloads and input formats, and that can run efficiently
in any type of environment, today and in the future.

With our paper, we analyze and learn from prior attempts, iden-
tify key design principles, and present our vision on how to design
such systems.
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1 INTRODUCTION

Data-intensive processing systems find themselves between two
tectonic plates (usage & environment) that are continuously moving
independently of each other as sketched in Figure 1. Today, many
systems already struggle with adapting to one plate due to the
increased system complexity. In this paper, we argue that we need
to pause and think about the design of future-proof data processing
systems that can adapt to the movements of both plates.

The usage plate has been in motion for nearly as long as data
processing systems have existed. Over the decades, new data mod-
els (e.g., object-oriented, graph, NoSQL) have emerged, sparking
a drive to develop customized systems (e.g., TigerGraph [66] for
graph analytics) before incorporating a suitable support into exist-
ing relational systems [64] at the cost of increased code complexity.
At the same time workloads and application domains also evolve,
for example, with the increased demand to process time-series and
spatial data, stream data, or to support machine-learning appli-
cations. Most recently, users are increasingly pushing to reduce
lock-in effects and expect data processing systems to work on user-
provided data, with evolving file (e.g., Parquet [68]) and table (e.g.,
Delta Lake [4]) formats. While it is now widely being agreed that
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Figure 1: Two tectonic plates are moving at the same time.
While existing systems cannot easily keep up with the move-
ments like a bridge built out of wood and steel, we envision
future-proof systems that can adapt, similar to a rope bridge.

rebuilding specialized systems every time from scratch is not sus-
tainable [42, 55], it is still not clear how to build one system that is
sufficiently flexible and performant to avoid the need for specialized
systems at all.

The environment plate has also been constantly in movement,
but its pace has increased significantly in the last two decades due
to several factors: (1) With the end of Dennard’s scaling, comput-
ing devices have become increasingly parallel and heterogeneous
with various accelerators being put in the data path and deployed
more widely in hyperscalers. (2) Technological advancements now
push towards resource disaggregation relying on low-latency, high-
bandwidth networks and most recently cache coherency also across
devices (e.g., CXL [16]). The memory hierarchy has also expanded,
increasingly blurring the boundaries between memory and stor-
age. (3) Finally, the widespread use of cloud services significantly
affected the economic incentives and led to more dynamic environ-
ments with elastic scaling, functions as a service, and spot-instances.
While there is a large body of research on how to leverage these
trends for efficient data processing (e.g., for GPUs [58], FaaS [51]),
it is still unclear how to build systems that can run efficiently in
any environment with no or only minor changes.

We argue that now is the right time to target both plates at the
same time and establish the blueprints of what a future-proof sys-
tem could look like. However, it is still unclear how one can design
systems that are extensible enough to capture new workloads, flex-
ible enough to run in diverse environments, but also performant
and maintainable. We analyze existing approaches for adapting
to movements in the usage plate (cf. section 2) and the environ-
ment plate (cf. section 3), and derive a design for future-proof data
processing systems that aims to fulfill all of these criteria.
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2 THE USAGE PLATE

We argue that future-proof systems need to be extensible to support
new user requirements and workloads without needing to rebuild
or adapt the core system. Extensible database systems date back to
the 1980s, with Postgres designed for extensibility [65] and the Star-
burst project arguing for it [47]. Today, a multitude of extensions are
available for systems like Postgres or DuckDB that add functionality
not easily expressible in SQL (e.g., complex business logic), sup-
port new domains (e.g., graph processing, vector similarity search,
ML), wrap existing libraries (e.g., cryptographic functions), or add
support for new file formats (e.g., Parquet, BtrBlocks).

However, despite decades of research in extensible systems, we
argue that existing approaches are not sufficient for building future-
proof systems. More specifically, we argue that future-proofness
requires an extensibility approach that is (1) user-friendly, (2) per-
formant, and (3) secure, raising the following research questions:

(1) How should one design a user interface for expressing logic
that is both high-level and expressive, and allows the system to ex-
ecute it efficiently? This requires understanding the provided logic
to perform (logical) optimizations, run it in heterogeneous environ-
ments, and analyze it from a security standpoint. (2) How can the
system optimize a combination of (declarative) native operations
and user-provided logic? (3) How can one avoid a monolithic system
by decoupling system components such that they can evolve inde-
pendently, for example being provided as an extension? (4) How
can user-provided code that remains a black box be sandboxed and
executed efficiently?

We now discuss existing approaches for extensibility to derive
insights that help with finding solutions to the research questions.

Native Extensions. Native extensions are frequently used to ex-
tend monolithic systems like Postgres (e.g., pg_vector) or DuckDB
(e.g., duckpgq). Typically implemented in systems programming
languages, they are distributed and loaded as dynamic libraries.

Thus, if the system provides enough extension points, any kind
of extension can be implemented, including the reuse of existing
libraries. Being written in systems programming languages, native
extensions offer similar performance as the core system.

However, using systems programming languages makes native
extensions difficult to develop for end-users, and they can also com-
promise the whole system in case of security issues. It also makes
it hard for the database to inline, understand, and optimize the
expressed logic and to use it in different execution environments.

Insight 1: Native extensions can be highly performant, versatile,
and can make use of existing high-quality libraries.

Deconstructed and Modular Data Processing Systems. Recent years
have seen the emergence of deconstructed data processing systems
(e.g., Datafusion [42]) and libraries (e.g., Velox [54]) that were well
accepted. Instead of building monolithic systems with selected ex-
tension points, they opt for a modular system design. This allows
for composing customized data processing systems and thus avoid-
ing the need to rebuild systems from scratch for new use-cases.
Core ingredients for modular data processing systems are (1) ex-
plicit intermediate representations to describe the computations or
transformations (e.g., Apache Substrait [15]), and (2) data exchange
formats, most prominently Apache Arrow [21].

Modular data processing systems make it particularly easy to
exchange core components like the execution engine or the query
optimizer [30]. Furthermore, using standardized zero-copy data
exchange formats like Apache Arrow allows for reusing existing
libraries that use the same format (e.g., implementing support for a
file format). Using standardized representations for computations
also allows for pushing data filters and transformations down into
such external modules [43]. Following the idea of partial evaluation,
pushing down computations works even when not all functionality
can be supported by the module [50].

Extending such a system with new components typically re-
quires a systems programming language, which makes it difficult
for end-users. Furthermore, the security depends on the weakest
component, and while modularity enables component replacement,
the design itself does not help with adding logical optimizations
for new domains or supporting new hardware environments.

Insight 2: Using explicit representations for computations and
zero-copy data exchange formats, decouples system components,
makes them reusable, and can allow for using existing libraries.

UDFs: Procedural Extensions to SQL. User-defined functions using
procedural extensions to SQL (e.g., SQL/PSM, PL/SQL, PL/pgSQL)
are typically limited to executing SQL statements, evaluating ex-
pressions and control flow, such as if statements and loops.

The limited expressiveness also enables the database system
to understand the logic and optimize it to improve performance,
for example by inlining [29, 57, 63]. Furthermore, the limited set
of language constructs also provides security through language
isolation, and the logic is as portable as SQL.

At the same time, the limited expressiveness does not allow
for implementing many types of extensions, and combined with
commonly outdated syntax, often results in poor adoption by users.
Additionally, the embedded interpreter is typically not as fast as
(JIT-)compiled programming languages.

Insight 3: Procedural SQL extensions can be understood and
I securely executed by the system, but offer limited expressiveness.

UDFs: General Programming Languages. Using general-purpose
languages (e.g., Python, Java, Rust, C++) for UDFs overcomes the
limitations in expressiveness of SQL’s procedural extensions.

Thus, most kinds of extensions can be realized this way, including
wrapping existing libraries for complex computations, accessing the
network, and reading different file and table formats. Using general-
purpose programming languages also means users do not need to
learn new programming languages, and compiled languages can
outperform embedded interpreters for procedural SQL extensions.

However, frequently used high-level programming languages
like Python are often challenging to execute efficiently [20] and
typically require additional, expensive sandboxing mechanisms for
security [18]. Finally, UDFs written in general-purpose program-
ming languages become black boxes for the system, making it diffi-
cult to apply optimizations across queries and user-defined logic. It
is often nontrivial to support different hardware environments.

Insight 4: High-level languages (e.g., Python) are user-friendly

and expressive but not declarative, hard to reason about, difficult
to execute securely, and suffer from performance issues.



Common runtimes for data processing. Common runtimes for
data processing like Spark [74] or DryadLINQ [73], offer a unified
platform for users to express their data processing problems in
high-level languages, also using (declarative) functions provided by
the system (e.g., filter, map, reduce), and domain-specific libraries
that provide some semantics to the system.

Using high-level, general-purpose languages without many con-
straints makes systems highly user-friendly and flexible. Further-
more, having a unified runtime together with declarative runtime
functions allows runtimes to optimize across library or domain
borders [53, 74]. For example, loops can be fused across different
libraries and user-provided code, leading to a better performance.

However, experience showed that missing high-level operators
cause sub-optimal plans [74] and Spark later introduced DataFrames
and a query optimizer [5]. Second, everything not directly expressed
with runtime functions or runtime libraries remains a black box
component written in a high-level language. This is problematic,
as high-level languages are often challenging to execute efficiently,
provide insufficient security isolation, and are difficult to port for
different hardware. To improve execution efficiency, systems like
Spark increasingly switch to optimized, native execution engines [8,
62] that only support a limited set of relational operators but cannot
run general Spark programs.

Insight 5: Common data processing runtimes can partly reason
about computations through runtime primitives despite using
high-level programming languages.

Insight 6: Having a unified representation for data processing
allows for cross-library/domain optimizations, in addition to
high-level optimizations.

3 THE ENVIRONMENT PLATE

Nowadays, data processing systems are not only expected to run
on modern, highly parallel CPUs, but also on accelerators with
different compute paradigms (e.g., GPUs, processing-in-memory,
TPUs, DPUs). Furthermore, environments will become increasingly
disaggregated using existing (e.g., RDMA, fast Ethernet) and future
(e.g., CXL, NVLink, photonic interconnects) technologies and come
with deep and heterogeneous memory and storage hierarchies
(e.g., nv-ram, HBM). We argue that future-proof systems should be
designed such that the core system does not need to be rebuilt for
new hardware configurations. This raises the following question:

How can we decouple the core logic of data processing
systems from both user requirements (being extensible), and
from the exact hardware environment (being flexible) while
remaining performant?

More specifically, this also requires answers to the following
challenges: How to design an abstraction for (1) decoupling user
requirements from the efficient execution on a variety of compute
devices, with different instruction sets and compute paradigms?
And how can the core system be decoupled from the complexity
of (2) where to place state and optimizing data movements, and
(3) how to schedule work and achieve robustness in dynamic and
heterogeneous environments.

While these challenges have been recognized before, we argue
that now is the right time to treat them as interconnected. For exam-
ple, using accelerators (e.g., GPUs) for data processing effectively

not only requires tuning algorithms and generating an optimized
binary, but also managing state (e.g., moving working-set to device
memory), and optimizing work scheduling across compute devices.

3.1 Targeting heterogeneous compute devices

Various approaches address the challenge of targeting heteroge-
neous compute devices with differing instruction sets (e.g., SIMD
variants) and paradigms (e.g., CPU, GPU, DPU). These include exe-
cuting pre-compiled hardware-optimized primitives, just-in-time
compilation of high-level abstractions, and using declarative sub-
operators to tune algorithms for specific hardware.

Pre-compiled primitives. Many approaches use pre-compiled, op-
timized operator implementations [28, 54], SIMD primitives [67],
or GPU-Kernels [35, 37] that are comparatively simple to use and
develop, as one can rely on standard development tools and prac-
tices. However, because these pre-compiled primitives need to be
fine-grained (e.g., operator-at-a-time) to be reusable, inefficiencies
(e.g., due to materialization overheads or execution overheads of
GPU-Kernels) quickly occur [9, 14, 22]. Furthermore, each primi-
tive either needs to have a custom implementation for each (new)
device type (e.g., CPU, NVIDIA-GPUs, AMD-GPUs) [12, 37, 40, 58],
or builds on compilers like OpenCL [28, 37], which still requires
fine-tuning for each hardware platform [58].

Layered Compilation. In contrast, approaches using layered com-
pilation generate efficient machine code at runtime from high-level
operators using multiple layers of abstractions. This is especially
used by the machine-learning community to turn high-level tensor
programs into efficient code for CPUs, GPUs, and TPUs [46]. While
some propose to directly leverage these compilers [24, 27], others
build customized stacks for databases [52, 60]. Having multiple
layers allows for decoupling user demands (e.g., computations to
perform) from hardware capabilities such that higher layers do not
need to care about the underlying hardware. Furthermore, multi-
layered compilation also allows for building high-level abstractions
from low-level, fine-grained primitives, with zero-cost at runtime.
Thus, for supporting new hardware, only a few lower layers must
be adapted. These advantages come at the price of compilation
overheads. The implementation effort can be kept reasonably low
by relying on reusable compiler frameworks like MLIR [44], and the
surrounding community, which frequently adds hardware support.

Insight 7: Layered compilation allows for decoupling user de-
mands from hardware capabilities and zero-cost abstractions.

Declarative Designs for Sub-Operators. In addition to using a
compilation-based approach, there are several proposals for declar-
ative layers below high-level (e.g., relational) operators [25, 33, 56].
In contrast to high-level operators that abstract away from state
and data structures, sub-operators typically describe algorithms
and their relation to states and data structures. Due to the exposed
algorithms and state, it is possible to tune declarative algorithms
for different compute paradigms. For example, to efficiently uti-
lize GPUs, it is crucial to minimize control-flow divergence, and
optimize data accesses to saturate high-bandwidth memory.

Insight 8: Declarative sub-operators exposing state and state
usages help tuning algorithms for different compute paradigms.



3.2 State Management and Dataflow

Reasoning about state and the dataflow is crucial for efficiently
utilizing a diverse range of memory and storage options. Over the
years, our community has identified the need for exposing state
and dataflow, so that specialized runtime components can reason
and optimize state placement and data movements.

Page-based interfaces for data access. Such abstractions have ex-
isted since the dawn of relational databases in the form of page-
based interfaces for data access. For example, buffer managers offer
a simple interface for database developers to work with data sizes
beyond the available memory and to deal with the complexity of
the storage medium. Because the interface is simple and does not in-
clude semantics beyond the current access, buffer managers cannot
help with optimizing the global dataflow and data movements.

Enhanced interfaces for data access. Newer proposals for inter-
faces support declaring additional properties. For example, recent
work proposes a unified interface for state materialization that al-
lows the underlying runtime to adaptively compress data, switch
to other storage mediums, or nodes [41]. It can perform these opti-
mizations, because the interface provides additional metadata that
describes the semantics of the materialized data. For example, when
the interface includes a hash value for data partitioning (e.g., in a
hashtable), the runtime can optimize for the expected data accesses
(e.g., a partition at a time) to avoid performance regression. When
using such enhanced interfaces, efficient in-memory operators do
not need to implement special strategies for utilizing other memory
or storage options, for example, in out-of-memory situations.

Explicit State Management for Distribution. In distributed sys-
tems, state and dataflow are typically further exposed to abstract
away from concrete storage locations, and reason about and opti-
mize data movements. In the simplest case, state is fully exposed for
explicit partitioning and transparent shuffling by the underlying
system across compute nodes (e.g., MapReduce [17], Spark [5]).
More advanced proposals enable annotating additional properties
to improve reasoning about dataflow and data movement. For exam-
ple, tasks in Polaris [2] logically describe which cells are required
as input and which relations must hold (e.g., left cells and right
cells must belong to the same partition for a partitioned hash-join).
Exposing state and knowing additional properties allows for rea-
soning and optimizing for data-flow and resource utilization (e.g.,
local temporary disk space). The system can reason about the re-
quirements, schedule tasks and make sure that, once required, the
state is transferred in time to the compute node, as for example
also sketched as a vision for fully-disaggregated data centers [61].

Declarative state allocation. Recent visions for programming fully
disaggregated systems propose annotating state allocations over
logical memory and storage regions with the required physical prop-
erties [3]. For example, annotating high-bandwidth, low-latency,
or persistence requirements allows the underlying runtime to late-
bind the logical regions on the available physical hardware.

Insight 9: Exposing state and dataflow, annotated with additional

properties, allows runtimes to reason about it and optimize state

placement and data movements.

3.3 Robust execution in dynamic environments

In dynamic environments, systems must optimize for both perfor-
mance and robustness. Execution should tolerate fluctuating avail-
ability of heterogeneous nodes (e.g., spot instances, failures) and
data skew. Prior work has proposed several abstractions for increas-
ing robustness, typically by exposing tasks, state, and data-flow.

Task-based parallelism and work stealing. For single-node sys-
tems, task-based parallelism combined with work stealing allows
for redistributing work in the presence of skew or stragglers. In
the database community, this concept has also been introduced as
morsel-driven parallelism [45]. The key idea is to use explicit state
which, in many cases, is partitioned into thread-local states to avoid
synchronization. Tasks are split into smaller subtasks (i.e., morsels)
that are scheduled based on data locality and worker availability,
with work stealing ensuring adaptive parallelism.

State-centric abstractions for robust distributed systems. For multi-
node systems, additional measures are taken to also deal with node
failures and lost state. For example, Spark uses the abstraction of re-
liable distributed datasets, where missing state can be recomputed.

Some distributed systems logically separate state from compute,
allowing both for reliable execution (as state is not bound to a
failing node) and robust execution (allowing for a flexible mapping
of compute and storage) [2]. Additionally, state-centric designs also
support on-demand state-separation by evacuating nodes in failure
scenarios (e.g., spot instances being notified to be retracted) [71].

Insight 10: State-centric abstractions enable robust task execu-
tion in dynamic environments.

4 DESIGN PROPOSAL

Building on sections 2 and 3, we present our vision for building
future-proof data processing systems that are extensible, flexible,
and performant. Figure 2 gives an overview of the proposal.

4.1 Extensibility

(D Language Support. In addition to working with query lan-
guages like SQL, users should be able to extend the system with a
user-friendly and expressive, yet performant, secure, and potentially
portable language. To enable optimizations and increase portability,
the language must include declarative elements, either through
its design (Insight 3) or via declarative libraries that should pri-
marily be used (Insight 5). Ideally, an intermediate representation
can be produced from the language that captures declarative and
imperative elements.

One could develop a new domain-specific language along these
requirements, but gaining sufficient adoption for this language
could become difficult. Instead, we propose to take a popular high-
level, expressive programming language like Python (Insight 4),
and supplement it with declarative libraries. An analysis tool then
extracts the high-level semantics from the language and produces
an IR that can be understood by the system [32] and contains
high-level operators (e.g., from pandas operations), declarative sub-
operators (e.g., produced from declarative libraries), and imperative
operations. For a dynamic language like Python, not everything can
be fully analyzed, but remaining black boxes of Python code can be
embedded in the IR, and later executed by a sandboxed interpreter.
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Figure 2: Our vision for building future-proof data processing
systems. For the user plate, both SQL and (1) Extensions produce a
(2) unified IR enabling powerful optimizations. For the environment
plate, a (4) directed task graph explicitly describing the relation
between tasks and logical state, allows for declaratively delegating
many decisions to a (5) runtime supporting highly complex and
dynamic environments. Finally, a (6) hinge layer containing declara-
tive sub-operators and (7) layered compilation connects both plates.

(2) Representing and Optimizing native and user-provided logic.
We argue that future-proof systems need to reason about both
native and user-provided logic and operators of new domains.

For a unified IR that can represent not only native operators, we
propose to use a general but modular compiler IR (e.g., MLIR [44])
and extend it with domain-specific concepts such as relational op-
erators, in contrast to using a domain-specific representation (e.g.,
tree of operator objects). Thus, imperative code is natively sup-
ported, and new domains (e.g., ML) that often already have support
in compiler frameworks can be easily represented as well. Similarly,
this approach allows for implementing (high-level) optimizations
for new domains and imperative code as unconstrained compiler
passes on a compiler IR, ideally being able to reuse existing imple-
mentations. At the same time, cost-based optimization passes (e.g.,
operator reordering) can be supported through passes that access
the relevant statistics and metadata and annotate operations [34].

The exact semantics of operators is determined by lambda func-
tions that are represented in the same modular IR. For example, a
selection operator takes a lambda function that consumes a tuple
and produces a boolean result. This function can contain arbitrary
IR operations, and, thus, also represent user-provided logic like
inference for machine-learning models (e.g., decision trees). Cross-
domain optimization then becomes feasible by interleaving different
compiler passes, that e.g., optimize the inference by interleaving
constant propagation with simplification passes [36].

For new user requirements (e.g., hybrid relational-vector queries,
or machine-learning), users can extend the system by writing code
in a high-level language that is translated into the unified IR and is
optimized by a combination of native and user-provided passes. Due
to relying on modular compiler technology, deeper integrations in

the system can be achieved without major rewrites. Instead, new
IR operations and optimization passes can be defined (e.g., in the
form of a new MLIR dialect) and integrated into the system (e.g., by
a third party for optimized hybrid relational vector queries [48]).

(3) Runtime Extensibility for Input Formats. To support future file
formats, new compressions and encodings inside existing formats,
table formats, and storage services on the fly, in addition to natively
supported formats, we propose that users provide the necessary
logic for accessing the data (e.g., embedded inside file formats).

However, data access logic will typically be written in systems
programming languages (Insight 1) to (1) use efficient hardware
primitives (e.g., SIMD) and (2) reuse existing libraries (e.g., Parquet
reader, Delta Lake library). To be able to securely execute them, fu-
ture systems need to provide isolation mechanisms. Compiler-based
virtualization techniques (e.g., WebAssembly [26]) seem promising
due to their standardized format and portability.

For the interface to such extensions, future-proof systems should
rely on a standardized and efficient in-memory data format such as
Apache Arrow (Insight 2) for accessing (pre-filtered) data originally
stored in other formats. Materialization overheads can be avoided
by only converting data on-demand in cache-sized data chunks (e.g.,
as requested by a scan). Efficient compression techniques can still
be leveraged by executing filters on the native format and only con-
verting filtered data to the standardized format. However, pushing
predicates down into extensions will require (1) standardized pred-
icate representations and (2) negotiation over which filtering steps
are pushed down. While Substrait [15] could be a candidate for (1),
(2) could be handled by having the decoder return any filtering steps
it cannot perform, following the idea of partial evaluation [50].

With our proposal, users can extend the system to process new
input formats (e.g., FastLanes [1], or the ROOT format used by physi-
cists [13]), or support new compression techniques, by providing a
decoder, e.g., written in Rust and compiled to WebAssembly. The
system can then process files at near-native performance, without
adapting the system or compromising security.

4.2 Complex and dynamic environments

To support increasingly dynamic and complex environments, we
propose a (4) state-centric abstraction (Insights 9, 10) for describing
both compute tasks and the required (intermediate) state.

More specifically, we propose representing computations as a
(1) directed, acyclic graph of tasks that (2) interact with a set of
logical states. Each task contains a so-called tasklet that describes
the computations performed for each part into which the task can
be split. For example, a task could be scanning a table and do fur-
ther data processing on top. In this case, the corresponding tasklet
would then describe (e.g., in the form of an IR) the necessary com-
putations for a single data chunk of the scanned table. Furthermore,
each task describes the relation of tasklets and logical states in
two dimensions. First, algorithmic properties (Pgj ) describe the
algorithmic constraints for scheduling tasklets and their inputs. For
example, for a task implementing a partitioned hash-join, these
constraints should specify that each tasklet needs to consume part
of each input relation, but only full partitions, and the partitions
must match. Similarly, further constraints can specify which sets



of tasklet instances are allowed to be executed concurrently with-
out additional synchronization, or access shared state. The second
dimension describes desired properties Psys from a system’s point
of view. Such properties could include whether the task requires
low-latency or high-bandwidth access to some logical state, the re-
quired persistence guarantees, or the confidentiality of data. Making
these constraints on the relations of tasks and states explicit allows
the system to (5) reason about task placement, state management,
dataflow and robustness, and optimize for it at runtime.

Let’s assume that a new data storage technology should be in-
tegrated that offers new performance characteristics (e.g., higher
bandwidth with HBM), new guarantees (e.g., durability with non-
volatile RAM) or properties (e.g., shared memory across CPU and
accelerators), but also limitations (e.g., limited capacity, write am-
plification, higher latency). The introduced abstractions capture
the algorithmic and physical requirements necessary for effectively
delegating placement decisions to a runtime system, avoiding the
need to adapt the core system from to new storage technologies.

Similarly, new data movement technologies offer higher band-
widths [10] or lower latencies (e.g., photonic interconnects [49]),
new guarantees (e.g., cache coherency with CXL or NVLink), and
thus may require adapting the system’s strategy for scheduling
work and placing data for increasing efficiency. The task DAG cap-
turing both abstract computations and their interaction with state
enables a dedicated runtime system to reason about different op-
tions of moving data and/or compute, depending on access patterns,
compute capabilities, the task’s operational intensity [70], and the
capabilities of interconnects. This avoids the need to adapt the core
system, especially if the runtime component can be (largely) reused.

4.3 Connecting both plates

To bridge both tectonic plates and support evolving workloads in
changing environments, we rely on two main ideas: (1) a declarative
yet flexible abstraction layer that acts as a “hinge” between the
unified IR (usage plate) and the annotated task graph (environment
plate), and (2) layered compilation for compiling native and user-
defined code to machine code for heterogeneous devices.

(6) “Hinge” Layer. The proposed hinge layer fully exposes state
and data-structures and consists of declarative sub-operators that
perform computations and interact with the explicit state. Fur-
thermore, most sub-operators can be customized through attached
lambda-functions that determine their exact behavior (e.g., for sub-
operators like map or reduce), using arbitrary operations from the
unified IR. This allows capturing any compute (in the worst-case,
as black box inside one sub-operator) and flexibly building cus-
tom algorithms. At the same time, the declarative design of the
sub-operator still allows for rewrites and optimizations even when
the embedded logic is not fully understood, and contains enough
information (especially regarding the interaction with states) to de-
rive further properties (P4, Psys), which users cannot be expected
to annotate manually. Furthermore, if sub-operators are used for
describing tasklets, the computation can be adapted for different
compute paradigms (Insight 8), for example, when a set of tasklets
is scheduled to run on a GPU. Our recent design for declarative
sub-operator layer [33] could serve as a basis for the hinge layer,
and ongoing work indicates suitability also for targeting GPUs.

(?) Multi-layered Compilation. A multi-layered compilation ap-
proach allows systems to go from high-level, device-generic abstrac-
tions to low-level device-specific primitives, with multiple layers in
between. This enables compiling a unified IR, as discussed in subsec-
tion 4.1, and imperative operations e.g., embedded in sub-operators
into efficient machine code for different devices, also enabling effi-
cient execution of extension-provided code. It also eliminates the
need for high-level, device-specific operators and further avoids
overheads that quickly occur when composing high-level operators
from lower-level, compiled primitives (Insight 7). Compilation for a
specific device is only started after the runtime has placed tasklets
on this device type (e.g., using runtime information and statistics).

Let’s assume that the system is required to support new com-
pute technologies (e.g., processing-in-memory (PIM), TPUs, NPUs,
Xilinx’s AiEngines). The properties of sub-operators to perform
semantically equivalent rewrites combined with the ability to rea-
son about compute, state and hardware capabilities allow for easier
adaptation to different compute paradigms (e.g., minimize control-
flow divergence in SIMT architectures). Thanks to layered compi-
lation, generating efficient binaries for new devices only requires
exchanging the lowest layers that are often already available when
relying on compiler frameworks like MLIR (e.g., for PIM [39] or
AlEngines [72]). Finally, further properties that can be derived from
sub-operators (e.g., idempotency of sub-operators) can be useful
for dealing with new technologies with new types of failures [6].

4.4 Open Research Challenges

With this paper, we aim to spark a discussion on the research
questions involved in building future-proof data processing systems,
and propose a possible blueprint for such a system design. However,
many aspects remain open challenges, often at the boundaries with
neighboring domains like systems and programming languages.

(1) User Interface for End-Users The more ambitious approach
of designing a new, suitable domain-specific language (i.e., PL/SQL
in 2025) could be superior, if the necessary adoption can be achieved.

(2) Generic Runtime Component There is a huge potential
for a runtime system usable across disciplines, onto which many
decisions such as memory allocation (e.g., as already started with [3,
31]), scheduling and data movement are carefully delegated.

(3) Verifying Extensible Compilers Using extensible com-
piler frameworks for optimizing and compiling user-provided code
requires that transformation steps do not introduce security is-
sues. While research on validation and verification for extensible
frameworks has already started [7, 11, 19, 69], it requires further in-
vestments, also from our community (e.g., for query optimization).

(4) Compilation Overheads While techniques for low-latency
compilation are well-known for CPUs [23, 38, 59], further research
is required for hardware platforms like GPUs and FPGAs.
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